Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (4): 2205039.doi: 10.3866/PKU.WHXB202205039
Special Issue: Festschrift Honoring Professor Youchang Xie on his 90th Birthday
• ARTICLE • Previous Articles Next Articles
Jingchao Xiang1,2,3,4, Jingjun Li2,3,4, Xue Yang2,3,4, Shuiying Gao2,3,4,*(), Rong Cao2,3,4,*(
)
Received:
2022-05-16
Accepted:
2022-07-07
Published:
2022-07-14
Contact:
Shuiying Gao, Rong Cao
E-mail:gaosy@fjirsm.ac.cn;rcao@fjirsm.ac.cn
Supported by:
Jingchao Xiang, Jingjun Li, Xue Yang, Shuiying Gao, Rong Cao. Cationic Ni-MOF-Assembled CdS/PFC-8 Catalyst for Photocatalytic Hydrogen Production with Selective Benzyl Alcohol Oxidation under Visible Light[J]. Acta Phys. -Chim. Sin. 2023, 39(4), 2205039. doi: 10.3866/PKU.WHXB202205039
"
Cat. | Light source | Solvent | H2/(μmol∙g−1∙h−1) | Benzalydehyde/(μmol∙g−1∙h−1) | Sel. (%) | Ref. |
CdS/PFC-8 | 300 W Xe lamp, λ > 420 nm | CH3CN | 3376 | 4120 | 99 | This work |
g-C3N4(W) | 300 W Xe lamp, λ > 420 nm | CH3CN | 298.7 | 305.1 | – | 9 |
CdS@MoS2 | 300 W Xe lamp, λ > 420 nm | CH3CN | 4233 | 5800 | 99 | 10 |
CdS/MIL-53(Fe) | 300 W Xe lamp, λ > 420 nm | CH3CN | 2334 | 2825 | 99 | 19 |
Ni/CdS/TiO2@MIL-101 | 50 W LED blue, λ = 470 nm | CH3CN | – | 18250 | – | 30 |
Pt-g-C3N4 | 300 W Xe lamp, λ > 400 nm | H2O | 255 | 200 | 90 | 31 |
Pt/Zn3ln2S6 | 300 W Xe lamp, λ > 420 nm | BTF | 878.3 | 921.3 | > 93 | 32 |
Co-CdS | 300 W Xe lamp, λ > 420 nm | CH3CN | 2310 | 2054.5 | 86.3 | 33 |
Mn0.25Cd0.75S/WO3 | 300 W Xe lamp, λ > 420 nm | BTF | 4680 | 4700 | 91 | 34 |
CdS/TiO2/MoS2 | 300 W Xe lamp, λ > 420 nm | CH3CN | 21400 | 22800 | > 99 | 35 |
TiO2/Ti3C2 | 300 W Xe lamp, λ > 200 nm | H2O | 3650 | 3167 | 90.5 | 36 |
1 |
Marschall, R. Eur. J. Inorg. Chem. 2021, 25, 2435.
doi: 10.1002/ejic.202100264 |
2 |
Li, L.; Fang, Z. B.; Deng, W. CCS Chem. 2021, 20, 2839.
doi: 10.31635/ccschem.021.202101241 |
3 |
Li, X.; Wei, J.; Li, Q. Adv. Funct. Mater. 2018, 28, 1800886.
doi: 10.1002/adfm.201800886 |
4 |
Lin, L.; Piao, S.; Choi, Y. Energy Chem. 2022, 4, 100072.
doi: 10.1016/j.enchem.2022.100072 |
5 |
Liu, H.; Xu, C.; Li, D. Angew. Chem. 2018, 130, 5477.
doi: 10.1002/ange.201800320 |
6 |
Pan, Y.; Qian, Y.; Zheng, X. Natl. Sci. Rev. 2021, 8, nwaa224.
doi: 10.1093/nsr/nwaa224 |
7 |
Wang, J.; Feng, Y. X.; Zhang, M. CCS Chem. 2020, 2, 81.
doi: 10.31635/ccschem.020.201900093 |
8 |
Zhang, F.; Zhang, J.; Wang, H. Chem. Eng. J. 2021, 424, 130004.
doi: 10.1016/j.cej.2021.130004 |
9 |
Li, P. X.; Zhao, H.; Yan, X. Y. Sci. China Mater. 2020, 63, 2239.
