Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (5): 2211010.doi: 10.3866/PKU.WHXB202211010
• REVIEW • Previous Articles Next Articles
Wenjie Zhou1,2, Qihang Jing2, Jiaxin Li1, Yingzhi Chen1,2,*(), Guodong Hao3, Lu-Ning Wang1,2,*()
Received:
2022-11-04
Accepted:
2022-12-08
Published:
2022-12-15
Contact:
Yingzhi Chen, Lu-Ning Wang
E-mail:chenyingzhi@ustb.edu.cn;luning.wang@ustb.edu.cn
Supported by:
Wenjie Zhou, Qihang Jing, Jiaxin Li, Yingzhi Chen, Guodong Hao, Lu-Ning Wang. Organic Photocatalysts for Solar Water Splitting: Molecular- and Aggregate-Level Modifications[J]. Acta Phys. -Chim. Sin. 2023, 39(5), 2211010. doi: 10.3866/PKU.WHXB202211010
Fig 3
Organic semiconductors versus inorganic semiconductors in photocatalysis. (a) Energy band structures; (b) Photogenerated Wannier-Mott in inorganic semiconductors and Frenkel excitons in organic semiconductors; (c) The limited carrier diffusion length in organic semiconductors, different from the long-range charge transport in inorganic semiconductors; (d) Charge separation at the photocatalyst/electrolyte interface 43."
Table 1
Comparison of the following organic nanostructured semiconductor photocatalysts in H2 production activities."
Photocatalyst | Preparation method | Structure and morphology | Photocatalytic hydrogen evolution efficiency | Reference |
phosphoric acid substituted perylene diimide (P-PMPDI) | self-assembly | nanosheet | 11.7 mmol∙g−1∙h−1 | |
3, 4, 9, 10-Perylenetetracarboxylic diimide/g-C3N4 | self-assembly | nanowire/nanosheet | 1.583 μmol in 3 h | |
3, 4, 9, 10-Perylenetetracarboxylic diimide -phthalic | self-assembly | nanosheet | 1.1 mmol∙g−1∙h−1 | |
4(hydroxyl phenyl) porphyrin (THPP) | self-assembly | nanowire | 19.5 mmol∙g−1∙h−1 in 5 h | |
SA-Zn (4-carboxyphenyl) porphyrin | self-assembly | nanorods | 3487.3 μmol∙g−1∙h−1 | |
In(IIIE) meso-tetraphenylporphine chloride (InTPPE) | self-assembly | nanorods | 845.4 μmol∙mg−1∙h−1 | |
Zinc phthalocyanine /TiO2/Pt | solvothermal method | nanoparticles | 3448 µmol∙g−1∙h−1 | |
C60/CdS | hydrothermal synthesis | nanostructure | 1.73 µmol∙g−1∙h−1 | |
C60/ WO3 | hydrothermal synthesis | nanoparticles | 154 µmol∙g−1∙h−1 | |
C60/MoS2 | ball-milling method | nanoparticles | 6.89 µmol∙g−1∙h−1 | |
C60/g-C3N4 | ball-milling method | nanosheet | 266 µmol∙g−1∙h−1 | |
TiO2/C60-d-CNTs | hydrothermal synthesis | nanoparticles/nanotubes | 651 µmol∙g−1∙h−1 | |
polymeric CN nanocages | hard-template method | nanosheet (SSA: 32 m2∙g−1) | 227.23 µmol∙g−1∙h−1 | |
porous crystalline g-C3N4 | hard-template method | nanosheet (SSA: 15.34 m2∙g−1) | 1010 µmol∙g−1∙h−1 | |
g-C3N4 | soft-template method | nanosheet (SSA: 60.6 m2∙g−1) | 60.6 µmol∙h−1 | |
oxygen-doped g-C3N4 | template-free method | nanosheet | 1062.4 μmol∙g−1∙h−1 | |
carbon-doped g-C3N4 | thermal decomposition | nanoparticles | 364.33 μmol∙g−1∙h−1 | |
(1, 3, 5-Triazine-2, 4, 6-triyl) tribenzaldehyde-COF | solvothermal method | nanosheet (SSA: 1603 m2∙g−1) | 230 μmol∙g−1∙h−1 | |
Pt-TCPP-MOFs | solvothermal method | nanosheet (SSA: 570 m2∙g−1) | 11320 μmol∙g−1∙h−1 | |
diyne-functionalized conjugated microporous polymers | solvothermal method | nanosphere (SSA: 556 m2∙g−1) | 104.86 mmol∙g−1∙h−1 |
Fig 5
(a) Molecular structures of H-PDI and J-PDI; (b) Absorption spectrum of H-PDI and J-PDI nanostructures and monomer; (c) Photocurrent responses curves of H-PDI and J-PDI 106; (d, e) SEM images of P-CMPDI and P-PMPDI; (f) Time-dependent hydrogen evolution over P-PMPDI and P-CMPDI; (g) Photostability for hydrogen evolution of the P-PMPDI; (h) SEM of P-PMPDI-Zr 81; (i) Electron distribution in P-PMPDI and P-PMPDI-Zr; (j) Surface photovoltage of P-PMPDI-Zr; (k) Wavelength-dependent apparent quantum yield of P-PMPDI-Zr 107."
Fig 6
(a) Model diagram of π–π stacking character in TCNQ-PTCDI assembled structure; (b) Electrochemical impedance spectroscopy of TCNQ-PTCDI composites; (c) Photocurrent responses curves of TCNQ-PTCDI composite photocatalysts 108; (d) Schematic diagram of interfacial interaction of co-assembly supramolecular TPPS/PDI; (e) The interfacial electric field intensity of PDI, TPPS, and TPPS/PDI; (f) The comparison of internal electric field and hydrogen evolution under full-spectrum light 109; (g) Schematic mechanism diagram of g-C3N4/PDI; (h) Absorption spectrum and (i) photocatalytic hydrogen evolution of g-C3N4, PDI and g-C3N4/PDI 82."
Fig 8
(a) Electron distribution of TCPP; (b) Absorption spectrum of SA-TCPP; (c) Photocatalytic hydrogen evolution of TCPP 22; (d) Absorption spectrum of TPPS/C60; (e) Photoluminescence spectra of TPPS/C60; (f) Photocatalytic hydrogen evolution of TPPS/C60 126; (g) UV absorption spectrum of ZnTCPP; (h) Surface photovoltage spectra of ZnTCPP /THPP; (i) Photocatalytic hydrogen evolution of ZnTCPP/THPP 127."
Fig 9
(a) Schematic diagram of synthesis of nanocomposites; (b) Electrochemical Impedance spectroscopy of nanocomposite with different compositions; (c) Photocurrent response of nanocomposites; (d) The photocatalytic mechanism of nanocomposites; (e) The hydrogen production of nanocomposites in 5 h 128; (f) Hydrogen production of nanocomposites rate at 600, 765 and greater than 800 nm; (g) Synthesis schematic diagram of CuPc/TiO2; (h) Ultraviolet diffuse reflectance absorption spectra of CuPc/TiO2; (i) The hydrogen production of CuPc/TiO2 133."
