Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (1): 2007058.doi: 10.3866/PKU.WHXB202007058
Special Issue: Lithium Metal Anodes
• ARTICLE • Previous Articles Next Articles
Shijie Yang1,3, Xiangqun Xu2, Xinbing Cheng2,*(), Xinmeng Wang2,4, Jinxiu Chen2,5, Ye Xiao1,3, Hong Yuan1,3,*(
), He Liu1,3, Aibing Chen4, Wancheng Zhu5, Jiaqi Huang1,3, Qiang Zhang2
Received:
2020-07-23
Accepted:
2020-08-31
Published:
2020-09-04
Contact:
Xinbing Cheng,Hong Yuan
E-mail:cxb12@mails.tsinghua.edu.cn;yuanhong@bit.edu.cn
About author:
Yuan Hong. E-mail: yuanhong@bit.edu.cn Supported by:
Shijie Yang, Xiangqun Xu, Xinbing Cheng, Xinmeng Wang, Jinxiu Chen, Ye Xiao, Hong Yuan, He Liu, Aibing Chen, Wancheng Zhu, Jiaqi Huang, Qiang Zhang. Columnar Lithium Metal Deposits: the Role of Non-Aqueous Electrolyte Additive[J].Acta Phys. -Chim. Sin., 2021, 37(1): 2007058.
Table 1
Main chemical reagent."
Reagent | Parameters | Company |
Li mental | Thickness: 50, 600 μm | China Energy Lithium Co., Ltd. Aladdin |
Cu | Thickness: 9 μm | China Energy Lithium Co., Ltd. Aladdin |
CH3CH2OH | 99.8% | Beijing Chemical Plant Co. LTD |
CH3COCH3 | 99.8% | Beijing Chemical Plant Co. LTD |
1 mol∙L−1 LiPF6-ethylene carbonate : diethyl carbonate (1 : 1 by volume) | 99.8% | DoDoChem |
Fluoroethylene carbonate | 99.8% | DoDoChem |
KAPTON tape | – | E. I. Du Pont Company |
HCl | 36.5% | Beijing Chemical Plant Co. LTD |
1 |
Chen X. R. ; Yao Y. X. ; Yan C. ; Zhang R. ; Cheng X. B. ; Zhang Q. Angew. Chem. Int. Ed. 2020, 132, 7817.
doi: 10.1002/ange.202000375 |
2 |
Fan Y. ; Wang T. ; Legut D. ; Zhang Q. J. Energy Chem. 2019, 39, 160.
doi: 10.1016/j.jechem.2019.01.021 |
3 |
Liu H. ; Cheng X. B. ; Huang J. Q. ; Yuan H. ; Lu Y. ; Yan C. ; Zhu G. L. ; Xu R. ; Zhao C. Z. ; Hou L. P. ; et al ACS Energy Lett. 2020, 5, 833.
doi: 10.1021/acsenergylett.9b02660 |
4 |
Qiao Y. ; Li Q. ; Cheng X. B. ; Liu F. X. ; Yang Y. ; Lu Z. S. ; Zhao J. ; Wu J. W. ; Liu H. ; Yang S. T. ; et al ACS Appl. Mater. Interfaces 2020, 12, 5767.
doi: 10.1021/acsami.9b18315 |
5 |
Shen Y. ; Zhang Y. ; Han S. ; Wang J. ; Peng Z. ; Chen L. Joule 2018, 2, 1674.
doi: 10.1016/j.joule.2018.06.021 |
6 |
Feng Y. Q. ; Zheng Z. J. ; Wang C. Y. ; Yin Y. X. ; Ye H. ; Cao F. F. ; Guo Y. G. Nano Energy 2020, 73, 104731.
doi: 10.1016/j.nanoen.2020.104731 |
7 |
Wan J. ; Xie J. ; Kong X. ; Liu Z. ; Liu K. ; Shi F. ; Pei A. ; Chen H. ; Chen W. ; Chen J. ; et al Nat. Nanotechnol. 2019, 14, 705.
