Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (3): 1906048.doi: 10.3866/PKU.WHXB201906048
Special Issue: Photocatalyst
• Review • Previous Articles Next Articles
Wei Zhou1,Jun-Kang Guo1,Sheng Shen1,Jinbo Pan1,Jie Tang1,Lang Chen1,Chak-Tong Au2,Shuang-Feng Yin1,*()
Received:
2019-06-13
Accepted:
2019-08-13
Published:
2019-08-19
Contact:
Shuang-Feng Yin
E-mail:sf_yin@hnu.edu.cn
Supported by:
Wei Zhou,Jun-Kang Guo,Sheng Shen,Jinbo Pan,Jie Tang,Lang Chen,Chak-Tong Au,Shuang-Feng Yin. Progress in Photoelectrocatalytic Reduction of Carbon Dioxide[J].Acta Physico-Chimica Sinica, 2020, 36(3): 1906048.
Fig 1
Schematic illustration of three different PEC CO2 reduction systems with two compartment cells seperatred by a proton-exchange membrane. (a) p-type semiconductor as photocathode and dark anode, (b) n-type semiconductor as a photoanode and dark cathode, (c) n-type semiconductor as photoanode and p-type semiconductor as photocathode. Adapted from Royal Society of Chemistry publisher 23."
Fig 2
(A) Linear sweep voltammetry of Mg-doped CuFeO2 using chopped light in 0.1 mol?L?1 NaHCO3 (scan rate = 100 mV?s?1); (B) the incident photon-to-current efficiency (IPCE) obtained at ?0.4 V vs SCE in 0.1 mol?L?1 NaHCO3 in air, and measured from 780 to 340 nm. Adapted from ACS Publications publisher 29."
Fig 4
Photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. (a) Time-course of gas evolution from plasmonic Au/p-GaN photocathode during controlled potential electrolysis under dark conditions. (b) Time-course of gas evolution from plasmonic Au/p-GaN photocathode during controlled potential electrolysis under plasmon excitation (λ > 495 nm). All electrolysis experiments were performed at ?1.8 VRHE in CO2-saturated 50 mmol?L?1 K2CO3 electrolyte without sacrificial reagents. Adapted from ACS Publications publisher 34."
Fig 13
(a–c) SEM images of the as-prepared catalysts with Fe : Cu atomic fraction of 1.3 (panel (a)), 0.5 (panel (b)), and 0.1 (panel (c)), as determined by ICP-MS; (d) cross-sectional SEM image of the catalyst with a Fe : Cu atomic fraction of 1.3; (e, f) concentration of acetate and formate in post-reaction electrolyte (panel (e)) and corresponding Faradaic efficiencies (panel (f)). Adapted from ACS Publications publisher 51."
1 |
Wang W. ; Wang S. ; Ma X. ; Gong J. L. Chem. Soc. Rev. 2011, 40, 3703.
doi: 10.1039/C1CS15008A |
2 |
Halmann M. Nature 1978, 275, 115.
doi: 10.1038/275115a0 |
3 |
Gonell F. ; Puga A. V. ; Julián-López B. ; García H. ; Corma A. Appl. Catal. B-Environ. 2016, 180, 263.
doi: 10.1016/j.apcatb.2015.06.019 |
4 |
Zong X. ; Sun C. ; Yu H. ; Chen Z. G. ; Xing Z. ; Ye D. ; Lu G. Q. ; Li X. ; Wang L. J. Phys. Chem. C 2013, 117, 4937.
doi: 10.1021/jp311729b |
5 |
Handoko A. D. ; Tang J. Int. J. Hydrog. Energy 2013, 38, 13017.
doi: 10.1016/j.ijhydene.2013.03.128 |
6 |
Chen X. Y. ; Zhou Y. ; Liu Q. ; Li Z. ; Liu J. ; Zou Z. ACS Appl. Mater. Inter. 2012, 4, 3372.
doi: 10.1021/am300661s |
7 |
Wang S. B. ; Wang X. C. Appl. Catal. B-Environ. 2015, 162, 494.
doi: 10.1016/j.apcatb.2014.07.026 |
8 |
Barton E. E. ; Rampulla D. M. ; Bocarsly A. B. J. Am. Chem. Soc. 2008, 130, 6342.
doi: 10.1021/ja0776327 |
9 |
Li Q. ; Zheng M. ; Zhong M. ; Ma L. ; Wang F. ; Ma L. ; Shen W. Sci. Rep. 2016, 6, 29738.
doi: 10.1038/srep29738 |
10 |
Sun Z. ; Yang Z. ; Liu H. ; Wang H. ; Wu Z. Appl. Surf. Sci. 2014, 315, 360.