Fig 11
(a) Scanning electron microscope of 0.4C60/CdS; (b) Ultraviolet absorption spectra of the asprepared samples; (c) Hydrogen evolution of the asprepared samples 87; (d) Transmission electron microscope of C60/TiO2; (e) Electrochemical impedance spectra C60/TiO2; (f) The cyclic stability of C60 /TiO2 145; (g) Transmission electron microscope of C60-CNTs/TiO2; (h) Ultraviolet absorption spectra of C60-CNTs/TiO2; (i) The hydrogen evolution of C60-CNTs/TiO2 91."
Fig 12
(a) Schematic mechanism of SA-TPP-C60; (b) Electron distribution of SA-TPP-C60; (c) The internal electric field intensity for SA-TPP-C60; (d) Excited state absorption of SA-TPP-C60; (e) Photocatalytic hydrogen evolution rates for SA-TPP-C60; (f) The wavelength-dependent apparent quantum efficiency of photocatalytic hydrogen evolution over SA-TPP-C60 147."
Fig 14
(a) The substitution of bridging N in triazine ring of g-C3N4 with carbon atom; (b) X-ray photoelectron spectroscopy analysis of CNU0.75 ; (c) Nyquist plots of BCN and CNU0.075; (d) Photocurrent response of BCN and CNU0.075; (e) Hydrogen evolution of BCN and CNUx; (f) stability test of the CNU0.075 96; (g) Synthesis schematic diagram of Co/g-C3N4 ; (h) Steady-state fluorescence spectra of Co/g-C3N4; (i) Hydrogen evolution of Co/g-C3N4 155."
Fig 15
(a) Schematic mechanism diagram of g-C3N4/Cu2O; (b) Photocurrent responses curves of g-C3N4/Cu2O; (c) Photocatalytic hydrogen evolution of prepared photocatalysts under visible light 166; (d) Schematic mechanism diagram of g-C3N4/Sn3O4; (e) Ultraviolet absorption spectra of g-C3N4 and g-C3N4/Sn3O4; (f) Photocatalytic hydrogen evolution of prepared photocatalysts under visible light 167; (g) Synthetic route of g-C3N4/Au; (h) Transmission electron microscope of g-C3N4/Au; (i) Photocatalytic hydrogen evolution of g-C3N4/Au 168."
Fig 16
(a) Chemical structures of PFBr-Ph, PFBr-PhF, and PFBr-PhCN; (b) Energy levels of PFBr-Ph, PFBr-PhF and PFBr-PhCN; (c) Photocatalytic H2 evolution of PFBr-Ph, PFBr-PhF, and PFBr-PhCN under visible light 170; (d) Synthetic route of TFPT-OCH3; (e) Stability and reusability test using TFPT-OCH3; (f) Apparent quantum yield of TFPT-OCH3 173; (g) The synthesis of PI; (h) Absorption spectra of PI samples processed at different temperatures; (i) Photocatalytic H2 evolution of PI samples processed at different temperatures 174."
1 |
Kabir E. ; Kumar P. ; Kumar S. ; Adelodun A. A. ; Kim K.-H. Renew. Sust. Energ. Rev. 2018, 82, 894.
doi: 10.1016/j.rser.2017.09.094 |
2 |
Ngoh S. K. ; Njomo D. Renew. Sust. Energ. Rev. 2012, 16 (9), 6782.
doi: 10.1016/j.rser.2012.07.027 |
3 |
Minggu L. J. ; Daud W. R. W. ; Kassim M. B. Int. J. Hydrog. Energy 2010, 35 (11), 5233.
doi: 10.1016/j.ijhydene.2010.02.133 |
4 |
Kosco J. ; Bidwell M. ; Cha H. ; Martin T. ; Howells C. T. ; Sachs M. ; Anjum D. H. ; Gonzalez Lopez S. ; Zou L. Y. ; Wadsworth A. ; et al Nat. Mater. 2020, 19 (5), 559.
doi: 10.1038/s41563-019-0591-1 |
5 |
Zhao C. ; Chen Z. ; Shi R. ; Yang X. ; Zhang T. Adv. Mater. 2020, 32 (28), e1907296.
doi: 10.1002/adma.201907296 |
6 |
Bolton J. R. ; Strickler S. J. ; Connolly J. S. Nature 1985, 316 (6028), 495.
doi: 10.1038/316495a0 |
7 |
Fu C. F. ; Wu X. J. ; Yang J. L. Adv. Mater. 2018, 30 (48), 1802106.
doi: 10.1002/adma.201802106 |
8 |
Kudo A. ; Miseki Y. Chem. Soc. Rev. 2009, 38 (1), 253.
doi: 10.1039/b800489g |
9 |
Shentu B. ; Gan T. ; Weng Z. J. Appl. Polym. Sci. 2009, 113 (5), 3202.
doi: 10.1002/app.30054 |
10 |
Ghobadi T. G. U. ; Ghobadi A. ; Soydan M. C. ; Vishlaghi M. B. ; Kaya S. ; Karadas F. ; Ozbay E. ChemSusChem 2020, 13 (10), 2577.
doi: 10.1002/cssc.202000294 |
11 |
Li D. ; Chen R. ; Wang S. ; Zhang X. ; Zhang Y. ; Liu J. ; Yin H. ; Fan F. ; Shi J. ; Li C. J. Phys. Chem. Lett. 2020, 11 (2), 412.
doi: 10.1021/acs.jpclett.9b03340 |
12 |
Hitoki G. ; Ishikawa A. ; Takata T. ; Kondo J. N. ; Hara M. ; Domen K. Chem. Lett. 2002, 31 (7), 736.
doi: 10.1246/cl.2002.736 |
13 |
Hara M. ; Hitoki G. ; Takata T. ; Kondo J. N. ; Kobayashi H. ; Domen K. Cater. Today 2003, 78 (1–4), 555.
doi: 10.1016/s0920-5861(02)00354-1 |
14 |
Sun B. T. ; Qiu P. Y. ; Liang Z. Q. ; Xue Y. J. ; Zhang X. L. ; Yang L. ; Cui H. Z. ; Tian J. Chem. Eur. J. 2021, 4061, 127177.
doi: 10.1016/j.cej.2020.127177 |
15 |
Li Z. Z. ; Meng X. C. ; Zhang Z. S. J. Photochem. Photobiol. C-Photochem. Rev. 2018, 35, 39.
doi: 10.1016/j.jphotochemrev.2017.12.002 |
16 |
Du W. M. ; Zhu J. ; Li S. X. ; Qian X. F. Cryst. Growth Des. 2008, 8 (7), 2130.
doi: 10.1021/cg7009258 |
17 |
Park H. ; Choi W. J. Phys. Chem. B 2004, 108 (13), 4086.
doi: 10.1021/jp036735i |
18 |
Liao L. B. ; Zhang Q. H. ; Su Z. H. ; Zhao Z. Z. ; Wang Y. N. ; Li Y. ; Lu X. X. ; Wei D. G. ; Feng G. Y. ; Yu Q. K. ; et al Nat. Nanotechnol. 2014, 9 (1), 69.
doi: 10.1038/nnano.2013.272 |
19 |
Yu J. G. ; Yu Y. F. ; Zhou P. ; Xiao W. ; Cheng B. Appl. Catal. B-Environ. 2014, 156, 184.