doi: 10.1007/s40843-020-1448-2 |
10 |
Chai, Z.; Zeng, T. T.; Li, Q. J. Am. Chem. Soc. 2016, 138, 10128.
doi: 10.1021/jacs.6b06860 |
11 |
Li, Z.; Huang, W.; Liu, J. ACS Catal. 2021, 11, 8510.
doi: 10.1021/acscatal.1c02018 |
12 | Zhao, N.; Peng, J.; Wang, J. P.; Zhai, M. L. Acta Phys. -Chim. Sin. 2022, 38, 2004046. |
赵娜, 彭静, 王建平, 翟茂林 物理化学学报, 2022, 38, 2004046.
doi: 10.3866/PKU.WHXB202004046 |
|
13 | Cao, D.; An, H.; Yan, X. Q.; Zhao, Y. X.; Yang, G. D.; Mei, H. Acta Phys. -Chim. Sin. 2020, 36, 1901051. |
曹丹, 安华, 严孝清, 赵宇鑫, 杨贵东, 梅辉 物理化学学报, 2020, 36, 1901051.
doi: 10.3866/PKU.WHXB201901051 |
|
14 |
Huang, L.; Gao, R.; Xiong, L. RSC Adv. 2021, 11, 12153.
doi: 10.1039/D1RA00625H |
15 |
Zheng, S.; Li, Q.; Xue, H. Natl. Sci. Rev. 2020, 7, 305.
doi: 10.1093/nsr/nwz137 |
16 |
Li, W.; Guo, X.; Geng, P. Adv. Mater. 2021, 33, 2105163.
doi: 10.1002/adma.202105163 |
17 |
Ma, X.; Liu, H.; Yang, W. J. Am. Chem. Soc. 2021, 143, 12220.
doi: 10.1021/jacs.1c05032 |
18 |
Liu, H.; Xu, C.; Li, D. Angew. Chem. Int. Ed. 2018, 130, 5477.
doi: 10.1002/ange.201800320 |
19 |
Li, P. X.; Yan, X. Y.; Gao, S. Y. Chem. Eng. J. 2021, 421, 129870.
doi: 10.1016/j.cej.2021.129870 |
20 |
Zhang, A. A.; Cheng, X.; He, X. Research 2021, 2021, 9874273.
doi: 10.34133/2021/9874273 |
21 |
Zhao, H.; Yang, X.; Xu, R. J. Mater. Chem. A 2018, 6, 20152.
doi: 10.1039/C8TA05970E |
22 |
Huang, G.; Yang, L.; Yin, Q. Angew. Chem. 2020, 59, 4385.
doi: 10.1002/anie.201916649 |
23 |
Fu, J.; Xu, Q.; Low, J. Appl. Catal. B: Environ. 2019, 243, 556.
doi: 10.1016/j.apcatb.2018.11.011 |
24 |
Li, Z.; Zhang, Z.; Dong, Z. Sep. Purif. Technol. 2022, 283, 120195.
doi: 10.1016/j.seppur.2021.120195 |
25 |
Meng, C.; Cao, Y.; Luo, Y. Inorg. Chem. Front. 2021, 8, 3007.
doi: 10.1039/D1QI00345C |
26 |
Zhang, Z.; Li, Z.; Dong, Z. Chin. Chem. Lett. 2022, 33, 3577.
doi: 10.1016/j.cclet.2022.01.062 |
27 |
Bai, Y.; Liu, C.; Chen, T. Angew. Chem. Int. Ed. 2021, 133, 25522.
doi: 10.1002/ange.202112381 |
28 |
Assoualaye, G.; Djongyang, N. Polym. Bull. 2021, 78, 4987.
doi: 10.1007/s00289-020-03350-w |
29 |
Chen, Y. N.; Li, J. J.; Yang, W. G.; Gao, S. Y. Chin. J. Struct. Chem. 2020, 39, 526.
doi: 10.14102/j.cnki.0254-5861.2011-2427 |
30 |
Tilgner, D.; Klarner, M.; Hammon, S. J. Chem. 2019, 72, 842.
doi: 10.1071/CH19255 |
31 |
Li, F.; Wang, Y.; Du, J. Appl. Catal. B 2018, 225, 258.
doi: 10.1016/j.apcatb.2017.11.072 |
32 |
Meng, S.; Ye, X.; Zhang, J. J. Catal. 2018, 367, 159.