doi: 10.1016/j.apsusc.2014.07.153 |
11 |
Chen X. Y. ; Yu T. ; Gao F. ; Zhang H. T. ; Liu L. F. ; Wang Y. M. ; Li Z. S. ; Zou Z. G. ; Liu J. M. Appl. Phys. Lett. 2007, 91, 022114.
doi: 10.1063/1.2757132 |
12 |
Zhou P. ; Yan S. C. ; Zou Z. G. CrystEngComm 2015, 17, 992.
doi: 10.1039/c4ce02198c |
13 |
Thaweesak S. ; Lyu M. ; Peerakiatkhajohn P. ; Butburee T. ; Luo B. ; Chen H. ; Wang L. Appl. Catal. B-Environ. 2017, 202, 184.
doi: 10.1016/j.apcatb.2016.09.022 |
14 |
Wang S. B. ; Ding Z. X. ; Wang X. C. Chem. Commun. 2015, 51, 1517.
doi: 10.1039/c4cc07225a |
15 |
Wang S. B. ; Hou Y. D. ; Wang X. C. ACS Appl. Mater. Inter. 2015, 7, 4327.
doi: 10.1021/am508766s |
16 |
Wang S. B. ; Wang X. C. Angew. Chem. Int. Edit. 2016, 55, 2308.
doi: 10.1002/anie.201507145 |
17 |
Qin J. ; Wang S. ; Wang X. C. Appl. Catal. B-Environ. 2017, 209, 476.
doi: 10.1016/j.apcatb.2017.03.018 |
18 |
Wang S. B. ; Yao W. S. ; Lin J. L. ; Ding Z. X. ; Wang X. C. Angew. Chem. Int. Edit. 2014, 53, 1034.
doi: 10.1002/ange.201310957 |
19 |
Wang X. C. ; Maeda K. ; Thomas A. ; Takanabe K. ; Xin G. ; Carlsson J. M. ; Domen K. ; Antonietti M. Nat. Mater. 2009, 8, 76.
doi: 10.1142/9789814317665_0039 |
20 |
Ou H. H. ; Lin L. H. ; Zheng Y. ; Yang P. J. ; Fang Y. X. ; Wang X. C. Adv. Mater. 2017, 29, 1700008.
doi: 10.1002/adma.201700008 |
21 |
Qin J. N. ; Wang S. B. ; Ren H. ; Hou Y. D. ; Wang X. C. Appl. Catal. B-Environ. 2015, 179, 1.
doi: 10.1016/j.apcatb.2015.05.005 |
22 |
García A. ; Fernandez-Blanco C. ; Herance J. R. ; Albero J. ; García H. J. Mater. Chem. A 2017, 5, 16522.
doi: 10.1039/c7ta04045h |
23 |
Wang P. L. ; Wang S. C. ; Wang H. Q. ; Wu Z. B. ; Wang L. Z. Part. Part. Syst. Char. 2018, 35, 1700371.
doi: 10.1002/ppsc.201700371 |
24 |
Zhang N. ; Long R. ; Gao C. ; Xiong Y. J. Sci. Chin. Mater. 2018, 61, 771.
doi: 10.1007/s40843-017-9151-y |
25 |
Chang X. X. ; Wang T. ; Yang P. P. ; Zhang G. ; Gong J. L. Adv. Mater. 2018, 31, 1804710.
doi: 10.1002/adma.201804710 |
26 |
Castro S. ; Albo J. ; Irabien A. ACS Sustain. Chem. Eng. 2018, 6, 15877.
doi: 10.1021/acssuschemeng.8b03706 |
27 |
Pradhan N. ; Adhikari S. D. ; Nag A. ; Sarma D. D. Angew. Chem. Int. Edit. 2016, 56, 7038.
doi: 10.1002/anie.201611526 |
28 |
Linic S. J. ; Christopher P. ; Ingram D. B. Nat. Mater. 2011, 10, 911.
doi: 10.1038/nmat3151 |
29 |
Gu J. ; Wuttig A. ; Krizan J. W. ; Hu Y. ; Detweiler Z. M. ; Cava R. J. ; Bocarsly A. B. J. Phys. Chem. C 2013, 117, 12415.
doi: 10.1021/jp402007z |
30 |
Xie K. ; Umezawa N. ; Zhang N. ; Reunchan P. ; Zhang Y. ; Ye J. H. Energ. Environ. Sci. 2011, 4, 4211.
doi: 10.1039/c1ee01594j |
31 |
Cuong D. D. ; Lee B. ; Choi K. M. ; Ahn H-S. ; Han S. W. ; Lee J. C. Phys. Rev. Lett. 2007, 98, 115503.
