Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (1): 2007048.doi: 10.3866/PKU.WHXB202007048
Special Issue: Lithium Metal Anodes
• REVIEW • Previous Articles Next Articles
Yuheng Sun1, Mingda Gao1, Hui Li2, Li Xu2, Qing Xue2, Xinran Wang1,*(), Ying Bai1, Chuan Wu1,3,*(
)
Received:
2020-07-20
Accepted:
2020-08-23
Published:
2020-08-31
Contact:
Xinran Wang,Chuan Wu
E-mail:wangxinran@bit.edu.cn;chuanwu@bit.edu.cn
About author:
Chuan Wu. Emails: chuanwu@bit.edu.cn (C.W.)Supported by:
Yuheng Sun, Mingda Gao, Hui Li, Li Xu, Qing Xue, Xinran Wang, Ying Bai, Chuan Wu. Application of Metal-Organic Frameworks to the Interface of Lithium Metal Batteries[J]. Acta Phys. -Chim. Sin. 2021, 37(1), 2007048. doi: 10.3866/PKU.WHXB202007048
Fig 1
The porosity and structural changes of MOF derived from different organic ligands and central ions. (a) Schematic diagram of ZIF-100 29, (b) schematic diagram of CPL 31, (c) schematic diagram of MIL-79 32, (d) schematic diagram of PCN-14 33, (e) schematic diagram of UiO-67 34, (f) schematic diagram of IRMOF 35, (g–i) schematic diagram of internal dimensions of UiO-66, UiO-66-NH2 and UiO-66-NHCOCH3 36, (j) schematic diagram of {CuBr(L)·(OH)·7H2O}n, (k) schematic diagram of [Pd(HL)(Br)2(NO2)2(OH2)2], (l) schematic diagram of {[ZnCl2(L)0.5]·0.33H2O}n, (m) schematic diagram of {[Cu2(3-pzc)2(L)(OH2)]·5H2O}n, (n) schematic diagram of {[M4(L)6(OH2)12]·2Br·3(bdc)·33H2O}n M is Mn, Co and Ni, (o) schematic diagram of {[M(bdc)(L)1.5·9H2O]}n M is Cd, Zn. Reproduced from Ref. 39 with permission from the Royal Society of Chemistry."
Fig 5
(a) Preparation process of ZnO/C/Li composite electrode 65, (b) morphological evolution during the electroplating/stripping process of nitrogen-doped porous graphene electrode (Co@N-G) 67, (c) schematic diagram of LZNF synthesis 68, (d) schematic diagram of growing MOF-derived CN-Co nanosheet arrays on the carbon cloth substrate 69, (e) schematic diagram of making CFC/Co-NC@Li electrode 70."
Fig 6
(a) Schematic diagram of preparing a composite interface film of PVA and MOF 71, (b) schematic diagram of copper foil protected by composite SEI film 71, (c) schematic diagram of the surface structure of copper electrodes and copper electrodes with MOF-199 coating during cycling 72, (d) schematic diagram of the biomimetic Li+ channel constructed by grafting anionic sulfonate groups on the pore channels of UN 73, (e) Schematic diagram of the UN-SLi bionic ion channel 73."
Fig 10
(a) Schematic diagram of the synthesis of three Co nanostructure materials using ZIF-67 as a template 109, (b) schematic diagram of growing Co3O4 nanosheets on a carbon substrate 110, (c) schematic diagram of the electrochemical process of reversibly forming discharge products on two-dimensional Mn-MOF 111."
1 |
Goodenough J. B. ; Kim Y. Chem. Mater. 2010, 22, 587.
doi: 10.1021/cm901452z |
2 |
Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Zhang Q. Chem. Rev. 2017, 117, 10403.
doi: 10.1021/acs.chemrev.7b00115 |
3 |
Xu R. C. ; Xia X. H. ; Zhang S. Z. ; Xie D. ; Wang X. L. ; Tu J. P. Electrochim. Acta 2018, 284, 177.
doi: 10.1016/j.electacta.2018.07.191 |
4 |
Yu X. ; Manthiram A. Acc. Chem. Res. 2017, 50, 2653.