doi: 10.1016/j.apcatb.2014.03.013 |
20 |
Lee G. J. ; Wu J. J. Powder Technol. 2017, 318, 8.
doi: 10.1016/j.powtec.2017.05.022 |
21 |
Harb M. ; Basset J. M. J. Phys. Chem. C 2020, 124 (4), 2472.
doi: 10.1021/acs.jpcc.9b09707 |
22 |
Zhang Z. J. ; Zhu Y. F. ; Chen X. J. ; Zhang H. J. ; Wang J. Adv. Mater. 2019, 31 (7), 1806626.
doi: 10.1002/adma.201806626 |
23 |
Mendori D. ; Hiroya T. ; Ueda M. ; Sanyoushi M. ; Nagai K. ; Abe T. Appl. Catal. B-Environ. 2017, 205, 514.
doi: 10.1016/j.apcatb.2016.12.071 |
24 |
Chen C. X. ; Xiong Y. Y. ; Zhong X. ; Lan P. C. ; Wei Z. W. ; Pan H. ; Su P. Y. ; Song Y. ; Chen Y. F. ; Nafady A. ; et al Angew. Chem. Int. Ed. 2022, 61 (3), e202114071.
doi: 10.1002/anie.202114071 |
25 |
Li Y. ; Zhang X. ; Liu D. J. Photochem. Photobiol. C 2021, 48, 100436.
doi: 10.1016/j.jphotochemrev.2021.100436 |
26 |
Lin C. ; Han C. ; Zhang H. ; Gong L. ; Gao Y. ; Wang H. ; Bian Y. ; Li R. ; Jiang J. Inorg. Chem. 2021, 60 (6), 3988.
doi: 10.1021/acs.inorgchem.1c00041 |
27 |
Pan Y. ; Liu X. ; Zhang W. ; Liu Z. ; Zeng G. ; Shao B. ; Liang Q. ; He Q. ; Yuan X. ; Huang D. ; et al Appl. Catal. B-Environ. 2020, 265, 129077.
doi: 10.1016/j.apcatb.2019.118579 |
28 |
Kumar A. ; Kumar Vashistha V. ; Kumar Das D. Coord. Chem. Rev. 2021, 431, 213678.
doi: 10.1016/j.ccr.2020.213678 |
29 |
Zhao S. ; Zhang Y. ; Zhou Y. ; Wang Y. ; Qiu K. ; Zhang C. ; Fang J. ; Sheng X. Carbon 2018, 126, 247.
doi: 10.1016/j.carbon.2017.10.033 |
30 |
Das K. K. ; Patnaik S. ; Mansingh S. ; Behera A. ; Mohanty A. ; Acharya C. ; Parida K. M. J. Colloid Interface Sci. 2020, 561, 551.
doi: 10.1016/j.jcis.2019.11.030 |
31 |
Kim Y. ; Cook S. ; Tuladhar S. M. ; Choulis S. A. ; Nelson J. ; Durrant J. R. ; Bradley D. D. C. ; Giles M. ; McCulloch I. ; Ha C. S. ; et al Nat. Mater. 2006, 5 (3), 197.
doi: 10.1038/nmat1574 |
32 |
Hosseini M. G. ; Yardani P. ; Mert A. M. ; Kinayyigit S. J. Mater. Sci. Technol. 2020, 38, 7.
doi: 10.1016/j.jmst.2019.08.020 |
33 |
Niu J. ; Song Z. L. ; Gao X. ; Ji Y. ; Zhang Y. L. J. Alloy. Compd. 2021, 884, 161292.
doi: 10.1016/j.jallcom.2021.161292 |
34 |
Liu Y. ; Li B. ; Xiang Z. Small 2021, 17 (34), 2007576.
doi: 10.1002/smll.202007576 |
35 |
Takeya J. ; Yamagishi M. ; Tominari Y. ; Hirahara R. ; Nakazawa Y. ; Nishikawa T. ; Kawase T. ; Shimoda T. ; Ogawa S. Appl. Phys. Lett. 2007, 90 (10), 102120.
doi: 10.1063/1.2711393 |
36 |
Stingelin-Stutzmann N. ; Smits E. ; Wondergem H. ; Tanase C. ; Blom P. ; Smith P. ; De Leeuw D. Nat. Mater. 2005, 4 (8), 601.
doi: 10.1038/nmat1426 |
37 |
Singh T. B. ; Sariciftci N. S. ; Yang H. ; Yang L. ; Plochberger B. ; Sitter H. Appl. Phys. Lett. 2007, 90 (21), 213512.
doi: 10.1063/1.2743386 |
38 |
Yao Y. ; Dong H. ; Liu F. ; Russell T. P. ; Hu W. Adv. Mater. 2017, 29 (29), 170251.
doi: 10.1002/adma.201701251 |
39 |
Clarke T. M. ; Durrant J. R. Chem. Rev. 2010, 110 (11), 6736.
doi: 10.1021/cr900271s |
40 |
Puschnig P. ; Ambrosch-Draxl C. Comptes Rendus Phys. 2009, 10 (6), 504.
doi: 10.1016/j.crhy.2008.08.003 |
41 |
Dong Y. F. ; Cha H. ; Bristow H. L. ; Lee J. ; Kumar A. ; Tuladhar P. S. ; McCulloch I. ; Bakulin A. A. ; Durrant J. R. J. Am. Chem. Soc. 2021, 143 (20), 7599.
doi: 10.1021/jacs.1c00584 |
42 |
Ball J. M. ; Petrozza A. Nat. Energy 2016, 1, 1.
doi: 10.1038/nenergy.2016.149 |
43 |
Banerjee T. ; Podjaski F. ; Kröger J. ; Biswal B. P. ; Lotsch B. V. Nat. Rev. Mater. 2020, 6 (2), 168.
doi: 10.1038/s41578-020-00254-z |
44 |
Mikhnenko O. V. ; Blom P. W. M. ; Nguyen T. Q. Energy Environ. Sci. 2015, 8 (7), 1867.
doi: 10.1039/c5ee00925a |
45 |
Godin R. ; Wang Y. ; Zwijnenburg M. A. ; Tang J. W. ; Durrant J. R. J. Am. Chem. Soc. 2017, 139 (14), 5216.
doi: 10.1021/jacs.7b01547 |
46 |
Bisquert J. ; Cendula P. ; Bertoluzzi L. ; Gimenez S. J. Phys. Chem. Lett. 2014, 5 (1), 205.
doi: 10.1021/jz402703d |
47 |
Chen Y. ; Yan C. ; Dong J. ; Zhou W. ; Rosei F. ; Feng Y. ; Wang L. N. Adv. Funct. Mater. 2021, 31 (36), 2104099.
doi: 10.1002/adfm.202104099 |
48 |
Guo L. J. ; Li R. ; Liu J. X. ; Xi Q. ; Fan C. M. Prog. Chem. 2020, 32 (1), 46.
doi: 10.7536/pc190528 |
49 |
Chen Y. ; Li W. ; Jiang D. ; Men K. ; Li Z. ; Li L. ; Sun S. ; Li J. ; Huang Z.-H. ; Wang L.-N. Sci. Bull. 2019, 64 (1), 44.