doi: 10.1103/physrevlett.98.115503 |
32 |
Cordero F. Phys. Rev. B 2007, 76, 172106.
doi: 10.1103/physrevb.76.172106 |
33 |
Cushing S. K. ; Li J. ; Meng F. ; Senty T. R. ; Suri S. ; Zhi M. J. ; Li M. ; Bristow A. D. ; Wu N. Q. J. Am. Chem. Soc. 2012, 134, 15033.
doi: 10.1021/ja305603t |
34 |
DuChene J. S. ; Tagliabue G. ; Welch A. J. ; Cheng W. H. ; Atwater H. A. Nano Lett. 2018, 18, 2545.
doi: 10.1021/acs.nanolett.8b00241 |
35 |
Hou J. G. ; Cheng H. J. ; Takeda O. ; Zhu H. M. Angew. Chem. Int. Edit. 2015, 127, 8480.
doi: 10.1002/ange.201502319 |
36 |
Kim Y. ; Creel E. B. ; Corson E. R. ; McCloskey B. D. ; Urban J. J. ; Kostecki R. Adv. Energy Mater. 2018, 8, 1800363.
doi: 10.1002/aenm.201800363 |
37 |
Shen Q. ; Chen Z. F. ; Huang X. F. ; Liu M. C. ; Zhao G. H. Environ. Sci. Technol. 2015, 49, 5828.
doi: 10.1021/acs.est.5b00066 |
38 |
Xu Y. J. ; Jia Y. J. ; Zhang Y. Q. ; Nie R. ; Zhu Z. P. ; Wang J. G. ; Jing H. W. Appl. Catal. B-Environ. 2017, 205, 254.
doi: 10.1016/j.apcatb.2016.12.039 |
39 |
Song Q. Q. ; Li J. Q. ; Wang L. ; Qin Y. ; Pang L. Y. ; Liu H. J. Catal. 2019, 370, 176.
doi: 10.1016/j.jcat.2018.12.021 |
40 |
Li A. ; Wang T. ; Li C. C. ; Huang Z. Q. ; Luo Z. B. ; Gong J. L. Angew. Chem. Int. Edit. 2018, 58, 3804.
doi: 10.1002/anie.201812773 |
41 |
Xu Q. L. ; Zhang L. Y. ; Yu J. G. ; Wageh S. ; Al-Ghamdi A. A. ; Jaroniec M. Mater. Today 2018, 21, 1042.
doi: 10.1016/j.mattod.2018.04.008 |
42 |
Zheng J. G. ; Li X. J. ; Qin Y. H. ; Zhang S. Q. ; Sun M. S. ; Duan X. G. ; Sun H. Q. ; Li P. Q. ; Wang S. B. J. Catal. 2019, 371, 214.
doi: 10.1016/j.jcat.2019.01.022 |
43 |
Guzmán D. G. ; Isaacs M. ; Osorio-Román I. ; García M. ; Astudillo J. ; Ohlbaum M. ACS Appl. Mater. Inter. 2015, 7, 19865.
doi: 10.1021/acsami.5b05722 |
44 |
Zheng J. G. ; Hu F. Y. ; Han E. ; Pan Z. B. ; Zhang S. ; Li Y. ; Qin P. G. ; Wang H. ; Li P. Q. ; Yin H. Z. Colloids Surfaces A. 2019, 575, 329.
doi: 10.1016/j.colsurfa.2019.05.016 |
45 |
Cardoso J. C. ; Stulp S. ; de Brito J. F. ; Flor J. B. S. ; Frem R. C. G. ; Zanoni M. V. B. Appl. Catal. B-Environ. 2018, 225, 563.
doi: 10.1016/j.apcatb.2017.12.013 |
46 |
Shen Q. ; Huang X. F. ; Liu J. B. ; Guo C. Y. ; Zhao G. H. Appl. Catal. B-Environ. 2017, 201, 70.
doi: 10.1016/j.apcatb.2016.08.008 |
47 |
Huang X. F. ; Shen Q. ; Liu J. B. ; Yang N. J. ; Zhao G. H. Energ. Environ. Sci. 2016, 9, 3161.
doi: 10.1039/c6ee00968a |
48 |
Xiao M. ; Luo B. ; Wang S. C. ; Wang L. Z. J. Energy Chem. 2018, 27, 1111.
doi: 10.1016/j.jechem.2018.02.018 |
49 |
Suhadolnik L. ; Pohar A. ; Likozar B. ; Čeh M. Chem. Eng. J. 2016, 303, 292.