doi: 10.1021/acs.accounts.7b00460 |
5 |
Chen D. ; Huang S. ; Zhong L. ; Wang S. ; Xiao M. ; Han D. ; Meng Y. Adv. Funct. Mater 2020, 30
doi: 10.1002/adfm.201907717 |
6 |
Dong D. ; Zhang H. ; Zhou B. ; Sun Y. ; Zhang H. ; Cao M. ; Li J. ; Zhou H. ; Qian H. ; Lin Z. ; Chen H. Chem. Commun. 2019, 55, 1458.
doi: 10.1039/c8cc08725c |
7 |
Yang X. ; Dong B. ; Zhang H. ; Ge R. ; Gao Y. ; Zhang H. RSC Adv. 2015, 5, 86137.
doi: 10.1039/c5ra16235a |
8 |
Eddaoudi M. ; Kim J. ; Rosi N. L. ; David V. ; Joseph W. Science 2002, 295, 469.
doi: 10.1126/science.1067208 |
9 |
Zhang T. ; Lin W. B. Chem. Soc. Rev. 2014, 43, 5982.
doi: 10.1039/C4CS00103F |
10 |
Petit C. Curr. Opin. Chem. Eng 2018, 20, 132.
doi: 10.1016/j.coche.2018.04.004 |
11 |
Uzun A. ; Keskin S. Prog. Surf. Sci. 2014, 89, 56.
doi: 10.1016/j.progsurf.2013.11.001 |
12 | Mu W. ; Liu D. H. ; Yang Q. Y. ; Zhong C. L. Acta Phys. -Chim. Sin. 2010, 26, 1657. |
穆韡; 刘大欢; 阳庆元; 仲崇立. 物理化学学报, 2010, 26, 1657.
doi: 10.3866/PKU.WHXB20100616 |
|
13 |
Adatoz E. ; Avci A. K. ; Keskin S. Sep. Purif. Technol. 2015, 152, 207.
doi: 10.1016/j.seppur.2015.08.020 |
14 |
Chen Z. ; Chen J. ; Li Y. Chin. J. Catal. 2017, 38, 1108.
doi: 10.1016/s1872-2067(17)62852-3 |
15 |
Yang L. ; Zeng X. ; Wang W. ; Cao D. Adv. Funct. Mater. 2018, 28, 1704537.
doi: 10.1002/adfm.201704537 |
16 | Xuan C. J. ; Wang J. ; Zhu J. ; Wang D. L. Acta Phys. -Chim. Sin. 2017, 33, 149. |
玄翠娟; 王杰; 朱静; 王得丽. 物理化学学报, 2017, 33, 149.
doi: 10.3866/PKU.WHXB201609143 |
|
17 |
Wang Y. ; Yan J. ; Wen N. ; Xiong H. ; Cai S. ; He Q. ; Liu Y. Biomaterials 2020, 230, 119619.
doi: 10.1016/j.biomaterials.2019.119619 |
18 |
Liu Y. ; Zhao Y. ; Chen X. Theranostics 2019, 9, 3122.
doi: 10.7150/thno.31918 |
19 |
Zheng Y. ; Zheng S. ; Xue H. ; Pang H. J. Mater. Chem. A 2019, 7, 3469.
doi: 10.1039/C8TA11075A |
20 |
Li H. L. ; Eddaoudi M. M. ; O'Keeffe M. ; Yaghi O. M. Nature 1999, 402, 276.
doi: 10.1038/46248 |
21 |
Li X. ; Cheng F. ; Zhang S. ; Chen J. J. Power Sources 2006, 160, 542.
doi: 10.1016/j.jpowsour.2006.01.015 |
22 |
Furukawa H. ; Ko N. ; Go Y. B. ; Aratani N. ; Choi S. B. ; Choi E. ; Yaghi O. M. Science 2010, 329, 424.
doi: 10.1126/science.1192160 |
23 |
Jiang H. Q. ; Liu X.C. ; Wu Y.S. ; Shu Y. F. ; Gong X. ; Ke F. S. ; Deng H. X. Angew. Chem. Int. Ed. 2018, 57, 3916.
doi: 10.1002/ange.201712872 |
24 |
Li K. ; Lv X. X. ; Shi L. L. ; Liu L. ; Li B. L. ; Wu B. Dalton Trans. 2016, 45, 15078.