doi: 10.1016/j.scib.2018.12.015 |
50 |
Velázquez J. J. ; Fernández-González R. ; Díaz L. ; Pulido Melián E. ; Rodríguez V. D. ; Núñez P. J. Alloy. Compd. 2017, 721, 405.
doi: 10.1016/j.jallcom.2017.05.314 |
51 |
Xu J. ; Wang Z. P. ; Zhu Y. F. J. Mater. Sci. Technol. 2020, 49, 133.
doi: 10.1016/j.jmst.2020.02.024 |
52 |
Bodedla G. B. ; Huang J. ; Wong W.-Y. ; Zhu X. ACS Appl. Nano Mater. 2020, 3 (7), 7040.
doi: 10.1021/acsanm.0c01353 |
53 |
Zhang N. ; Wang L. ; Wang H. ; Cao R. ; Wang J. ; Bai F. ; Fan H. Nano Lett. 2018, 18 (1), 560.
doi: 10.1021/acs.nanolett.7b04701 |
54 |
Bhavani B. ; Chanda N. ; Kotha V. ; Reddy G. ; Basak P. ; Pal U. ; Giribabu L. ; Prasanthkumar S. Nanoscale 2021, 14 (1), 140.
doi: 10.1039/d1nr06961f |
55 |
Wang J. ; Shi W. ; Liu D. ; Zhang Z. J. ; Zhu Y. F. ; Wang D. Appl. Catal. B 2017, 202, 289.
doi: 10.1016/j.apcatb.2016.09.037 |
56 |
Lin H. ; Wang J. ; Zhao J. ; Zhuang Y. ; Liu B. ; Zhu Y. ; Jia H. ; Wu K. ; Shen J. ; Fu X. ; et al Angew. Chem. Int. Ed. 2022, 61 (12), e202117645.
doi: 10.1002/anie.202117645 |
57 |
Gao Q. ; Xu J. ; Wang Z. ; Zhu Y. Appl. Catal. B-Environ. 2020, 271, 118933.
doi: 10.1016/j.apcatb.2020.118933 |
58 |
Guo X.-X. ; Jiang J. ; Han Q. ; Liu X.-H. ; Zhou X.-T. ; Ji H.-B. Appl. Cater. A-Gen. 2020, 590, 117352.
doi: 10.1016/j.apcata.2019.117352 |
59 |
Shrestha L. K. ; Shrestha R. G. ; Yamauchi Y. ; Hill J. P. ; Nishimura T. ; Miyazawa K. ; Kawai T. ; Okada S. ; Wakabayashi K. ; Ariga K. Angew. Chem. Int. Ed. 2015, 54 (3), 951.
doi: 10.1002/anie.201408856 |
60 |
Shrestha L. K. ; Yamauchi Y. ; Hill J. P. ; Miyazawa K. ; Ariga K. J. Am. Chem. Soc. 2013, 135 (2), 586.
doi: 10.1021/ja3108752 |
61 |
Hu J. S. ; Guo Y. G. ; Liang H. P. ; Wan L. J. ; Jiang L. J. Am. Chem. Soc. 2005, 127 (48), 17090.
doi: 10.1021/ja0553912 |
62 |
Tashiro K. ; Murafuji T. ; Sumimoto M. ; Fujitsuka M. ; Yamazaki S. New J. Chem. 2020, 44 (32), 13824.
doi: 10.1039/d0nj02829k |
63 |
Hasobe T. ; Oki H. ; Sandanayaka A. S. D. ; Murata H. Catal. Commun. 2008, (6), 724.
doi: 10.1039/b713971c |
64 |
Cho E.-C. ; Ciou J.-H. ; Zheng J.-H. ; Pan J. ; Hsiao Y.-S. ; Lee K.-C. ; Huang J.-H. Appl. Surf. Sci. 2015, 355, 536.
doi: 10.1016/j.apsusc.2015.07.062 |
65 |
Liu F. M. ; Sun J. ; Xiao S. ; Huang W. L. ; Tao S. H. ; Zhang Y. ; Gao Y. L. ; Yang J. L. Nanotechnology 2015, 26 (22), 225601.
doi: 10.1088/0957-4484/26/22/225601 |
66 |
Bian J. ; Li Q. ; Huang C. ; Li J. ; Guo Y. ; Zaw M. ; Zhang R.-Q. Nano Energy 2015, 15, 353.
doi: 10.1016/j.nanoen.2015.04.012 |
67 |
Chen Y. ; Zhang C. ; Zhang X. ; Ou X. ; Zhang X. Chem. Commun. 2013, 49 (80), 9200.
doi: 10.1039/c3cc45169k |
68 |
Yang C. ; Cheng Z. H. ; Divitini G. ; Qian C. ; Hou B. ; Liao Y. Z. J. Mater. Chem. A 2021, 9 (35), 19894.
doi: 10.1039/d1ta02547c |
69 |
Montigaud H. ; Tanguy B. ; Demazeau G. ; Alves I. ; Courjault S. J. Mater. Sci. 2000, 35 (10), 2547.
doi: 10.1023/a:1004798509417 |
70 |
Guo Q. ; Xie Y. ; Wang X. ; Lv S. ; Hou T. ; Liu X. Chem. Phys. Lett. 2003, 380 (1–2), 84.
doi: 10.1016/j.cplett.2003.09.009 |
71 |
Guo Q. ; Xie Y. ; Wang X. ; Zhang S. ; Hou T. ; Lv S. Catal. Commun. 2004, (1), 26.
doi: 10.1039/b311390f |
72 |
Ximing G. ; Bin G. ; Yuanlin W. ; Shuanghong G. Mater. Sci. Eng. C-Mater. Biol. Appl. 2017, 80, 698.
doi: 10.1016/j.msec.2017.07.027 |
73 |
Li B. ; Wang X. ; Chen L. ; Zhou Y. ; Dang W. ; Chang J. ; Wu C. Theranostics 2018, 8 (15), 4086.
doi: 10.7150/thno.25433 |
74 |
Navgire M. E. ; Lande M. K. Inorg. Nano-Metal Chem. 2016, 47 (3), 320.
doi: 10.1080/15533174.2016.1186055 |
75 |
Li C. ; Cao C.-B. ; Zhu H.-S. Mater. Lett. 2004, 58 (12–13), 1903.
doi: 10.1016/j.matlet.2003.11.024 |
76 |
Iqbal W. ; Dong C. ; Xing M. ; Tan X. ; Zhang J. Catal. Sci. Technol. 2017, 7 (8), 1726.
doi: 10.1039/c7cy00286f |
77 |
Cao X. Q. ; Wu Y. S. ; Fu H. B. ; Yao J. N. J. Phys. Chem. Lett. 2011, 2 (17), 2163.
doi: 10.1021/jz2009488 |
78 |
Martell M. ; Ocheje M. U. ; Gelfand B. S. ; Rondeau-Gagné S. ; Welch G. C. New J. Chem. 2021, 45 (45), 21001.
