Acta Phys. -Chim. Sin. ›› 2023, Vol. 39 ›› Issue (6): 2212009.doi: 10.3866/PKU.WHXB202212009
Special Issue: S-scheme photocatalyst
• ARTICLE • Previous Articles Next Articles
Tao Sun(), Chenxi Li, Yupeng Bao, Jun Fan, Enzhou Liu()
Received:
2022-12-04
Accepted:
2023-01-03
Published:
2023-01-06
Contact:
Tao Sun, Enzhou Liu
E-mail:chemstst@nwu.edu.cn;liuenzhou@nwu.edu.cn
Tao Sun, Chenxi Li, Yupeng Bao, Jun Fan, Enzhou Liu. S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production[J]. Acta Phys. -Chim. Sin. 2023, 39(6), 2212009. doi: 10.3866/PKU.WHXB202212009
1 |
Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567.
doi: 10.1016/j.chempr.2022.04.013 |
2 |
Li, A.; Zhu, W.; Li, C.; Wang, T.; Gong, J. Chem. Soc. Rev 2019, 48, 1874.
doi: 10.1039/C8CS00711J |
3 |
Chen, L.; Ren, J.; Yuan, Z. Green Chem 2022, 24, 713.
doi: 10.1039/D1GC03768D |
4 |
Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Adv. Mater 2021, 33, 2003521.
doi: 10.1002/adma.202003521 |
5 |
Xu, Q.; Zhang, J.; Zhang, H.; Zhang, L.; Chen, L.; Hu, Y.; Jiang, H.; Li, C. Energy Environ. Sci 2021, 14, 5228.
doi: 10.1039/D1EE02105B |
6 |
Li, R.; Li, Y.; Yang, P.; Wang, D.; Xu, H.; Wang, B.; Meng, F.; Zhang, J.; An, M. J. Energy Chem 2021, 57, 547.
doi: 10.1016/j.jechem.2020.08.040 |
7 |
Tao, X.; Zhao, Y.; Wang, S.; Li, C.; Li, R. Chem. Soc. Rev 2022, 51, 3561.
doi: 10.1039/D1CS01182K |
8 |
Wang, Q.; Domen, K. Chem. Rev 2020, 120, 919.
doi: 10.1021/acs.chemrev.9b00201 |
9 |
Yang, L.; Fan, D.; Li, Z.; Cheng, Y.; Yang, X.; Zhang, T. Adv. Sustain. Syst 2022, 6, 2100477.
doi: 10.1002/adsu.202100477 |
10 |
Che, S.; Zhang, L.; Wang, T.; Su, D.; Wang, C. Adv. Sustain. Syst 2022, 6, 2100294.
doi: 10.1002/adsu.202100294 |
11 |
Ong, W.; Tan, L.; Ng, Y.; Yong, S.; Chai, S. Chem. Rev 2016, 116, 7159.
doi: 10.1021/acs.chemrev.6b00075 |
12 |
Zhang, M.; Li, Y.; Chang, W.; Zhu, W.; Zhang, L.; Jin, R.; Xing, Y. Chin. J. Catal 2022, 43, 526.
doi: 10.1016/S1872-2067(21)63872-X |
13 |
Zhang, Q.; Bai, X.; Hu, X.; Fan, J.; Liu, E. Appl. Surf. Sci 2022, 579, 152224.
doi: 10.1016/j.apsusc.2021.152224 |
14 |
Liang, J.; Yang, X.; Wang, Y.; He, P.; Fu, H.; Zhao, Y.; Zou, Q.; An, X. J. Mater. Chem. A 2021, 9, 12898.
doi: 10.1039/D1TA00890K |
15 |
Jia, J.; Zhang, Q.; Li, K.; Zhang, Y.; Liu, E.; Li, X. Int. J. Hydrog. Energy 2023, 48, 196.
doi: 10.1016/j.ijhydene.2022.09.272 |
16 |
Yang, Y.; Wu, J.; Cheng, B.; Zhang, L.; Al-Ghamdi, A.; Wageh, S.; Li, Y. Chin. J. Struc. Chem 2022, 41, 2206006.
doi: 10.14102/j.cnki.0254-5861.2022-0124 |
17 | Lei, Z.; Ma, X.; Hu, X.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2022, 38 (7),2110049. |
雷卓楠, 马心怡, 胡晓云, 樊君, 刘恩周 物理化学学报, 2022, 38 (7),2110049. | |
18 |
Tao, S.; Wan, S.; Huang, Q.; Li, C.; Yu, J.; Cao, S. Chin. J. Struc. Chem 2022, 41, 2206048.