doi: 10.1039/C6DT02895K |
25 |
Chen Y. X. ; Ni D. ; Yang X. W. ; Liu C. C. ; Yin J. L. ; Cai K. F. Electrochim. Acta 2018, 278, 114.
doi: 10.1016/j.electacta.2018.05.024 |
26 |
Martinez Joaristi A. ; Juan-Alcañiz A. ; Serra-Crespo P. ; Kapteijn F. ; Gascon J. Cryst. Growth Des. 2012, 12, 3489.
doi: 10.1021/cg300552w |
27 |
Garcia Marquez A. ; Horcajada P. ; Grosso D. ; Ferey G. ; Serre C. ; Sanchez C. ; Boissiere C. Chem. Commun. 2013, 49, 3848.
doi: 10.1039/C3CC39191D |
28 |
Wang B. ; Côté A. P. ; Furukawa H. ; O'Keeffe M. ; Yaghi O. M. Nature 2008, 453, 207.
doi: 10.1038/nature06900 |
29 |
Anh P. ; Christian J. D. ; Rernando J. U. ; Carolyn B. K. ; Michael O. ; Omar M. Y. Acc. Chem. Res. 2010, 43, 58.
doi: 10.1021/ar900116g |
30 |
Tanaka D. ; Nakagawa K. ; Giguchi M. ; Horike S. ; Kubota Y. ; Kobayashi T. C. ; Takata M. ; Kitagewa S. Angew. Chem. Int. Ed. 2008, 47, 3914d.
doi: 10.1002/anie.200705822 |
31 |
Matsuda R. ; Kitaura R. ; Kitagawa S. ; Kubota Y. ; Kobayashi T. C. ; Horike S. ; Takata M. J. Am. Chem. Soc. 2004, 126, 14063.
doi: 10.1021/ja046925m |
32 |
Serre C. ; Pelle F. ; Gardant N. ; Ferey G. Chem. Mater. 2004, 16, 1177.
doi: 10.1021/cm035045o |
33 |
Ma S. ; Sun D. ; Ambrogio M. ; Fillinger J. A. ; Parkin S. ; Zhou H. J. Am. Chem. Soc. 2007, 129, 1858.
doi: 10.1021/ja0771639 |
34 |
Cavka J.H. ; Jakobsen S. ; Olsbye U. ; Guillou N. ; Lamberti C. ; Bordiga S. ; Lillerud K. P. J. Am. Chem. Soc. 2008, 130, 13850.
doi: 10.1021/ja8057953 |
35 |
Ding M. ; Flaig R. W. ; Jiang H. L. ; Yaghi O. M. Chem. Soc. Rev. 2019, 48, 2783.
doi: 10.1039/C8CS00829A |
36 |
Lin S. ; Bediako J. K. ; Cho C.W. ; Song M. H. ; Zhao Y. F. ; Kim J. A. ; Choi J. W. ; Yun Y. S. Chem. Eng. J. 2018, 345, 337.
doi: 10.1016/j.cej.2018.03.173 |
37 |
Pauling L. C. Proc. R. Soc. Lond. A 1949, 196, 343.
doi: 10.1098/rspa.1949.0032 |
38 |
Murugavel R. ; Karambelkar V. V. ; Anantharaman G. ; Walawalkar M. G. Inorg. Chem. 2000, 39, 1381.
doi: 10.1021/ic990895k |
39 |
Aulakh D. ; Nicoletta A. P. ; Varghese J. R. ; Wriedt M. CrystEngComm 2016, 18, 2189.
doi: 10.1039/C6CE00284F |
40 |
Chen B. ; Eddaoudi M. ; Reineke T. M. ; Kampf J. W. ; Keeffe M. O. ; Yaghi O. M. J. Am. Chem. Soc. 2000, 122, 11559.
doi: 10.1021/ja003159k |
41 |
Hall J. N. ; Bollini P. React. Chem. Eng. 2019, 4, 207.
doi: 10.1039/C8RE00228B |
42 |
Kokcam-Demir U. ; Goldman A. ; Esrafili L. ; Gharib M. ; Morsali A. ; Weingart O. ; Janiak C. Chem. Soc. Rev. 2020, 49, 2751.
doi: 10.1039/c9cs00609e |
43 |
Fu Y. Y. ; Yang C. X. ; Yan X. P. Langmuir 2012, 28, 6794.