doi: 10.1038/s41565-019-0465-3 |
8 |
Ma Y. Y. ; Chen D. ; Yang Q. L. ; Yin Y. X. ; Bai X. P. ; Zhen S. Y. ; Fan C. ; Sun K. N. J. Energy Chem. 2020, 42, 49.
doi: 10.1016/j.jechem.2019.06.008 |
9 | Liu Y. ; Zheng L. ; Gu W. ; Shen Y. B. ; Chen L. W. Acta Phys. -Chim. Sin. 2021, 37, 2004058. |
刘亚; 郑磊; 谷巍; 沈炎宾; 陈立桅. 物理化学学报, 2021, 37, 2004058.
doi: 10.3866/PKU.WHXB202004058 |
|
10 |
Liang Y. ; Zhao C. Z. ; Yuan H. ; Chen Y. ; Zhang W. ; Huang J. Q. ; Yu D. ; Liu Y. ; Titirici M. M. ; Chueh Y. L. ; et al InfoMat. 2019, 1, 6.
doi: 10.1002/inf2.12000 |
11 |
Kong L. ; Yan C. ; Huang J. Q. ; Zhao M. Q. ; Titirici M. M. ; Xiang R. ; Zhang Q. Energy Environ. Mater. 2018, 1, 100.
doi: 10.1002/eem2.12012 |
12 |
Yan C. ; Cheng X. B. ; Tian Y. ; Chen X. ; Zhang X. Q. ; Li W. J. ; Huang J. Q. ; Zhang Q. Adv. Mater. 2018, 30, 1707629.
doi: 10.1002/adma.201707629 |
13 |
Shi P. ; Li T. ; Zhang R. ; Shen X. ; Cheng X. B. ; Xu R. ; Huang J. Q. ; Chen X. R. ; Liu H. ; Zhang Q. Adv. Mater. 2019, 31, 1807131.
doi: 10.1002/adma.201807131 |
14 |
Xu R. ; Xiao Y. ; Zhang R. ; Cheng X. B. ; Zhao C. Z. ; Zhang X. Q. ; Yan C. ; Zhang Q. ; Huang J. Q. Adv. Mater. 2019, 31, 1808392.
doi: 10.1002/adma.201808392 |
15 |
Tong B. ; Chen X. ; Chen L. ; Zhou Z. ; Peng Z. ACS Appl. Energy Mater. 2018, 1, 4426.
doi: 10.1021/acsaem.8b00821 |
16 |
Ye H. ; Zhang Y. ; Yin Y. X. ; Cao F. F. ; Guo Y. G. ACS Cent. Sci. 2020, 6, 661.
doi: 10.1021/acscentsci.0c00351 |
17 |
Zhang W. ; Wu Q. ; Huang J. ; Fan L. ; Shen Z. ; He Y. ; Feng Q. ; Zhu G. ; Lu Y. Adv. Mater. 2020, 32, 2001740.
doi: 10.1002/adma.202001740 |
18 | Guo F. ; Chen P. ; Kang T. ; Wang Y. L. ; Liu C. H. ; Shen Y. B. ; Lu W. ; Chen L. W. Acta Phys. -Chim. Sin. 2019, 35, 1365. |
郭峰; 陈鹏; 康拓; 王亚龙; 刘承浩; 沈炎宾; 卢威; 陈立桅. 物理化学学报, 2019, 35, 1365.
doi: 10.3866/PKU.WHXB201903008 |
|
19 | Yue X. Y. ; Ma C. ; Bao J. ; Yang S. Y. ; Chen D. ; Wu X. J. ; Zhou Y. N. Acta Phys. -Chim. Sin. 2021, 37, 2005012. |
岳昕阳; 马萃; 包戬; 杨思宇; 陈东; 吴晓京; 周永宁. 物理化学学报, 2021, 37, 2005012.
