Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (6): 2211051.doi: 10.3866/PKU.WHXB202211051
Special Issue: S-scheme photocatalyst
• ARTICLE • Previous Articles Next Articles
Yining Zhang1,2, Ming Gao1, Songtao Chen2,3, Huiqin Wang4, Pengwei Huo1,*()
Received:
2022-11-26
Accepted:
2023-01-09
Published:
2023-02-16
Contact:
Pengwei Huo
E-mail:huopw@ujs.edu.cn
Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction[J]. Acta Phys. -Chim. Sin. 2023, 39(6), 2211051. doi: 10.3866/PKU.WHXB202211051
1 |
Ola, O.; Maroto-Valer, M. M. J. Photochem. Photobiol. C 2015, 24, 16.
doi: 10.1016/j.jphotochemrev.2015.06.001 |
2 | Liu, Y.; Liu, X. F.; Xia, L.; Huang, C.; Wu, Z.; Wang, H.; Sun, Y. Acta Phys. -Chim. Sin. 2020, 38, 2002017. |
刘影, 刘晓放, 夏林, 黄超杰, 吴兆萱, 王慧, 孙予罕 物理化学学报, 2020, 38, 2002017. | |
3 | Meng, Y. C.; Kuang, S. Y.; Liu, H.; Fan, Q.; Zhang, S. Acta Phys. -Chim. Sin. 2021, 37, 2006034. |
孟怡辰, 况思宇, 刘海, 范群, 马新宾, 张生 物理化学学报, 2021, 37, 2006034. | |
4 |
Oschatz, M.; Antonietti, M. Energy Environ. Sci 2018, 11, 57.
doi: 10.1039/c7ee02110k |
5 |
Saha, P.; Amanullah, S. A. Acc. Chem. Res 2022, 55, 134.
doi: 10.1021/acs.accounts.1c00678 |
6 | Du, Y. C.; Meng, X. T.; Wang, Z.; Zhao, X.; Qiu, J. S. Acta Phys. -Chim. Sin. 2022, 38, 2101009. |
杜亚东, 孟祥桐, 汪珍, 赵鑫, 邱介山 物理化学学报, 2022, 38, 2101009. | |
7 |
Shawky, A.; Mohamed, R. M. J. Environ. Chem. Eng 2022, 10, 108249.
doi: 10.1016/j.jece.2022.108249 |
8 |
Shi, X.; Cao, L. N.; Chen, Y. M.; Huang, Y. Chin. Chem. Lett 2022, 33, 5023.
doi: 10.1016/j.cclet.2022.01.066 |
9 |
Zhu, B. C.; Hong, X. Y.; Tang, L. Y.; Liu, Q. Q.; Tang, H. Acta Phys. -Chim. Sin. 2021, 38, 2111008.
doi: 10.3866/PKU.WHXB202111008 |
朱弼辰, 洪小洋, 唐丽永, 刘芹芹, 唐华 物理化学学报, 2021, 38, 2111008.
doi: 10.3866/PKU.WHXB202111008 |
|
10 |
He, H. B.; Gao, X. M.; Xu, K. X.; Li, H. Y.; Hu, Y.; Yang, C. M.; Fu, F. Chem. Eng. J 2022, 450, 138266.
doi: 10.1016/j.cej.2022.138266 |
11 |
Kamal, K. M.; Narayan, R.; Chandran. N. S.; Popović, S.; Nazrulla, M. A.; Kovač, J.; Vrtovec, N.; Bele M.; Hodnik, N.; Kržmanc, M.; et al Appl. Catal. B-Environ 2022, 307, 121181.
doi: 10.1016/j.apcatb.2022.121181 |
12 |
Ran, J.; Jaroniec, M.; Qiao, S. Z. Adv. Mater 2018, 30, 1704649.
doi: 10.1002/adma.201704649 |
13 |
Wang, H. J.; Li, X.; Zhao, X. X.; Li, C. X.; Song, X. H.; Zhang, P.; Huo, P. W.; Li, X. Chin. J. Catal 2022, 43, 178.
doi: 10.1016/s1872-2067(21)63910-4 |
14 |
Wang, Y.; Chen, E.; Tang, J. ACS Catal 2022, 12, 7300.