doi: 10.1021/la300298 |
44 |
Park H. ; Siegel D. J. Chem. Mater. 2017, 29, 4932.
doi: 10.1021/acs.chemmater.7b01166 |
45 |
Wu D. ; Guo Z. ; Yin X. ; Pang Q. ; Tu B. ; Zhang L. ; Wang Y. G. ; Li Q. Adv Mater. 2014, 26, 3258.
doi: 10.1002/adma.201305492 |
46 |
Zhang C. ; Shen L. ; Shen J. Q. ; Liu F. ; Chen G. ; Tao R. ; Ma S. X. ; Peng Y. T. ; Lu Y. F. Adv Mater. 2019, 31, 1808338.
doi: 10.1002/adma.201808338 |
47 |
Peng Z. ; Yi X. ; Liu Z. ; Shang J. ; Wang D. ACS Appl. Mater. Interfaces 2016, 8, 14578.
doi: 10.1021/acsami.6b03418 |
48 |
Zhong H. ; Ly K. H. ; Wang M. ; Krupskaya Y. ; Han X. ; Zhang J. ; Feng X. Angew. Chem. Int. Ed. 2019, 58, 10677.
doi: 10.1002/anie.201907002 |
49 |
Xia W. ; Mahmood A. ; Zou R. Q. ; Xu Q. Energy Environ. Sci. 2015, 8, 1837.
doi: 10.1039/c5ee00762c |
50 |
Wu S. ; Liu J. ; Wang H. ; Yan H. Int. J. Energy Res. 2018, 43, 697.
doi: 10.1002/er.4232 |
51 |
Zou G. ; Hou H. ; Ge P. ; Huang Z. ; Zhao G. ; Yin D. ; Ji X. J. Energy Storage 2017, 14, 1702648.
doi: 10.1002/smll.201702648 |
52 |
Tong P. ; Liang J. ; Jiang X. ; Li J. Crit. Rev. Anal. Chem. 2020, 50, 376.
doi: 10.1080/10408347.2019.1642732 |
53 |
Meilikhov M. ; Yusenko K. ; Esken D. ; Turner S. ; Van Tendeloo G. ; Fischer R. Eur. J. Inorg. Chem. 2010, 24, 3701.
doi: 10.1002/ejic.201000473 |
54 |
Dang S. ; Zhu Q. L. ; Xu Q. Nat. Rev. Mater. 2017, 3, 17075.
doi: 10.1038/natrevmats.2017.75 |
55 |
Yi Q. ; Du M. ; Shen B. ; Ji J. ; Dong C. ; Xing M. ; Zhang J. Sci. Bull. 2020, 65, 233.
doi: 10.1016/j.scib.2019.11.004 |
56 |
Zhao S. ; Yin H. ; Du L. ; He L. ; Zhao K. ; Chang L. ; Tang Z. ACS Nano 2014, 8, 12660.
doi: 10.1021/nn505582e |
57 |
Xu W. ; Wang J. ; Ding F. ; Chen X. ; Nasybulin E. ; Zhang Y. ; Zhang J. G. Energy Environ. Sci. 2014, 7, 513.
doi: 10.1039/c3ee40795k |
58 |
Lin D. ; Liu Y. ; Cui Y. Nat. Nanotechnol. 2017, 12, 194.
doi: 10.1038/nnano.2017.16 |
59 |
Aryanfar A. ; Brooks D. J. ; Colussi A. J. ; Merinov B. V. ; Goddard Ⅲ W. A. ; Hoffmann M. R. Phys. Chem. 2015, 17, 8000.
doi: 10.1039/C4CP05786D |
60 |
Xu C. ; Ahmad Z. ; Aryanfar A. ; Viswanathan V. ; Greer J. R. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 57.
doi: 10.1073/pnas.1615733114 |
61 |
Pei A. ; Zheng G. ; Shi F. F. ; Li Y. Z. ; Cui Y. Nano Lett. 2017, 17, 1132.
doi: 10.1021/acs.nanolett.6b04755 |
62 |
Monroe C. ; Newman J. J. Electrochem. Soc. 2003, 150, A1377.