doi: 10.3866/PKU.WHXB202005012 |
|
20 |
Wang G. ; Xiong X. ; Xie D. ; Fu X. ; Ma X. ; Li Y. ; Liu Y. ; Lin Z. ; Yang C. ; Liu M. Energy Storage Mater. 2019, 23, 701.
doi: 10.1016/j.ensm.2019.02.026 |
21 |
Zhang R. ; Shen X. ; Cheng X. B. ; Zhang Q. Energy Storage Mater. 2019, 23, 556.
doi: 10.1016/j.ensm.2019.03.029 |
22 |
Shi P. ; Cheng X. B. ; Li T. ; Zhang R. ; Liu H. ; Yan C. ; Zhang X. Q. ; Huang J. Q. ; Zhang Q. Adv. Mater. 2019, 31, 1902785.
doi: 10.1002/adma.201902785 |
23 |
Niu C. ; Lee H. ; Chen S. ; Li Q. ; Du J. ; Xu W. ; Zhang J. G. ; Whittingham M. S. ; Xiao J. ; Liu J. Nat. Energy 2019, 4, 551.
doi: 10.1038/s41560-019-0390-6 |
24 |
Hobold G. M. ; Khurram A. ; Gallant B. M. Chem. Mater. 2020, 32, 2341.
doi: 10.1021/acs.chemmater.9b04550 |
25 |
Chen Y. ; Luo Y. ; Zhang H. ; Qu C. ; Zhang H. ; Li X. Small Methods 2019, 3, 1800551.
doi: 10.1002/smtd.201800551 |
26 |
Yao Y. X. ; Zhang X. Q. ; Li B. Q. ; Yan C. ; Chen P. Y. ; Huang J. Q. ; Zhang Q. InfoMat 2020, 2, 379.
doi: 10.1002/inf2.12046 |
27 |
Fan H. ; Gao C. ; Jiang H. ; Dong Q. ; Hong B. ; Lai Y. J. Energy Chem. 2020, 49, 59.
doi: 10.1016/j.jechem.2020.01.013 |
28 |
Liu H. ; Cheng X. B. ; Huang J. Q. ; Kaskel S. ; Chou S. ; Park H. S. ; Zhang Q. ACS Mater. Lett. 2019, 1, 217.
doi: 10.1021/acsmaterialslett.9b00118 |
29 |
Zhang X. Q. ; Cheng X. B. ; Chen X. ; Yan C. ; Zhang Q. Adv. Funct. Mater. 2017, 27, 1605989.
doi: 10.1002/adfm.201605989 |
30 |
Chen W. J. ; Zhao C. X. ; Li B. Q. ; Jin Q. ; Zhang X. Q. ; Yuan T. Q. ; Zhang X. ; Jin Z. ; Kaskel S. ; Zhang Q. Energy Environ. Mater. 2020, 3, 160.
doi: 10.1002/eem2.12073 |
31 |
He Y. ; Zhang Y. ; Yu P. ; Ding F. ; Li X. ; Wang Z. ; Lv Z. ; Wang X. ; Liu Z. ; Huang X. J. Energy Chem. 2020, 45, 1.
doi: 10.1016/j.jechem.2019.09.033 |
32 |
Chen J. X. ; Zhang X. Q. ; Li B. Q. ; Wang X. M. ; Shi P. ; Zhu W. C. ; Chen A. B. ; Jin Z. H. ; Xiang R. ; Huang J. Q. ; Zhang Q. J. Energy Chem. 2020, 47, 128.
doi: 10.1016/j.jechem.2019.11.024 |
33 |
Yang Q. L. ; Li W. L. ; Dong C. ; Ma Y. Y. ; Yin Y. X. ; Wu Q. B. ; Xu Z. T. ; Ma W. ; Fan C. ; Sun K. N. J. Energy Chem. 2020, 42, 83.