doi: 10.1021/acscatal.2c01012 |
15 |
Wang, L.; Li, Y. K.; Wu, C.; Li, X.; Shao, G. S.; Zhang, P. Chin. J. Catal 2022, 43, 507.
doi: 10.1016/s1872-2067(21)63898-6 |
16 |
Wang, K.; Fu, J.; Zheng, Y. Appl. Catal. B-Environ 2019, 254, 270.
doi: 10.1016/j.apcatb.2019.05.002 |
17 |
Wang, M.; Shen, M.; Jin, X. X.; Tian, J. J.; Shao, Y. R.; Zhang, L. X.; Li, Y. S.; Shi, J. L. Chem. Eng. J 2022, 427, 130987.
doi: 10.1016/j.cej.2021.130987 |
18 |
Meng, A. Y.; Cheng, B.; Tan, H. Y.; Fan, J. J.; Su, C. L.; Yu, J. G. Appl. Catal. B-Environ 2021, 289, 120039.
doi: 10.1016/j.apcatb.2021.120039 |
19 |
Guo, W. Q.; Luo, H. L.; Jiang, Z.; Shangguan, W. F. Chin. J. Catal 2022, 43, 316.
doi: 10.1016/s1872-2067(21)63846-9 |
20 |
Tang, Z. L.; Wang, C. J.; He, W. J.; Wei, Y. C.; Zhao, Z.; Liu, J. Chin. Chem. Lett 2022, 33, 939.
doi: 10.1016/j.cclet.2021.07.020 |
21 |
Di, T. G.; Zhu B. C.; Bie, C.; Cheng, B.; Ho, W.; Li, Y.; Macyk, W.; Ghasemi, J.; Yu, J. Green Chem 2022, 24, 5739.
doi: 10.1016/j.jcat.2017.06.006 |
22 |
Wang, L. B.; Zhu, B. C.; Cheng, B.; Zhang, J. J.; Zhang, L. Y.; Yu, J. G. Chin. J. Catal 2021, 42, 1648.
doi: 10.1016/s1872-2067(21)63805-6 |
23 |
Li, X.; Wei, Y. N.; Ma, C. C.; Jiang, H. P.; Gao, M.; Zhang, S. M.; Liu, W. K.; Huo, P. W.; Wang, H. Q.; Wang, L. L. ACS Appl. Mater. Interfaces 2021, 13, 11755.
doi: 10.1021/acsami.0c18809 |
24 |
Huang, Y.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal 2022, 43, 2539.
doi: 10.1016/s1872-2067(21)64024-x |
25 |
Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem 2020, 6, 1543.
doi: 10.1016/j.chempr.2020.06.010 |
26 |
Wang, L.; Chen, D. L.; Miao, S. Q.; Chen, F.; Guo, C. F.; Ye, P. C.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Chem. Eng. J 2022, 434, 133867.
doi: 10.1016/j.cej.2021.133867 |
27 |
Dai, B. L.; Zhao, W.; Wei, W.; Cao, J. H.; Yang, G.; Li, S. J.; Sun, C.; Leung, Y. C. D. Carbon 2022, 193, 272.
doi: 10.1016/j.carbon.2022.03.038 |
28 |
Wang, K.; Feng, X.; Shangguan, Y.; Wu. X.; Chen, H. Chin. J. Catal 2022, 43, 246.
doi: 10.1016/s1872-2067(21)63819-6 |
29 |
He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W. K.; Macyk, W. Appl. Catal. B-Environ 2020, 272, 119006.
doi: 10.1016/j.apcatb.2020.119006 |
30 |
Chen, Y.; Su, F.; Xie, H.; Wang, R.; Ding, C.; Huang, J.; Xu, Y.; Ye, L. Chem. Eng. J 2021, 404, 126498.
doi: 10.1016/j.cej.2021.126498 |
31 |
He, R. A.; Ou, S. J.; Liu, Y. X.; Liu, Y.; Xu, D. F. Chin. J. Catal 2022, 43, 370.