doi: 10.1149/1.1606686 |
63 |
Kushima A. ; So K. P. ; Su C. ; Bai P. ; Kuriyama N. ; Maebashi T. ; Fujiwara Y. ; Bazant M. Z. ; Li J. Nano Energy 2017, 32, 271.
doi: 10.1016/j.nanoen.2016.12.001 |
64 |
Wang X. ; Zeng W. ; Hong L. ; Xu W. W. ; Yang H. K. ; Wang F. ; Duan H. G. ; Tang M. ; Jiang H. Q. Nat. Energy 2018, 3, 227.
doi: 10.1038/s41560-018-0104-5 |
65 |
Wang L. ; Zhu X. ; Guan Y. P. ; Zhang J. L. ; Ai F. ; Zhang W. F. ; Xiang Y. ; Vigayan S. ; Li G. D. ; Huang Y. L. ; et al Energy Stor. Mater. 2018, 11, 191d.
doi: 10.1016/j.ensm.2017.10.016 |
66 |
Lyu Z. ; Lim G. J. H. ; Guo R. ; Pan Z. H. ; Zhang X. ; Zhang H. ; He Z. M. ; Adams S. ; Chen W. ; Ding J. Energy Stor. Mater. 2020, 24, 336.
doi: 10.1016/j.ensm.2019.07.041 |
67 |
Wang T. S. ; Liu X. ; Zhao X. ; He P. ; Nan C. W. ; Fan L. Z. Adv. Funct. Mater. 2020, 30, 2000786.
doi: 10.1002/adfm.202000786 |
68 |
Zhao F. ; Zhou X. ; Deng W. ; Liu Z. Nano Energy 2019, 62, 55.
doi: 10.1016/j.nanoen.2019.04.087 |
69 |
Zhou T. ; Shen J. ; Wang Z. ; Liu J. ; Hu R. ; Ouyang L. ; Zhu M. Adv. Funct. Mater. 2020, 30, 1909159.
doi: 10.1002/adfm.201909159 |
70 |
Jiang G. ; Jiang N. ; Zheng N. ; Chen X. ; Mao J. ; Ding G. ; Li Y. Energy Stor. Mater. 2019, 23, 181.
doi: 10.1016/j.ensm.2019.05.014 |
71 |
Fan L. ; Guo Z. ; Zhang Y. ; Wu X. ; Zhao C. ; Sun X. ; Zhang N. J. Mater. Chem. A 2020, 8, 251.
doi: 10.1039/c9ta10405d |
72 |
Qian J. ; Li Y. ; Zhang M. ; Luo R. ; Wang F. ; Ye Y. ; Chen R. Nano Energy 2019, 60, 866.
doi: 10.1016/j.nanoen.2019.04.030 |
73 |
Shi W. Y. ; Shen J. J. ; Shen L. ; Hu W. ; Xu P. C. ; Baucom J. A. ; Ma S. X. ; Yang S. X. ; Chen X. M. ; Lu Y. F. Nano Lett. 2020, 20, 5435.
doi: 10.1021/acs.nanolett.0c01910 |
74 |
Li B. ; Wen H. M. ; Cui Y. ; Zhou W. ; Qian G. ; Chen B. Adv. Mater. 2016, 28, 8819.
doi: 10.1002/adma.201601133 |
75 |
Chu F. ; Hu J. ; Wu C. ; Yao Z. ; Tian J. ; Li Z. ; Li C. ACS Appl. Mater. Interfaces 2019, 11, 3869.
doi: 10.1021/acsami.8b17924 |
76 |
Fu X. T. ; Yu D. N. ; Zhou J. W. ; Li S. W. ; Gao X. ; Han Y. Z. ; Qi P. F. ; Feng X. ; Wang B. CrystEngComm 2016, 18, 4236.
doi: 10.1039/C6CE00171H |
77 |
Angulakshmi N. ; Zhou Y. ; Suriyakumar S. ; Dhanalakshmi R. B. ; Satishrajan M. ; Alwarappan S. ; Stephan A. M. ACS Omega 2020, 5, 7885.
doi: 10.1021/acsomega.9b04133 |
78 |
Yuan C. F. ; Li J. ; Han P. F. ; Lai Y. Q. ; Zhang Z. A. ; Liu J. J. Power Sources 2013, 240, 653.