doi: 10.1016/j.cej.2016.06.027 |
50 |
Sun T. ; Wang Y. ; Al-Mamun M. ; Zhang H. ; Liu P. ; Zhao H. J. RSC Adv. 2015, 5, 12860.
doi: 10.1039/c4ra15336g |
51 |
Yang X. ; Fugate E. A. ; Mueanngern Y. ; Baker L. R. ACS Catal. 2017, 7, 177.
doi: 10.1021/acscatal.6b02984 |
52 |
Mora-Hernandez J M ; Huerta-Flores A M ; Torres-Martínez L. M. J. CO2 Utiliz. 2018, 27, 179.
doi: 10.1016/j.jcou.2018.07.014 |
53 |
Meng X. C. ; Zhang Z. S. Catal. Today. 2018, 315, 2.
doi: 10.1016/j.cattod.2018.03.015 |
54 |
Hasan M. R. ; Hamid S. B. A. ; Basirun W. J. Appl. Surf. Sci. 2015, 339, 22.
doi: 10.1016/j.apsusc.2015.02.162 |
55 |
Hasan M. R. ; Abd Hamid S. B. ; Basirun W. J. RSC Adv. 2015, 5, 77803.
doi: 10.1039/c5ra12525a |
[1] | . Overall Utilization of Photoexcited Charges for Simultaneous Photocatalytic Redox Reactions [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2209037-0. |
[2] | Yuke Song, Wenfu Xie, Mingfei Shao. Recent Advances in Integrated Electrode for Electrocatalytic Carbon Dioxide Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2101028-. |
[3] | Yadong Du, Xiangtong Meng, Zhen Wang, Xin Zhao, Jieshan Qiu. Graphene-Based Catalysts for CO2 Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101009-. |
[4] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[5] | Jihong Zhang, Dichang Zhong, Tongbu Lu. Co(Ⅱ)-Based Molecular Complexes for Photochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(5): 2008068-. |
[6] | Yuan Zhou, Na Han, Yanguang Li. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 2001041-. |
[7] | Shangcong Sun,Xuya Zhang,Xianlong Liu,Lun Pan,Xiangwen Zhang,Jijun Zou. Design and Construction of Cocatalysts for Photocatalytic Water Splitting [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905007-. |
[8] | Jinbo Pan,Sheng Shen,Wei Zhou,Jie Tang,Hongzhi Ding,Jinbo Wang,Lang Chen,Chak-Tong Au,Shuang-Feng Yin. Recent Progress in Photocatalytic Hydrogen Evolution [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905068-. |
[9] | Xiao-Xia CHANG,Jin-Long GONG. On the Importance of Surface Reactions on Semiconductor Photocatalysts for Solar Water Splitting [J]. Acta Phys. -Chim. Sin., 2016, 32(1): 2-13. |
[10] | Zhi-Qiao. HE,Li-Li. TONG,Zhi-Peng. ZHANG,Jian-Meng. CHEN,Shuang. SONG. Ag/Ag2WO4 Plasmonic Catalyst for Photocatalytic Reduction of CO2 under Visible Light [J]. Acta Phys. -Chim. Sin., 2015, 31(12): 2341-2348. |
[11] | GUO Zhang-Long, HUANG Li-Qiong, CHU Wei, LUO Shi-Zhong. Effects of Promoter on NiMgAl Catalyst Structure and Performance for Carbon Dioxide Reforming of Methane [J]. Acta Phys. -Chim. Sin., 2014, 30(4): 723-728. |
[12] | PEI Juan, HAO Yan-Zhong, SUN Bao, LI Ying-Pin, FAN Long-Xue, SUN Shuo, WANG Shang-Xin. Heterojunction Interface Modification and Its Effect on the Photovoltaic Performance of Hybrid Solar Cells [J]. Acta Phys. -Chim. Sin., 2014, 30(3): 397-407. |
[13] | CUI Hai-Qin, JING Li-Qiang, XIE Ming-Zheng, LI Zhi-Jun. Hydrogenated Rutile TiO2 Nanorods and Their Photocatalytic Activity [J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1903-1908. |
[14] | WANG Xiang, LI Ren-Gui, XU Qian, HAN Hong-Xian, LI Can. Roles of (001) and (101) Facets of Anatase TiO2 in Photocatalytic Reactions [J]. Acta Phys. -Chim. Sin., 2013, 29(07): 1566-1571. |
[15] | FAN You-Jun, ZHEN Chun-Hua, CHEN Sheng-Pei, SUN Shi-Gang. Effect of Specific Adsorption of Anions and Surface Structure of Pt(111) Electrode on Kinetics of Dissociative Adsorption of Ethylene Glycol [J]. Acta Phys. -Chim. Sin., 2009, 25(05): 999-1003. |
|