doi: 10.14102/j.cnki.0254-5861.2022-0068 |
19 |
Bie, C.; Zhu, B.; Wang, L.; Yu, H.; Jiang, C.; Chen, T.; Yu, J. Angew. Chem. Int. Ed 2022, 61, e202212045.
doi: 10.1002/anie.202212045 |
20 |
Tian, N.; Huang, H.; Du, X.; Dong, F.; Zhang, Y. J. Mater. Chem. A 2019, 7, 11584.
doi: 10.1039/C9TA01819K |
21 |
Zhang, J.; Yang, G.; He, B.; Cheng, B.; Li, Y.; Liang, G.; Wang, L. Chin. J. Catal 2022, 43, 2530.
doi: 10.1016/S1872-2067(22)64108-1 |
22 |
Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater 2022, 34, 2107668.
doi: 10.1002/adma.202107668 |
23 |
Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543.
doi: 10.1016/j.chempr.2020.06.010 |
24 |
Yang, T.; Deng, P.; Wang, L.; Hu, J.; Liu, Q.; Tang, H. Chin. J. Struc. Chem 2022, 41, 2206023.
doi: 10.14102/j.cnki.0254-5861.2022-0062 |
25 | Liu, S.; Wang, K.; Yang, M.; Jin, Z. Acta Phys. -Chim. Sin. 2022, 38 (7),2109023. |
刘珊池, 王凯, 杨梦薛, 靳治良 物理化学学报, 2022, 38 (7),2109023. | |
26 |
Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J.; Yu, J. Chin. J. Struc. Chem 2022, 41, 2206003.
doi: 10.14102/j.cnki.0254-5861.2022-0150 |
27 |
Yang, H.; Zhang, J.; Dai, K. Chin. J. Catal 2022, 43, 255.
doi: 10.1016/S1872-2067(20)63784-6 |
28 |
Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struc. Chem 2022, 41, 2206015.
doi: 10.14102/j.cnki.0254-5861.2022-0108 |
29 |
Li, C.; Zhao, Y.; Fan, J.; Hu, X.; Liu, E.; Yu, Q. J. Alloy. Compd 2022, 919, 165752.
doi: 10.1016/j.jallcom.2022.165752 |
30 |
Sayed, M.; Zhu, B.; Kuang, P.; Liu, X.; Cheng, B.; Al-Ghamdi, A.; Wageh, S.; Zhang, L.; Yu, J. Adv. Sustain. Syst 2022, 6, 2100264.
doi: 10.1002/adsu.202100264 |
31 |
Wang, L.; Yang, T.; Peng, L.; Zhang, Q.; She, X.; Tang, H.; Liu, Q. Chin. J. Catal 2022, 43, 2720.
doi: 10.1016/S1872-2067(22)64133-0 |
32 |
Li, X.; Kang, B.; Dong, F.; Zhang, Z.; Luo, X.; Han, L.; Huang, J.; Feng, Z.; Chen, Z.; Xu, J.; et al Nano Energy 2021, 81, 105671.
doi: 10.1016/j.nanoen.2020.105671 |
33 |
Dong, G.; Zhang, Y.; Wang, Y.; Deng, Q.; Qin, C.; Hu, Y.; Zhou, Y.; Tian, G. ACS Appl. Energy Mater 2021, 4, 14342.
doi: 10.1021/acsaem.1c03019 |
34 |
Shang, Y.; Fan, H.; Sun, Y.; Wang, W. Sustain. Energy Fuels 2022, 6, 3729.
doi: 10.1039/D2SE00916A |
35 |
Shang, Y.; Fang, H.; Sun, Y.; Wang, W. J. Mater. Chem. A 2022, 10, 20248.
doi: 10.1039/D2TA06372G |
36 |
Zhao, Z.; Dai, K.; Zhang, J.; Dawson, G. Adv. Sustain. Syst 2022, 6, 2100498.
doi: 10.1002/adsu.202100498 |
37 | Shen, R.; Hao, L.; Chen, Q.; Zheng, Q.; Zhang, P.; Li, X. Acta Phys. -Chim. Sin. 2022, 38 (7),2110014. |
沈荣晨, 郝磊, 陈晴, 郑巧清, 张鹏, 李鑫 物理化学学报, 2022, 38 (7),2110014. | |
38 | Huang, Y.; Mei, F.; Zhang, J.; Dai, K.; Dawson, G. Acta Phys. -Chim. Sin. 2022, 38 (7),2108028. |
黄悦, 梅飞飞, 张金锋, 代凯, Dawson, G. 物理化学学报, 2022, 38 (7),2108028. | |
39 |
Huang, W.; Xue, W.; Hu, X.; Fan, J.; Tang, C.; Shi, Y.; Liu, E.; Sun, T. J. Alloy. Compd 2023, 930, 167368.