doi: 10.1039/d1nj04423k |
79 |
Pu Y. ; Bao F. ; Wang D. ; Zhang X. ; Guo Z. ; Chen X. ; Wei Y. ; Wang J. ; Zhang Q. J. Environ. Chem. Eng. 2022, 10 (1), 107123.
doi: 10.1016/j.jece.2021.107123 |
80 |
Zhao Q. ; Zhang S. ; Liu Y. ; Mei J. ; Chen S. ; Lu P. ; Qin A. ; Ma Y. ; Sun J. Z. ; Tang B. Z. J. Mater. Chem. 2012, 22 (15), 7387.
doi: 10.1039/c2jm16613e |
81 |
Kong K. ; Zhang S. ; Chu Y. ; Hu Y. ; Yu F. ; Ye H. ; Ding H. ; Hua J. Chem. Commun. 2019, 55 (56), 8090.
doi: 10.1039/c9cc03465j |
82 |
Miao H. ; Yang J. ; Sheng Y. ; Li W. ; Zhu Y. Sol. RRL 2020, 5 (2), 2000453.
doi: 10.1002/solr.202000453 |
83 |
Sheng Y. ; Li W. ; Zhu Y. ; Zhang L. Appl. Catal. B-Environ. 2021, 298, 120585.
doi: 10.1016/j.apcatb.2021.120585 |
84 |
Jing J. ; Yang J. ; Zhang Z. ; Zhu Y. Adv. Energy Mater. 2021, 11 (29), 2101392.
doi: 10.1002/aenm.202101392 |
85 |
Liu Y. ; Wang L. ; Feng H. ; Ren X. ; Ji J. ; Bai F. ; Fan H. Nano Lett. 2019, 19 (4), 2614.
doi: 10.1021/acs.nanolett.9b00423 |
86 |
Genc E. ; Yüzer A. C. ; Yanalak G. ; Harputlu E. ; Aslan E. ; Ocakoglu K. ; Ince M. ; Patir I. H. Renew. Energy 2020, 162, 1340.
doi: 10.1016/j.renene.2020.08.063 |
87 |
Cai Q. ; Hu Z. ; Zhang Q. ; Li B. ; Shen Z. Appl. Surf. Sci. 2017, 403, 151.
doi: 10.1016/j.apsusc.2017.01.135 |
88 |
Bilal Tahir M. ; Nabi G. ; Rafique M. ; Khalid N. R. Int. J. Energy Res. 2018, 42 (15), 4783.
doi: 10.1002/er.4231 |
89 |
Guan J. ; Wu J. ; Jiang D. ; Zhu X. ; Guan R. ; Lei X. ; Du P. ; Zeng H. ; Yang S. Int. J. Hydrog. Energy 2018, 43 (18), 8698.
doi: 10.1016/j.ijhydene.2018.03.148 |
90 |
Chen X. ; Chen H. ; Guan J. ; Zhen J. ; Sun Z. ; Du P. ; Lu Y. ; Yang S. Nanoscale 2017, 9 (17), 5615.
doi: 10.1039/c7nr01237c |
91 |
Chai B. ; Peng T. ; Zhang X. ; Mao J. ; Li K. ; Zhang X. Dalton Trans. 2013, 42 (10), 3402.
doi: 10.1039/c2dt32458j |
92 |
Wu X. ; Ma H. ; Zhong W. ; Fan J. ; Yu H. Appl. Catal. B-Environ. 2020, 271, 118899.
doi: 10.1016/j.apcatb.2020.118899 |
93 |
Tang J. ; Zhang Q. T. ; Liu Y. T. ; Liu Y. B. ; Wang K. Q. ; Xu N. Z. ; Yu L. ; Tong Q. ; Fan Y. N. Micropor. Mesopor. Mater. 2020, 292, 109369.
doi: 10.1016/j.micromeso.2019.109639 |
94 |
Wang C. ; Zhang G. ; Zhang H. ; Li Z. ; Wen Y. Diam. Relat. Mater. 2021, 116, 108416.
doi: 10.1016/j.diamond.2021.108416 |
95 |
Liu C. ; Huang H. ; Cui W. ; Dong F. ; Zhang Y. Appl. Catal. B-Environ. 2018, 230, 115.
doi: 10.1016/j.apcatb.2018.02.038 |
96 |
Huang Y. ; Li D. ; Fang Z. ; Chen R. ; Luo B. ; Shi W. Appl. Catal. B-Environ. 2019, 254, 128.
doi: 10.1016/j.apcatb.2019.04.082 |
97 |
Stegbauer L. ; Schwinghammer K. ; Lotsch B. V. Chem. Sci. 2014, 5 (7), 2789.
doi: 10.1039/c4sc00016a |
98 |
Zuo Q. ; Liu T. ; Chen C. ; Ji Y. ; Gong X. ; Mai Y. ; Zhou Y. Angew. Chem. Int. Ed. 2019, 58 (30), 10198.
doi: 10.1002/anie.201904058 |
99 |
Han C. ; Xiang S. ; Ge M. ; Xie P. ; Zhang C. ; Jiang J. X. Small 2022, 18 (28), e2202072.
doi: 10.1002/smll.202202072 |
100 |
Vajiravelu S. ; Ramunas L. ; Juozas Vidas G. ; Valentas G. ; Vygintas J. ; Valiyaveettil S. J. Mater. Chem. 2009, 19 (24), 4268.
doi: 10.1039/b901847f |
101 |
Zhang M. X. ; Zhao G. J. ChemSusChem 2012, 5 (5), 879.
doi: 10.1002/cssc.201100510 |
102 |
Jones B. A. ; Ahrens M. J. ; Yoon M. H. ; Facchetti A. ; Marks T. J. ; Wasielewski M. R. Angew. Chem. Int. Ed. 2004, 43 (46), 6363.
doi: 10.1002/anie.200461324 |
103 |
Guo Y. ; Han G. ; Duan R. ; Geng H. ; Yi Y. J. Mater. Chem. A 2018, 6 (29), 14224.
doi: 10.1039/c8ta04932g |
104 |
Balakrishnan K. ; Datar A. ; Naddo T. ; Huang J. L. ; Oitker R. ; Yen M. ; Zhao J. C. ; Zang L. J. Am. Chem. Soc. 2006, 128 (22), 7390.
doi: 10.1021/ja061810z |
105 |
Ghosh S. ; Li X. Q. ; Stepanenko V. ; Wurthner F. Chemistry 2008, 14 (36), 11343.
doi: 10.1002/chem.200801454 |
106 |
Wang J. ; Liu D. ; Zhu Y. ; Zhou S. ; Guan S. Appl. Catal. B-Environ. 2018, 231, 251.
doi: 10.1016/j.apcatb.2018.03.026 |
107 |
Ding H. ; Wang Z. ; Kong K. ; Feng S. ; Xu L. ; Ye H. ; Wu W. ; Gong X. ; Hua J. J. Mater. Chem. A 2021, 9 (12), 7675.
doi: 10.1039/d1ta00464f |
108 |
Zhang Z. ; Wang J. ; Liu D. ; Luo W. ; Zhang M. ; Jiang W. ; Zhu Y. ACS Appl. Mater. Interfaces 2016, 8 (44), 30225.