doi: 10.1016/s1872-2067(21)63911-6 |
32 |
Dou, X. C.; Zhang, C. L.; Shi, H. F. Sep. Purif. Technol 2022, 282, 120023.
doi: 10.1016/j.seppur.2021.120023 |
33 |
Yuan, X. X.; Yang, J. Y.; Yao, Y. Y.; Shen, H.; Meng, Y.; Xie, B.; Ni, Z. M.; Xia, S. J. Sep. Purif. Technol 2022, 291, 120965.
doi: 10.1016/j.seppur.2022.120965 |
34 |
Su, Y.; Xu, X.; Li, R.; Luo, X.; Yao, H.; Fang, S.; Peter, H. K.; Huang, Z.; Gao, Y.; Chen, X. Chem. Eng. J 2022, 429, 132241.
doi: 10.1016/j.cej.2021.132241 |
35 |
Jia, Y.; Wang, Z.; Qiao, X. Q.; Huang, L.; Gan, S.; Hou, D.; Zhao, J.; Sun, C. D.; Li, S. Chem. Eng. J 2021, 424, 130368.
doi: 10.1016/j.cej.2021.130368 |
36 |
Liu, J. H.; Wei, X. N.; Sun, W. Q.; Guan, X. X.; Zheng, X. C.; Li, J. Environ. Res. 2021, 197, 111136.
doi: 10.1016/j.envres.2021.111136 |
37 |
Patnaik, S.; Mishra, B. P.; Parida, K. Catal. Sci. Technol 2021, 11, 7505.
doi: 10.1039/d1cy01462e |
38 |
Li, Y. F.; Xia, Z. L.; Yang, Q.; Wang, L. X.; Xing, Y. J. Mater. Sci. Technol 2022, 125, 128.
doi: 10.1016/j.jmst.2022.02.035 |
39 |
Gan, Z. Y.; Huang, C. F.; Shen, Y. F.; Zhou, Q.; Han, D.; Ma, J.; Liu, S. Q.; Zhang, Y. J. Chin. Chem. Lett 2020, 31, 513.
doi: 10.1016/j.cclet.2019.04.065 |
40 |
Mo, Z.; Zhu, X. W.; Jiang, Z. F.; Song, Y. H.; Liu, D. B.; Li, H. P.; Yang, X. F.; She, Y. B.; Lei, Y. C.; Yuan, S. Q.; et al Appl. Catal. B-Environ 2019, 256, 117854.
doi: 10.1016/j.apcatb.2019.117854 |
41 |
Zhang, F. W.; Wen, Q. J.; Hong, M. Z.; Zhuang, Z. Y.; Yu, Y. Chem. Eng. J 2017, 307, 593.
doi: 10.1016/j.cej.2016.08.120 |
42 | Qin, Z. Z.; Wu, J.; Li, B.; Su, T. M.; Ji, H. B. Acta Phys. -Chim. Sin. 2020, 37, 2005027. |
秦祖赠, 吴靖, 李斌, 苏通明, 纪红兵 物理化学学报, 2020, 37, 2005027. | |
43 |
Gong, S.; Teng, X.; Niu, Y.; Liu, X.; Xu, M.; Xu, C.; Ji, L.; Chen, Z. Appl. Catal. B-Environ 2021, 298, 120521.
doi: 10.1016/j.apcatb.2021.120521 |
44 |
Zhang, X. D.; Kim, D.; Yan, J.; Lee, L. Y. S. ACS Appl. Mater. Interfaces 2021, 13, 9762.
doi: 10.1021/acsami.0c17926 |
45 |
Huang, Q. L.; Hu, J. Q.; Hu, Y. F.; Liu, J. C.; He, J. L.; Zhou, G. B.; Hu, N.; Yang, Z.; Zhang, Y. C.; Zhou, Y.; et al Environ. Sci. Nano 2022, 9, 4433.
doi: 10.1039/d2en00781a |
46 |
Zhou, Q.; Zhang, L. H.; Zhang, L. F.; Jiang, B.; Sun, Y. L. J. Hazard. Mater 2022, 438, 129438.