doi: 10.1016/j.jallcom.2022.167368 |
40 |
Ren, D.; Zhang, W.; Ding, Y.; Shen, R.; Jiang, Z.; Lu, X.; Li, X. RRL Sol 2020, 4, 1900423.
doi: 10.1002/solr.201900423 |
41 |
Zhu, Q.; Xu, Q.; Du, M.; Zeng, X.; Zhong, G.; Qiu, B.; Zhang, J. Adv. Mater 2022, 34, 2202929.
doi: 10.1002/adma.202202929 |
42 |
Zhang, G.; Guan, Z.; Yang, J.; Li, Q.; Zhou, Y.; Zou, Z. RRL Sol 2022, 6, 2200587.
doi: 10.1002/solr.202200587 |
43 |
Jia, L.; Tan, X.; Yu, T.; Ye, J. Energy Fuel 2022, 36, 11308.
doi: 10.1021/acs.energyfuels.2c01137 |
44 |
Qiu, B.; Zhu, Q.; Du, M.; Fan, L.; Xing, M.; Zhang, J. Angew. Chem. Int. Ed 2017, 56, 2684.
doi: 10.1002/ange.201612551 |
45 |
Jiang, L.; Wang, K.; Wu, X.; Zhang, G.; Yin, S. ACS Appl. Mater. Interfaces 2019, 11, 26898.
doi: 10.1021/acsami.9b07311 |
46 |
Zhang, Y.; Shi, J.; Huang, Z.; Guan, X.; Zong, S.; Cheng, C.; Zheng, B.; Guo, L. Chem. Eng. J 2020, 401, 126135.
doi: 10.1016/j.cej.2020.126135 |
47 |
Wang, X.; Li, Y.; Li, T.; Jin, Z. Adv. Sustain. Syst 2022, 6, 2200139.
doi: 10.1002/adsu.202200139 |
48 |
Tian, J.; Xue, W.; Li, M.; Sun, T.; Hu, X.; Fan, J.; Liu, E. Catal. Sci. Technol 2022, 12, 3165.
doi: 10.1039/D2CY00174H |
49 |
Yendrapati, T.; Soumya, J.; Bojja, S.; Pal, U. J. Phys. Chem. C 2021, 125, 5099.
doi: 10.1021/acs.jpcc.0c11554 |
50 |
Ma, M.; Cui, F.; Huang, Y.; Zhao, Y.; Lian, J.; Bao, J.; Zhang, B.; Yuan, S.; Li, H. Electrochim. Acta 2019, 323, 134770.
doi: 10.1016/j.electacta.2019.134770 |
51 |
Liu, S.; Jun, S. J. Power Sources 2017, 342, 629.
doi: 10.1016/j.jpowsour.2016.12.057 |
52 |
Lee, D.; Lee, H.; Mathur, S.; Kim, K. J. Alloy. Compd 2021, 868, 158850.
doi: 10.1016/j.jallcom.2021.158850 |
53 |
Liu, T.; Li, Y.; Sun, H.; Zhang, M.; Xia, Z.; Yang, Q. Chin. J. Struc. Chem 2022, 41, 2206055.
doi: 10.14102/j.cnki.0254-5861.2022-0152 |
54 |
Cheng, L.; Zhang, P.; Wenm, Q.; Fan, J.; Xiang, Q. Chin. J. Catal 2022, 43, 451.
doi: 10.1016/S1872-2067(21)63879-2 |
55 |
Zhang, J.; Pan, Z.; Yang, Y.; Wang, P.; Pei, C.; Chen, W.; Huang, G. Chin. J. Catal 2022, 43, 265.
doi: 10.1016/S1872-2067(21)63801-9 |
56 |
Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal 2022, 43, 359.
doi: 10.1016/S1872-2067(21)63883-4 |
57 | Xiong, Z.; Hou, Y.; Yuan, R.; Ding, Z.; Ong, W.; Wang, S. Acta Phys. -Chim. Sin. 2022, 38 (7),2111021. |
熊壮, 侯乙东, 员汝胜, 丁正新, 王伟俊, 汪思波 物理化学学报, 2022, 38 (7),2111021. | |
58 |
Jin, Z.; Li, H.; Li, J. Chin. J. Catal 2022, 43, 303.
doi: 10.1016/S1872-2067(21)63818-4 |
59 |
Qi, K.; Wang, Y.; Rengaraj, S.; Wahaibi, B.; Jahangir, A. Mater. Chem. Phys 2017, 193, 177.
doi: 10.1016/j.matchemphys.2017.02.023 |
60 |
Arul, N.; Cavalcante, L.; Han, J. J. Solid State Electr 2018, 22, 303.