doi: 10.1021/acsami.6b10186 |
109 |
Yang J. ; Jing J. ; Li W. ; Zhu Y. Adv. Sci. 2022, 9 (17), e2201134.
doi: 10.1002/advs.202201134 |
110 |
Chen X. ; Wang J. ; Chai Y. ; Zhang Z. ; Zhu Y. Adv. Mater. 2021, 33 (7), e2007479.
doi: 10.1002/adma.202007479 |
111 |
Tian J. ; Huang B. ; Nawaz M. H. ; Zhang W. Coord. Chem. Rev. 2020, 420, 213410.
doi: 10.1016/j.ccr.2020.213410 |
112 |
Canimkurbey B. ; Taskan M. C. ; Demir S. ; Duygulu E. ; Atilla D. ; Yuksel F. New J. Chem. 2020, 44 (18), 7424.
doi: 10.1039/d0nj00678e |
113 |
Olijve L. L. C. ; How E. N. W. ; Bhadbhade M. ; Prasad S. ; Colbran S. B. ; Zhao C. ; Thordarson P. J. Porphyr. Phthalocya. 2011, 15 (11–12), 1345.
doi: 10.1142/s1088424611004312 |
114 |
Odobel F. ; Zabri H. Inorg. Chem. 2005, 44 (16), 5600.
doi: 10.1021/ic050078m |
115 |
Pudi R. ; Rodríguez-Seco C. ; Vidal-Ferran A. ; Ballester P. ; Palomares E. Europ. J. Org. Chem. 2018, 2018 (18), 2064.
doi: 10.1002/ejoc.201800136 |
116 |
Wang S. Q. ; Li Y. ; Wang B. B. J. Chem. Res. 2021, 45 (11–12), 934.
doi: 10.1177/17475198211032835 |
117 |
Kesavan P. E. ; Pandey V. ; Ishida M. ; Furuta H. ; Mori S. ; Gupta I. Chem. Asian J. 2020, 15 (13), 2015.
doi: 10.1002/asia.202000463 |
118 |
de la Torre G. ; Vaquez P. ; Agullo-Lopez F. ; Torres T. Chem. Rev. 2004, 104 (9), 3723.
doi: 10.1021/cr030206t |
119 |
Shang H. ; Xue Z. ; Wang K. ; Liu H. ; Jiang J. Chem.-Eur. J. 2017, 23 (36), 8644.
doi: 10.1002/chem.201700291 |
120 |
Liang Z. ; Wang H. Y. ; Zheng H. ; Zhang W. ; Cao R. Chem. Soc. Rev. 2021, 50 (4), 2540.
doi: 10.1039/d0cs01482f |
121 |
Lopes J. M. S. ; Sampaio R. N. ; Ito A. S. ; Batista A. A. ; Machado A. E. H. ; Araujo P. T. ; Neto N. M. B. Spectrochim. Acta A-Mol. Biomol. Spectro. 2019, 215, 327.
doi: 10.1016/j.saa.2019.02.024 |
122 |
Sehgal P. ; Narula A. K. J. Photochem. Photobiol. A 2019, 375, 91.
doi: 10.1016/j.jphotochem.2019.02.003 |
123 |
Jiang H. ; Hu P. ; Ye J. ; Ganguly R. ; Li Y. ; Long Y. ; Fichou D. ; Hu W. ; Kloc C. Angew. Chem. Int. Ed. 2018, 57 (32), 10112.
doi: 10.1002/anie.201803363 |
124 |
Cao R. ; Wang J. ; Li Y. ; Sun J. ; Bai F. Nano Res. 2022, 15 (6), 5719.
doi: 10.1007/s12274-022-4286-6 |
125 |
Zhong Y. ; Hu Y. ; Wang J. ; Wang J. ; Ren X. ; Sun J. ; Bai F. MRS Adv. 2019, 4 (38–39), 2071.
doi: 10.1557/adv.2019.210 |
126 |
Yang J. ; Jing J. ; Zhu Y. Adv. Mater. 2021, 33 (31), e2101026.
doi: 10.1002/adma.202101026 |
127 |
Jing J. ; Yang J. ; Li W. ; Wu Z. ; Zhu Y. Adv. Mater. 2022, 34 (3), e2106807.
doi: 10.1002/adma.202106807 |
128 |
Xia Z. ; Yu R. ; Yang H. ; Luo B. ; Huang Y. ; Li D. ; Shi J. ; Xu D. Int. J. Hydrog. Energy 2022, 47 (27), 13340.
doi: 10.1016/j.ijhydene.2022.02.087 |
129 |
Pu Z. ; Xiao B. ; Mao S. ; Sun Y. ; Ma D. ; Wang H. ; Zhou J. ; Cheng Y. ; Shi J.-W. J. Colloid Interface Sci. 2022, 628, 477.
doi: 10.1016/j.jcis.2022.08.080 |
130 |
Koshiba Y. ; Nishimoto M. ; Misawa A. ; Misaki M. ; Ishida K. Jpn. J. Appl. Phys. 2016, 55 (3S2), 03DD07.
doi: 10.7567/jjap.55.03dd07 |
131 |
Liu F. ; Sun J. ; Xiao S. ; Huang W. ; Tao S. ; Zhang Y. ; Gao Y. ; Yang J. Nanotechnology 2015, 26 (22), 225601.
doi: 10.1088/0957-4484/26/22/225601 |
132 |
Meng L. ; Wang K. ; Han Y. ; Yao Y. ; Gao P. ; Huang C. ; Zhang W. ; Xu F. Prog. Nat. Sci. 2017, 27 (3), 329.
doi: 10.1016/j.pnsc.2017.04.010 |
133 |
Moon H. S. ; Yong K. Appl. Surf. Sci. 2020, 530, 147215.
doi: 10.1016/j.apsusc.2020.147215 |
134 |
Yi Y. ; Wang S. ; Zhang H. ; Liu J. ; Lu X. ; Jiang L. ; Sui C. ; Fan H. ; Ai S. ; Sun J. J. Mater. Chem. C 2020, 8 (48), 17157.
doi: 10.1039/d0tc05123c |
135 |
Song L. M. ; Guo C. P. ; Li T. T. ; Zhang S. J. Ceram. Int. 2017, 43 (10), 7901.
doi: 10.1016/j.ceramint.2017.03.115 |
136 |
Sepahvand S. ; Farhadi S. RSC Adv. 2018, 8 (18), 10124.
doi: 10.1039/c8ra00069g |
137 |
Heath J. R. ; Obrien S. C. ; Zhang Q. ; Liu Y. ; Curl R. F. ; Kroto H. W. ; Tittel F. K. ; Smalley R. E. J. Am. Chem. Soc. 1985, 107 (25), 7779.
doi: 10.1021/ja00311a102 |
138 |
Stevenson S. ; Rice G. ; Glass T. ; Harich K. ; Cromer F. ; Jordan M. R. ; Craft J. ; Hadju E. ; Bible R. ; Olmstead M. M. ; et al Nature 1999, 402 (6764), 898.
doi: 10.1038/47282 |
139 |
Wang T. S. ; Feng L. ; Wu J. Y. ; Xu W. ; Xiang J. F. ; Tan K. ; Ma Y. H. ; Zheng J. P. ; Jiang L. ; Lu X. ; et al J. Am. Chem. Soc. 2010, 132 (46), 16362.