doi: 10.1016/j.jpowsour.2013.05.030 |
79 |
Angulakshmi N. ; Kumar R. S. ; Kulandainathan M. A. ; Stephan A. M. J. Phys. Chem. C 2014, 118, 24240.
doi: 10.1021/jp506464v |
80 |
Zhu F. ; Bao H. ; Wu X. ; Tao Y. ; Qin C. ; Su Z. ; Kang Z. ACS Appl. Mater. Interfaces 2019, 11, 43206.
doi: 10.1021/acsami.9b15374 |
81 |
Zhang Z. ; Huang Y. ; Gao H. ; Hang J. ; Li C. ; Liu P. J. Membr. Sci. 2020, 598, 11780.
doi: 10.1016/j.memsci.2019.117800 |
82 |
Wu J. ; Guo X. J. Mater. Chem. A 2019, 7, 2653.
doi: 10.1039/C8TA10124H |
83 |
Yu Z. ; Mackanic D. G. ; Michaels W. ; Lee M. ; Pei A. ; Feng D. ; Bao Z. Joule 2019, 3, 2761.
doi: 10.1016/j.joule.2019.07.025 |
84 |
Zhang S. S. J. Power Sources 2007, 164, 351.
doi: 10.1016/j.jpowsour.2006.10.065 |
85 |
Bai S. ; Liu X. ; Zhu K. ; Wu S. ; Zhou H. Nat. Energy 2016, 1, 16094.
doi: 10.1038/nenergy.2016.94 |
86 |
Zang Y. ; Pei F. ; Huang J. ; Fu Z. ; Xu G. ; Fang X. Adv. Energy Mater. 2018, 8, 1802052.
doi: 10.1002/aenm.201802052 |
87 |
Han J. G. ; Kim K. ; Lee Y. ; Choi N. S. Adv. Mater. 2019, 31, 1804822.
doi: 10.1002/adma.201804822 |
88 |
Chang Z. ; Qiao Y. ; Deng H. ; Yang H. J. ; He P. ; Zhou H. S. Energy Environ. Sci. 2020, 13, 1197.
doi: 10.1039/D0EE00060D |
89 |
Li Q. ; Wang Y. ; Wang X. ; Sun X. R. ; Zhang J. N. ; Yu X. Q. ; Li H. ACS Appl. Mater. Interfaces 2020, 12, 2319.
doi: 10.1021/acsami.9b16727 |
90 |
Xie Y. ; Chen S. ; Lin Z. ; Yang W. ; Zou H. B. ; Sun R. W. Y. Electrochem. Commun. 2019, 99, 65.
doi: 10.1016/j.elecom.2019.01.005 |
91 |
Lin J. ; Zeng C. ; Chen Y. ; Lin C. ; Xu C. ; Su C. J. Mater. Chem. A 2020, 8, 6607.
doi: 10.1039/D0TA00679C |
92 |
Zhong Y. J. ; Xu X. M. ; Liu Y. ; Wang W. ; Shao Z. P. Polyhedron 2018, 155, 464.
doi: 10.1016/j.poly.2018.08.067 |
93 |
Manthiram A. ; Fu Y. ; Chung S. H. ; Zu C. X. ; Sun Y. S. Chem. Rev. 2014, 114, 11751.
doi: 10.1021/cr500062v |
94 |
Mikhaylik Y. V. ; Akridge J. R. J. Electrochem. Soc. 2004, 151, A1969.
doi: 10.1149/1.1806394 |
95 |
Zhou J. ; Li R. ; Fan X. ; Chen Y. ; Han R. ; Li W. ; Li X. Energy Environ. Sci. 2014, 7, 8.
doi: 10.1039/c4ee01382d |
96 |
Liu G. ; Feng K. ; Cui H. ; Li J. ; Liu Y. ; Wang M. Chem. Eng. J. 2020, 381, 122652.
doi: 10.1016/j.cej.2019.122652 |
97 |
Walle M. D. ; Zhang M. ; Zeng K. ; Li Y. ; Liu Y. N. Appl. Surf. Sci. 2019, 497, 143773.
doi: 10.1016/j.apsusc.2019.143773 |
98 |
Han J. ; Gao S. ; Wang R. ; Wang K. ; Jiang M. ; Yan J. ; Jin Q. ; Jiang K. J. Mater. Chem. A 2020, 8, 6661.