doi: 10.1016/j.jechem.2019.06.012 |
34 |
Li C. ; Liu S. ; Shi C. ; Liang G. ; Lu Z. ; Fu R. ; Wu D. Nat. Commun. 2019, 10, 1363.
doi: 10.1038/s41467-019-09211-z |
35 |
Wei Z. ; Ren Y. ; Sokolowski J. ; Zhu X. ; Wu G. InfoMat 2020, 2, 483.
doi: 10.1002/inf2.12097 |
36 |
Liu H. ; Chen X. ; Cheng X. B. ; Li B. Q. ; Zhang R. ; Wang B. ; Chen X. ; Zhang Q. Small Methods 2019, 3, 1800354.
doi: 10.1002/smtd.201800354 |
37 |
Shen X. ; Cheng X. ; Shi P. ; Huang J. ; Zhang X. ; Yan C. ; Li T. ; Zhang Q. J. Energy Chem. 2019, 37, 29.
doi: 10.1016/j.jechem.2018.11.016 |
38 |
Shang Y. ; Chu T. ; Shi B. ; Fu K. Energy Environ. Mater. 2020,
doi: 10.1002/eem2.12099 |
39 |
Lu D. ; Shao Y. ; Lozano T. ; Bennett W. D. ; Graff G. L. ; Polzin B. ; Zhang J. ; Engelhard M. H. ; Saenz N. T. ; Henderson W. A. ; et al Adv. Energy Mater. 2015, 5, 1702322.
doi: 10.1002/aenm.201400993 |
40 |
Wood K. N. ; Kazyak E. ; Chadwick A. F. ; Chen K. H. ; Zhang J. G. ; Thornton K. ; Dasgupta N. P. ACS Cent. Sci. 2016, 2, 790.
doi: 10.1021/acscentsci.6b00260 |
41 |
Yin X. ; Tang W. ; Jung I. D. ; Phua K. C. ; Adams S. ; Lee S. W. ; Zheng G. W. Nano Energy 2018, 50, 659.
doi: 10.1016/j.nanoen.2018.06.003 |
42 |
Yan K. ; Wang J. ; Zhao S. ; Zhou D. ; Sun B. ; Cui Y. ; Wang G. Angew. Chem. Int. Ed. 2019, 58, 11364.
doi: 10.1002/anie.201905251 |
43 |
Rodriguez R. ; Loeffler K. E. ; Edison R. A. ; Stephens R. M. ; Dolocan A. ; Heller A. ; Mullins C. B. ACS Appl. Energy Mater. 2018, 1, 5830.
doi: 10.1021/acsaem.8b01194 |
44 |
Zhang Y. ; Qian J. ; Xu W. ; Russell S. M. ; Chen X. ; Nasybulin E. ; Bhattacharya P. ; Engelhard M. H. ; Mei D. ; Cao R. ; et al Nano Lett. 2014, 14, 6889.
doi: 10.1021/nl5039117 |
45 |
Zhang X. Q. ; Chen X. ; Xu R. ; Cheng X. B. ; Peng H. J. ; Zhang R. ; Huang J. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2017, 56, 14207.
doi: 10.1002/anie.201707093 |
46 |
Qian J. ; Xu W. ; Bhattacharya P. ; Engelhard M. ; Henderson W. A. ; Zhang Y. ; Zhang J. G. Nano Energy 2015, 15, 135.
doi: 10.1016/j.nanoen.2015.04.009 |
47 |
Cheng X. B. ; Zhao M. Q. ; Chen C. ; Pentecost A. ; Maleski K. ; Mathis T. ; Zhang X. Q. ; Zhang Q. ; Jiang J. ; Gogotsi Y. Nat. Commun. 2017, 8, 336.
doi: 10.1038/s41467-017-00519-2 |
48 |
Michan A. L. ; Parimalam B. S. ; Leskes M. ; Kerber R. N. ; Yoon T. ; Grey C. P. ; Lucht B. L. Chem. Mater. 2016, 28, 8149.