doi: 10.1016/j.jhazmat.2022.129438 |
47 |
Zhu, C. Z.; He, Q. Y.; Wang, W. K.; Du, F.; Yang, F.; Chen, C. X.; Wang, C. H.; Wang, S. B.; Duan, X. G. J. Colloid Interface Sci 2022, 620, 253.
doi: 10.1016/j.jcis.2022.04.024 |
48 |
Cao, S.; Yu, J. G.; Wageh, S.; AlGhamdi, A. A.; Mousavi, M.; Ghasemi, J. B.; Xu, F. J. Mater. Chem. A 2022, 10, 17174.
doi: 10.1039/d2ta05181h |
49 |
Bai, J. X.; Shen, R. C.; Jiang, Z. M.; Zhang, P.; Li, Y. J.; Li, X. Chin. J. Catal 2022, 43, 359.
doi: 10.1016/s1872-2067(21)63883-4 |
50 |
Li, Q. Y.; Wei, G. T.; Yang, Y. J.; Gao, L.; Zhang, L. Y.; Li, Z. M.; Huang, X. Y.; Gan, J. Y. Chem. Eng. J 2021, 424, 130537.
doi: 10.1016/j.cej.2021.130537 |
51 |
Wang, B.; Li, Z.; Ma, H. X.; Zhang, J. B.; Jiao, L. Y.; Hao, H.; Liu, E. Z.; Xu, L.; Wang, C.; Zhou, B.; et al Appl. Catal. B-Environ 2022, 318, 121882.
doi: 10.1016/j.apcatb.2022.121882 |
52 |
Zhu, Y. K.; Zhuang, Y.; Wang, L. L.; Tang, H.; Meng, X. F.; She, X. L. Chin. J. Catal 2022, 43, 2558.
doi: 10.1016/s1872-2067(22)64099-3 |
53 |
Zhao, L. N.; Bian, J.; Zhang, X. F.; Bai, L. L.; Xu, L. Y.; Qu, Y.; Li, Z. J.; Li, Y. X.; Jing, L. Q. Adv. Mater 2022, 34, 2205303.
doi: 10.1002/adma.202205303 |
54 |
Yue, X. Y.; Cheng, L.; Fan, J. J.; Xiang, Q. J. Appl. Catal. B-Environ 2022, 304, 120979.
doi: 10.1016/j.apcatb.2021.120979 |
55 |
Zhao, Z. L.; Bian, J.; Zhao, L. N.; Wu, H. J.; Xu, S.; Sun, L.; Li, Z. J.; Zhang, Z. Q.; Jing, L. Q. Chin. J. Catal 2022, 43, 1331.
doi: 10.1016/s1872-2067(21)64005-6 |
56 |
Xie, Q.; He, W. M.; Liu, S. W.; Li, C. H.; Zhang, J. F.; Wong, P. K. Chin. J. Catal 2020, 41, 140.
doi: 10.1016/s1872-2067(19)63481-9 |
57 |
Jiang, Y. B.; Sun, Z. Z.; Chen, Q. W.; Cao, C.; Zhao, Y.; Yang, W. S.; Zeng, L.; Huang, L. M. Appl. Surf. Sci 2022, 571, 151287.
doi: 10.1016/j.apsusc.2021.151287 |
58 |
Zhang, Y. P.; Han, W.; Yang, Y.; Zhang, H. Y.; Wang, Y.; Wang, L.; Sun, X. J.; Zhang, F. M. Chem. Eng. J 2022, 446, 137213.
doi: 10.1016/j.cej.2022.137213 |
59 |
Zhu, C.; Yao, H.; Le, S.; Yin, Y.; Chen, C.; Xu, H.; Wang, S.; Duan, X. Compos. Part B-Eng 2022, 242, 110082.
doi: 10.1016/j.compositesb.2022.110082 |
60 |
Wang, A. W.; Ni, J. X.; Wang, W.; Wang, X. Y.; Liu, D. M.; Zhu, Q. J. Hazard. Mater 2022, 426, 128106.
doi: 10.1016/j.jhazmat.2021.128106 |
61 |
Deng, H. Z.; Fei, X. G.; Yang, Y.; Fan, J. J.; Yu, J. G.; Cheng, B.; Zhang, L. Y. Chem. Eng. J 2021, 409, 127377.