doi: 10.1039/D0TA00533A |
99 |
Xi K. ; Cao S. ; Peng X. ; Ducati C. ; Kumar R. V. ; Cheetham A. K. Electrochem. Commun. 2013, 49, 2192.
doi: 10.1039/c3cc38009b |
100 |
Li Y. ; Lin S. ; Wang D. ; Gao T. ; Song J. ; Zhou P. ; Guo S. Adv. Mater. 2020, 32, 1906722.
doi: 10.1002/adma.201906722 |
101 |
Abraham K. M. ; Jiang Z. J. Electrochem. Soc. 1996, 143, 1.
doi: 10.1149/1.1836378 |
102 |
Kumar J. ; Kumar B. J. Power Sources 2009, 194, 1113.
doi: 10.1016/j.jpowsour.2009.06.020 |
103 |
Cai C. X. ; Xue K. H. ; Xu X. Y. ; Luo Q. H. J. Appl. Electrochem. 1997, 27, 793.
doi: 10.1023/A:1018416610935 |
104 |
Mukerjee S. ; Srinivasan S. J. Electroanal. Chem. 1993, 357, 201.
doi: 10.1016/0022-0728(93)80380-Z |
105 |
Toda T. ; Igarashi H. ; Uchida H. ; Watanabe M. J. Electrochem. Soc. 1999, 146, 3750.
doi: 10.1149/1.1392544 |
106 |
Toda T. ; Igarashi H. ; Watanabe M. J. Electroanal. Chem. 1999, 460, 258.
doi: 10.1016/S0022-0728(98)00361-1 |
107 |
Streinz C. C. ; Moran P. J. ; Wagner J. W. ; Kruger J. J. Electrochem. Soc. 1994, 141, 1132.
doi: 10.1149/1.2054885 |
108 |
Pyun S. I. ; Lee S. B. J. Power Sources 1999, 77, 170.
doi: 10.1016/S0378-7753(98)00191-8 |
109 |
Jiang Z. ; Sun H. ; Shi W. ; Zhou T. ; Hu J. ; Cheng J. ; Sun S. Nano Res. 2019, 12, 1555.
doi: 10.1007/s12274-019-2388-6 |
110 |
Gong H. ; Wang T. ; Xue H. ; Lu X. ; Xia W. ; Song L. ; Ma R. Nano Res. 2019, 12, 2528.
doi: 10.1007/s12274-019-2480-y |
111 |
Yuan M. ; Wang R. ; Fu W. ; Lin L. ; Sun Z. ; Long X. ; Ma S. ACS Appl. Mater. Interfaces 2019, 11, 11403.
doi: 10.1021/acsami.8b21808 |
[1] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[2] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[3] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[4] | Liu Yuankai, Yu Tao, Guo Shaohua, Zhou Haoshen. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301027-0. |
[5] | Linfeng Peng, Chuang Yu, Chaochao Wei, Cong Liao, Shuai Chen, Long Zhang, Shijie Cheng, Jia Xie. Recent Progress on Lithium Argyrodite Solid-State Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211034-0. |
[6] | Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2210027-0. |
[7] | Youwen Rong, Jiaqi Sang, Li Che, Dunfeng Gao, Guoxiong Wang. Designing Electrolytes for Aqueous Electrocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2212027-0. |
[8] | Chenyang Chen, Yongzhi Zhao, Yuanyuan Li, Jinping Liu. Research Progress of High-Voltage/Wide-Temperature-Range Aqueous Alkali Metal-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211005-0. |
[9] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[10] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[11] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203043-0. |
[12] | Kuangyu Wang, Kai Liu, Hui Wu. Molten Alkali Metal Batteries Based on Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301009-. |
[13] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
[14] | Yingying Zhu, Yong Wang, Miao Xu, Yongmin Wu, Weiping Tang, Di Zhu, Yu-Shi He, Zi-Feng Ma, Linsen Li. Tracking Pressure Changes and Morphology Evolution of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2110040-0. |
[15] | Hao-Tian Teng, Wen-Tao Wang, Xiao-Feng Han, Xiang Hao, Ruizhi Yang, Jing-Hua Tian. Recent Development and Perspectives of Flexible Zinc-Air Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2107017-0. |
|