doi: 10.1021/ja107843b |
140 |
Brettreich M. ; Hirsch A. Tetrahedron Lett. 1998, 39 (18), 2731.
doi: 10.1016/s0040-4039(98)00491-2 |
141 |
Wang Y. C. ; Li X. D. ; Zhu L. P. ; Liu X. H. ; Zhang W. J. ; Fang J. F. Adv. Energy Mater. 2017, 7 (21), 1701144.
doi: 10.1002/aenm.201701144 |
142 |
Tian C. ; Zhang S. ; Mei A. ; Rong Y. ; Hu Y. ; Du K. ; Duan M. ; Sheng Y. ; Jiang P. ; Xu G. ; et al ACS Appl. Mater. Interfaces 2018, 10 (13), 10835.
doi: 10.1021/acsami.7b18945 |
143 |
Pal A. ; Wen L. K. ; Jun C. Y. ; Jeon I. ; Matsuo Y. ; Manzhos S. Phys. Chem. Chem. Phys. 2017, 19 (41), 28330.
doi: 10.1039/c7cp05290a |
144 |
Hou J. H. ; Lan X. F. ; Shi J. S. ; Yu S. G. ; Zhang Y. C. ; Wang H. ; Ren C. Y. Int. J. Hydrog. Energy 2020, 45 (4), 2852.
doi: 10.1016/j.ijhydene.2019.11.180 |
145 |
Wang Y.-Q. ; Yu C.-P. ; Zhang Z.-L. ; Gan L.-H. Int. J. Hydrog. Energy 2022, 47 (28), 13503.
doi: 10.1016/j.ijhydene.2022.02.101 |
146 |
Wang S. ; Liu C. ; Dai K. ; Cai P. ; Chen H. ; Yang C. ; Huang Q. J. Mater. Chem. A 2015, 3 (42), 21090.
doi: 10.1039/c5ta03229f |
147 |
Liu L. ; Chen X. ; Chai Y. ; Zhang W. ; Liu X. ; Zhao F. ; Wang Z. ; Weng Y. ; Wu B. ; Geng H. ; et al Chem. Eur. J. 2022, 444, 136621.
doi: 10.1016/j.cej.2022.136621 |
148 |
Wei Y. ; Ma M. ; Li W. ; Yang J. ; Miao H. ; Zhang Z. ; Zhu Y. Appl. Catal. B-Environ. 2018, 238, 302.
doi: 10.1016/j.apcatb.2018.07.043 |
149 |
Kosco J. ; Gonzalez-Carrero S. ; Howells C. T. ; Fei T. ; Dong Y. ; Sougrat R. ; Harrison G. T. ; Firdaus Y. ; Sheelamanthula R. ; Purushothaman B. ; et al Nat. Energy 2022, 7 (4), 340.
doi: 10.1038/s41560-022-00990-2 |
150 |
Kroke E. ; Schwarz M. ; Horath-Bordon E. ; Kroll P. ; Noll B. ; Norman A. D. New J. Chem. 2002, 26 (5), 508.
doi: 10.1039/b111062b |
151 |
Wang X. C. ; Maeda K. ; Chen X. F. ; Takanabe K. ; Domen K. ; Hou Y. D. ; Fu X. Z. ; Antonietti M. J. Am. Chem. Soc. 2009, 131 (5), 1680.
doi: 10.1021/ja809307s |
152 |
Zhou G. ; Shan Y. ; Hu Y. Y. ; Xu X. Y. ; Long L. Y. ; Zhang J. L. ; Dai J. ; Guo J. H. ; Shen J. C. ; Li S. ; et al Nat. Commun. 2018, 9, 3366.
doi: 10.1038/s41467-018-05590-x |
153 |
Yan B. ; Du C. ; Yang G. Small 2020, 16 (4), e1905700.
doi: 10.1002/smll.201905700 |
154 |
Deng P. ; Xiong J. ; Lei S. ; Wang W. ; Ou X. ; Xu Y. ; Xiao Y. ; Cheng B. J. Mater. Chem. A 2019, 7 (39), 22385.
doi: 10.1039/c9ta04559g |
155 |
Cao Y. ; Chen S. ; Luo Q. ; Yan H. ; Lin Y. ; Liu W. ; Cao L. ; Lu J. ; Yang J. ; Yao T. ; et al Angew. Chem. Int. Ed. 2017, 56 (40), 12191.
doi: 10.1002/anie.201706467 |
156 |
Niu P. ; Zhang L. ; Liu G. ; Cheng H.-M. Adv. Funct. Mater. 2012, 22 (22), 4763.
doi: 10.1002/adfm.201200922 |
157 |
Xu J. ; Zhang L. ; Shi R. ; Zhu Y. J. Mater. Chem. A 2013, 1 (46), 1715.
doi: 10.1039/c3ta13188b |
158 |
Hong Y. ; Liu E. ; Shi J. ; Lin X. ; Sheng L. ; Zhang M. ; Wang L. ; Chen J. Int. J. Hydrog. Energy 2019, 44 (14), 7194.
doi: 10.1016/j.ijhydene.2019.01.274 |
159 |
Zhang Y. Z. ; Chen Z. W. ; Li J. L. ; Lu Z. Y. ; Wang X. J. Energy Chem. 2021, 54, 36.
doi: 10.1016/j.jechem.2020.05.043 |
160 |
Li X.-H. ; Zhang J. ; Chen X. ; Fischer A. ; Thomas A. ; Antonietti M. ; Wang X. Chem. Mat. 2011, 23 (19), 4344.
doi: 10.1021/cm201688v |
161 |
Sun J. ; Zhang J. ; Zhang M. ; Antonietti M. ; Fu X. ; Wang X. Nat. Commun. 2012, 3 (1), 1057.
doi: 10.1038/ncomms2152 |
162 |
Huang H. ; Xiao K. ; Tian N. ; Dong F. ; Zhang T. ; Du X. ; Zhang Y. J. Mater. Chem. A 2017, 5 (33), 17452.
doi: 10.1039/c7ta04639a |
163 |
Liu Q. ; Wang X. ; Yang Q. ; Zhang Z. ; Fang X. Appl. Surf. Sci. 2018, 450, 46.
doi: 10.1016/j.apsusc.2018.04.175 |
164 |
Lin B. ; Yang G. ; Yang B. ; Zhao Y. Appl. Catal. B-Environ. 2016, 198, 276.
doi: 10.1016/j.apcatb.2016.05.069 |
165 |
Li Y. ; Jin R. ; Xing Y. ; Li J. ; Song S. ; Liu X. ; Li M. ; Jin R. Adv. Energy Mater. 2016, 6 (24), 1601273.
doi: 10.1002/aenm.201601273 |
166 |
Ji C. ; Yin S.-N. ; Sun S. ; Yang S. Appl. Surf. Sci. 2018, 434, 1224.
doi: 10.1016/j.apsusc.2017.11.233 |
167 |
Zhu Y. ; Cui Y. ; Xiao B. ; Ou-yang J. ; Li H. ; Chen Z. Mater. Sci. Semicond. Process. 2021, 129, 10567.