doi: 10.1007/s10008-017-3782-1 |
61 |
Hua, S.; Qu, D.; An, L.; Jiang, W.; Wen, Y.; Wang, X.; Sun, Z. Appl. Catal. B: Environ 2019, 240, 253.
doi: 10.1016/j.apcatb.2018.09.010 |
62 |
Liao, Y.; Wang, G.; Wang, J.; Wang, K.; Yan, S.; Su, Y. J. Colloid Interface Sci 2021, 587, 110.
doi: 10.1016/j.jcis.2020.12.009 |
63 |
Huang, W.; Xue, W.; Hu, X.; Fan, J.; Tang, C.; Liu, E. Appl. Surf. Sci 2022, 599, 153900.
doi: 10.1016/j.apsusc.2022.153900 |
64 |
Sun, T.; Wang, J.; Chi, X.; Lin, Y.; Chen, Z.; Ling, X.; Qiu, C.; Xu, Y.; Song, L.; Chen, W.; et al ACS Catal 2018, 8, 7585.
doi: 10.1021/acscatal.8b00783 |
65 |
Feng, K.; Sun, T.; Hu, X.; Fan, J.; Yang, D.; Liu, E. Catal. Sci. Technol 2022, 12, 4893.
doi: 10.1039/D2CY00858K |
66 |
Chu, S.; Hu, Y.; Zhang, J.; Cui, Z.; Shi, J.; Wang, Y.; Zou, Z. Int. J. Hydrog. Energy 2021, 46, 9064.
doi: 10.1016/j.ijhydene.2020.12.225 |
67 |
Zhang, W.; Xu, C.; Liu, E.; Fan, J.; Hu, X. Appl. Surf. Sci 2020, 515, 146039.
doi: 10.1016/j.apsusc.2020.146039 |
68 |
Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci. Technol 2022, 112, 1.
doi: 10.1016/j.jmst.2021.10.016 |
69 |
Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Phys. Chem. Lett 2022, 13, 8462.
doi: 10.1021/acs.jpclett.2c02125 |
70 |
Shao, X.; Wang, K.; Peng, L.; Li, K.; Wen, H.; Le, X.; Wu, X.; Wang, G. Colloid Surface A 2022, 652, 129846.
doi: 10.1016/j.colsurfa.2022.129846 |
[1] | Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2211051-. |
[2] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[3] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[4] | Yue Huang, Feifei Mei, Jinfeng Zhang, Kai Dai, Graham Dawson. Construction of 1D/2D W18O49/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2108028-. |
[5] | Shanchi Liu, Kai Wang, Mengxue Yang, Zhiliang Jin. Rationally Designed Mn0.2Cd0.8S@CoAl LDH S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2109023-. |
[6] | Rongchen Shen, Lei Hao, Qing Chen, Qiaoqing Zheng, Peng Zhang, Xin Li. P-Doped g-C3N4 Nanosheets with Highly Dispersed Co0.2Ni1.6Fe0.2P Cocatalyst for Efficient Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110014-. |
[7] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[8] | Zhicong Sun, Ergui Luo, Qinglei Meng, Xian Wang, Junjie Ge, Changpeng Liu, Wei Xing. High-Performance Palladium-Based Catalyst Boosted by Thin-Layered Carbon Nitride for Hydrogen Generation from Formic Acid [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003035-. |
[9] | Kaining Li, Mengxi Zhang, Xiaoyu Ou, Ruina Li, Qin Li, Jiajie Fan, Kangle Lv. Strategies for the Fabrication of 2D Carbon Nitride Nanosheets [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2008010-. |
[10] | Wei Wang, Yu Huang, Zhenyu Wang. Defect Engineering in Two-Dimensional Graphitic Carbon Nitride and Application to Photocatalytic Air Purification [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2011073-. |
[11] | Yang Liu, Xuqiang Hao, Haiqiang Hu, Zhiliang Jin. High Efficiency Electron Transfer Realized over NiS2/MoSe2 S-Scheme Heterojunction in Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2008030-. |
[12] | Zihui Mei, Guohong Wang, Suding Yan, Juan Wang. Rapid Microwave-Assisted Synthesis of 2D/1D ZnIn2S4/TiO2 S-Scheme Heterojunction for Catalyzing Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009097-. |
[13] | Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2010027-. |
[14] | Rongan He, Rong Chen, Jinhua Luo, Shiying Zhang, Difa Xu. Fabrication of Graphene Quantum Dots Modified BiOI/PAN Flexible Fiber with Enhanced Photocatalytic Activity [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011022-. |
[15] | Juanjuan Huang,Jianmei Du,Haiwei Du,Gengsheng Xu,Yupeng Yuan. Control of Nitrogen Vacancy in g-C3N4 by Heat Treatment in an Ammonia Atmosphere for Enhanced Photocatalytic Hydrogen Generation [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905056-. |
|