doi: 10.1016/j.jcat.2018.09.003 |
33 |
Jiang, D.; Chen, X.; Zhang, Z. J. Catal. 2018, 357, 147.
doi: 10.1016/j.jcat.2017.10.019 |
34 |
Chen, D.; Cheng, Y.; Zhou, N. J. Clean. Product. 2020, 268, 121725.
doi: 10.1016/j.jclepro.2020.121725 |
35 |
Qi, M. Y.; Li, Y. H.; Zhang, F. ACS Catal. 2020, 10, 3194.
doi: 10.1021/acscatal.9b05420 |
36 |
Bao, X.; Li, H.; Wang, Z. Appl. Catal. B: Environ. 2021, 286, 119885.
doi: 10.1016/j.apcatb.2021.119885 |
37 |
Yang, X.; Zhang, S.; Tao, H. J. Mater. Chem. A 2020, 8, 6854.
doi: 10.1039/c9ta13811k |
38 |
Wang, S. Q.; Wang, X.; Zhang, X. Y. ACS Appl. Mater. & Inter. 2021, 13, 61578.
doi: 10.1021/acsami.1c21663 |
39 |
Li, J.; Chen, Y.; Yang, X. J. Catal. 2020, 381, 579.
doi: 10.1016/j.jcat.2019.11.041 |
40 |
Li, P.; Zhang, X.; Hou, C. Appl. Cataly. B: Environ. 2018, 238, 656.
doi: 10.1016/j.apcatb.2018.07.066 |
41 |
Meyer, K.; Bashir, S.; Llorca, J. Chem. Eur. J. 2016, 22, 13894.
doi: 10.1002/chem.201601988 |
42 |
Wang, W.; Liu, S.; Nie, L. J. Phys. Chem. 2013, 15, 12033.
doi: 10.1039/C2CP43628K |
43 |
Hao, H.; Zhang, L.; Wang, W. ACS Sustain. Chem. & Eng. 2019, 7, 10501.
doi: 10.1021/acssuschemeng.9b01017 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Huixian Han, Lan Chen, Jiancheng Zhao, Haitao Yu, Yang Wang, Helian Yan, Yingxiong Wang, Zhimin Xue, Tiancheng Mu. Biomass-based Acidic Deep Eutectic Solvents for Efficient Dissolution of Lignin: Towards Performance and Mechanism Elucidation [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212043-0. |
[3] | Shanshan Shen, Xiaohui Liu, Yong Guo, Yanqin Wang. Performance Enhancement of Pt/Silicalite-1 by in situ Doped Fe for Propane Dehydrogenation [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2209043-0. |
[4] | Tao Sun, Chenxi Li, Yupeng Bao, Jun Fan, Enzhou Liu. S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212009-. |
[5] | Zhen Li, Wen Liu, Chunxu Chen, Tingting Ma, Jinfeng Zhang, Zhenghua Wang. Transforming the Charge Transfer Mechanism in the In2O3/CdSe-DETA Nanocomposite from Type-I to S-Scheme to Improve Photocatalytic Activity and Stability During Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2208030-. |
[6] | Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2211051-. |
[7] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[8] | Wenjie Zhou, Qihang Jing, Jiaxin Li, Yingzhi Chen, Guodong Hao, Lu-Ning Wang. Organic Photocatalysts for Solar Water Splitting: Molecular- and Aggregate-Level Modifications [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211010-0. |
[9] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
[10] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
[11] | Na Lu, Xuedong Jing, Yao Xu, Wei Lu, Kuichao Liu, Zhenyi Zhang. Effective Cascade Modulation of Charge-Carrier Kinetics in the Well-Designed Multi-Component Nanofiber System for Highly-Efficient Photocatalytic Hydrogen Generation [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2207045-0. |
[12] | Siran Xu, Qi Wu, Bang-An Lu, Tang Tang, Jia-Nan Zhang, Jin-Song Hu. Recent Advances and Future Prospects on Industrial Catalysts for Green Hydrogen Production in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2209001-0. |
[13] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[14] | Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301032-. |
[15] | Lijun Zhang, Youlin Wu, Noritatsu Tsubaki, Zhiliang Jin. 2D/3D S-Scheme Heterojunction Interface of CeO2-Cu2O Promotes Ordered Charge Transfer for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302051-. |
|