doi: 10.1016/j.cej.2020.127377 |
62 |
Zhang, Y.; Qiu, J. Y.; Zhu; B. C., Fedin, M. V.; Cheng, B.; Yu, J. G.; Zhang, L. Chem. Eng. J 2022, 444, 136584.
doi: 10.1016/j.cej.2022.136584 |
63 |
Wang, J.; Sun, S. J.; Zhou, R.; Li, Y. Z.; He, Z. T.; Ding, H.; Chen, D. M.; Ao, W. H. J. Mater. Sci. Technol 2021, 78, 1.
doi: 10.1016/j.jmst.2020.09.045 |
64 |
Li, M. Z.; Wang, L. L.; Zhang, X. Y.; Yin, W. N.; Zhang, Y. B.; Li, J. W.; Yin, Z. Y.; Cai, Y. T.; Liu, S. J.; Zhao, Q. Chin. Chem. Lett 2022, 22, 107775.
doi: 10.1016/j.cclet.2022.107775 |
65 |
Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. Small 2021, 17, 2103447.
doi: 10.1002/smll.202103447 |
66 |
Li, L. L.; Ma, D. K.; Xu, Q. L.; Huang, S. M. Chem. Eng. J 2022, 437, 135153.
doi: 10.1016/j.cej.2022.135153 |
67 | He, Z. Q.; Tong, L. L.; Zhang, Z. P.; Chen, J. M.; Song, S. Acta Phys. -Chim. Sin. 2015, 31, 2341. |
何志桥, 童丽丽, 张志鹏, 陈建孟, 宋爽 物理化学学报, 2015, 31, 2341. | |
68 |
Zhang, L. S.; Ding, N.; Lou, L. C.; Iwasaki, K.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Nakata, K.; Fujishima, A.; Meng, Q. B. Adv. Funct. Mater 2019, 29, 1806774.
doi: 10.1002/adfm.201806774 |
69 |
Humayun, M.; Ullah, H.; Cheng, Z. E.; Tahir, A. A.; Luo, W.; Wang, C. Appl. Catal. B-Environ 2022, 310, 121322.
doi: 10.1016/j.apcatb.2022.121322 |
70 |
Jiang, Z. F.; Wan, W. M.; Li, H. M.; Yuan, S. Q.; Zhao, H. J.; Wong, P. K. Adv. Mater 2018, 30, 1706108.
doi: 10.1002/adma.201706108 |
[1] | Kezhen Lai, Fengyan Li, Ning Li, Yangqin Gao, Lei Ge. Identification of Charge Transfer Pathways in Metal-Organic Framework- Derived Ni-CNT/ZnIn2S4 Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304018-. |
[2] | Tao Sun, Chenxi Li, Yupeng Bao, Jun Fan, Enzhou Liu. S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212009-. |
[3] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[4] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[5] | Shanchi Liu, Kai Wang, Mengxue Yang, Zhiliang Jin. Rationally Designed Mn0.2Cd0.8S@CoAl LDH S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2109023-. |
[6] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[7] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[8] | Yang Liu, Xuqiang Hao, Haiqiang Hu, Zhiliang Jin. High Efficiency Electron Transfer Realized over NiS2/MoSe2 S-Scheme Heterojunction in Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2008030-. |
[9] | Zihui Mei, Guohong Wang, Suding Yan, Juan Wang. Rapid Microwave-Assisted Synthesis of 2D/1D ZnIn2S4/TiO2 S-Scheme Heterojunction for Catalyzing Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009097-. |
[10] | Rongan He, Rong Chen, Jinhua Luo, Shiying Zhang, Difa Xu. Fabrication of Graphene Quantum Dots Modified BiOI/PAN Flexible Fiber with Enhanced Photocatalytic Activity [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011022-. |
[11] | Shuhua Duan,Shufeng Wu,Lei Wang,Houde She,Jingwei Huang,Qizhao Wang. Rod-Shaped Metal Organic Framework Structured PCN-222(Cu)/TiO2 Composites for Efficient Photocatalytic CO2 Reduction [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905086-. |
|