doi: 10.1016/j.mssp.2021.105767 |
168 |
Lin B. ; Li J. ; Xu B. ; Yan X. ; Yang B. ; Wei J. ; Yang G. Appl. Catal. B-Environ. 2019, 243, 94.
doi: 10.1016/j.apcatb.2018.10.029 |
169 |
Zhang X.-H. ; Wang X.-P. ; Xiao J. ; Wang S.-Y. ; Huang D.-K. ; Ding X. ; Xiang Y.-G. ; Chen H. J. Catal. 2017, 350, 64.
doi: 10.1016/j.jcat.2017.02.026 |
170 |
Wu Y. ; Zhang X. ; Xing Y. ; Hu Z. ; Tang H. ; Luo W. ; Huang F. ; Cao Y. ACS Mater. Lett. 2019, 1 (6), 620.
doi: 10.1021/acsmaterialslett.9b00325 |
171 |
Sprick R. S. ; Bonillo B. ; Clowes R. ; Guiglion P. ; Brownbill N. J. ; Slater B. J. ; Blanc F. ; Zwijnenburg M. A. ; Adams D. J. ; Cooper A. I. Angew. Chem. Int. Ed. 2016, 55 (5), 1792.
doi: 10.1002/anie.201510542 |
172 |
Hu Z. ; Wang Z. ; Zhang X. ; Tang H. ; Liu X. ; Huang F. ; Cao Y. Iscience 2019, 13, 33.
doi: 10.1016/j.isci.2019.02.007 |
173 |
Yu K. ; Bi S. ; Ming W. ; Wei W. ; Zhang Y. ; Xu J. ; Qiang P. ; Qiu F. ; Wu D. ; Zhang F. Polym. Chem. 2019, 10 (27), 3758.
doi: 10.1039/c9py00512a |
174 |
Chu S. ; Wang Y. ; Wang C. ; Yang J. ; Zou Z. Int. J. Hydrog. Energy 2013, 38 (25), 10768.
doi: 10.1016/j.ijhydene.2013.02.035 |
175 |
Mohamed Samy M. ; Mekhemer I. M. A. ; Mohamed M. G. ; Hammad Elsayed M. ; Lin K.-H. ; Chen Y.-K. ; Wu T.-L. ; Chou H.-H. ; Kuo S.-W. Chem. Eur. J. 2022, 446, 137158.
doi: 10.1016/j.cej.2022.137158 |
176 |
Wang L. ; Fernandez-Teran R. ; Zhang L. ; Fernandes D. L. ; Tian L. ; Chen H. ; Tian H. Angew. Chem. Int. Ed. 2016, 55 (40), 12306.
doi: 10.1002/anie.201607018 |
177 |
Zhang C. ; Pan H. ; Chen C. ; Zhou Y. ACS Macro Lett. 2022, 11 (4), 434.
doi: 10.1021/acsmacrolett.2c00035 |
178 |
Zhang S. ; Cheng G. ; Guo L. ; Wang N. ; Tan B. ; Jin S. Angew.Chem. Int. Ed. 2020, 59 (15), 6007.
doi: 10.1002/anie.201914424 |
179 |
Wang X. ; Zhang X. ; Zhou W. ; Liu L. ; Ye J. ; Wang D. Nano Energy 2019, 62, 250.
doi: 10.1016/j.nanoen.2019.05.023 |
180 |
Wang Y. ; Silveri F. ; Bayazit M. K. ; Ruan Q. ; Li Y. ; Xie J. ; Catlow C. R. A. ; Tang J. Adv. Energy Mater. 2018, 8 (24), 1801084.
doi: 10.1002/aenm.201801084 |
181 |
Xu S. M. ; Sun W. J. ; Meng X. Y. ; Dong Y. J. ; Ding Y. J. Phys. Chem. C 2021, 125 (44), 24413.
doi: 10.1021/acs.jpcc.1c07491 |
182 |
Kisch H. ; Bahnemann D. J. Phys. Chem. Lett. 2015, 6 (10), 1907.
doi: 10.1021/acs.jpclett.5b00521 |
[1] | Chengbo Zhang, Xiaoping Tao, Wenchao Jiang, Junxue Guo, Pengfei Zhang, Can Li, Rengui Li. Microwave-Assisted Synthesis of Bismuth Chromate Crystals for Photogenerated Charge Separation [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303034-. |
[2] | Chengcheng Zhang, Zhiyi Wu, Jiahui Shen, Le He, Wei Sun. Silicon Nanostructure Arrays: An Emerging Platform for Photothermal CO2 Catalysis [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304004-. |
[3] | Kezhen Lai, Fengyan Li, Ning Li, Yangqin Gao, Lei Ge. Identification of Charge Transfer Pathways in Metal-Organic Framework- Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304018-. |
[4] | Ning Wang, Yi Li, Qian Cui, Xiaoyue Sun, Yue Hu, Yunjun Luo, Ran Du. Metal Aerogels: Controlled Synthesis and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212014-0. |
[5] | Qianwei Song, Guanchao He, Huilong Fei. Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212038-0. |
[6] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[7] | Zhongliao Wang, Jing Wang, Jinfeng Zhang, Kai Dai. Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209037-. |
[8] | Zhongqi Zan, Xibao Li, Xiaoming Gao, Juntong Huang, Yidan Luo, Lu Han. 0D/2D Carbon Nitride Quantum Dots (CNQDs)/BiOBr S-Scheme Heterojunction for Robust Photocatalytic Degradation and H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209016-. |
[9] | Xinhe Wu, Guoqiang Chen, Juan Wang, Jinmao Li, Guohong Wang. Review on S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212016-0. |
[10] | Erjun Lu, Junqian Tao, Can Yang, Yidong Hou, Jinshui Zhang, Xinchen Wang, Xianzhi Fu. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2211029-0. |
[11] | Yonggang Lei, Tianyu Zhao, Kim Hoong Ng, Yingzhen Zhang, Xuerui Zang, Xiao Li, Weilong Cai, Jianying Huang, Jun Hu, Yuekun Lai. Metallic Tungsten Carbide Coupled with Liquid-Phase Dye Photosensitizer for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2206006-0. |
[12] | Jing Kong, Jingui Zhang, Sufen Zhang, Juqun Xi, Ming Shen. Performance Improvement and Antibacterial Mechanism of BiOI/ZnO Nanocomposites as Antibacterial Agent under Visible Light [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212039-. |
[13] | Jintao Dong, Sainan Ji, Yi Zhang, Mengxia Ji, Bin Wang, Yingjie Li, Zhigang Chen, Jiexiang Xia, Huaming Li. Construction of Z-Scheme MnO2/BiOBr Heterojunction for Photocatalytic Ciprofloxacin Removal and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212011-. |
[14] | Cheng Hu, Hongwei Huang. Advances in Piezoelectric Polarization Enhanced Photocatalytic Energy Conversion [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212048-. |
[15] | Xiaoyan Cai, Jiahao Du, Guangming Zhong, Yiming Zhang, Liang Mao, Zaizhu Lou. Constructing a CeO2/ZnxCd1−xIn2S4 S-Scheme Hollow Heterostructure for Efficient Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2302017-. |
|