doi: 10.1021/acs.chemmater.6b02282 |
49 |
Nie M. ; Demeaux J. ; Young B. T. ; Heskett D. R. ; Chen Y. ; Bose A. ; Woicik J. C. ; Lucht B. L. J. Electrochem. Soc. 2015, 162, A7008.
doi: 10.1149/2.0021513jes |
50 |
Heine J. ; Hilbig P. ; Qi X. ; Niehoff P. ; Winter M. ; Bieker P. J. Electrochem. Soc. 2015, 162, A1094.
doi: 10.1149/2.0011507jes |
51 |
Jurng S. ; Brown Z. L. ; Kim J. ; Lucht B. L. Energy Environ. Sci. 2018, 11, 2600.
doi: 10.1039/c8ee00364e |
52 |
Ko J. ; Yoon Y. S. Ceram. Int. 2019, 45, 30.
doi: 10.1016/j.ceramint.2018.09.287 |
53 |
Lang J. ; Long Y. ; Qu J. ; Luo X. ; Wei H. ; Huang K. ; Zhang H. ; Qi L. ; Zhang Q. ; Li Z. ; Wu H. Energy Storage Mater. 2019, 16, 85.
doi: 10.1016/j.ensm.2018.04.024 |
54 |
Shin H. ; Park J. ; Han S. ; Sastry A. M. ; Lu W. J. Power Sources 2015, 277, 169.
doi: 10.1016/j.jpowsour.2014.11.120 |
55 |
Jones J. ; Anouti M. ; Caillon-Caravanier M. ; Willmann P. ; Lemordant D. Fluid Phase Equilib. 2009, 285, 62.
doi: 10.1016/j.fluid.2009.07.020 |
56 |
He M. ; Guo R. ; Hobold G. M. ; Gao H. ; Gallant B. M. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 73.
doi: 10.1073/pnas.1911017116 |
57 |
Yang G. ; Li Y. ; Liu S. ; Zhang S. ; Wang Z. ; Chen L. Energy Storage Mater. 2019, 23, 350.
doi: 10.1016/j.ensm.2019.04.041 |
58 |
Lee Y. ; Lee T. K. ; Kim S. ; Lee J. ; Ahn Y. ; Kim K. ; Ma H. ; Park G. ; Lee S. M. ; Kwak S. K. ; Choi N. S. Nano Energy 2020, 67, 104309.
doi: 10.1016/j.nanoen.2019.104309 |
[1] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[2] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[3] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[4] | Liu Yuankai, Yu Tao, Guo Shaohua, Zhou Haoshen. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301027-0. |
[5] | Linfeng Peng, Chuang Yu, Chaochao Wei, Cong Liao, Shuai Chen, Long Zhang, Shijie Cheng, Jia Xie. Recent Progress on Lithium Argyrodite Solid-State Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211034-0. |
[6] | Chenyang Chen, Yongzhi Zhao, Yuanyuan Li, Jinping Liu. Research Progress of High-Voltage/Wide-Temperature-Range Aqueous Alkali Metal-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211005-0. |
[7] | Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2210027-0. |
[8] | Youwen Rong, Jiaqi Sang, Li Che, Dunfeng Gao, Guoxiong Wang. Designing Electrolytes for Aqueous Electrocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2212027-0. |
[9] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[10] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203043-0. |
[11] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[12] | Hao-Tian Teng, Wen-Tao Wang, Xiao-Feng Han, Xiang Hao, Ruizhi Yang, Jing-Hua Tian. Recent Development and Perspectives of Flexible Zinc-Air Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2107017-0. |
[13] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[14] | Xinrun Yu, Jun Ma, Chunbo Mou, Guanglei Cui. Percolation Structure Design of Organic-inorganic Composite Electrolyte with High Lithium-Ion Conductivity [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912061-. |
[15] | Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205005-. |
|