Please wait a minute...
Acta Phys. -Chim. Sin.  2018, Vol. 34 Issue (12): 1381-1389    DOI: 10.3866/PKU.WHXB201804092
Special Issue: Surface Physical Chemistry
ARTICLE     
Morphologies and Electronic Structures of Calcium-Doped Ceria Model Catalysts and Their Interaction with CO2
Yan WANG,Xiong LI,Shanwei HU*(),Qian XU,Huanxin JU,Junfa ZHU*()
Download: HTML     PDF(2561KB) Export: BibTeX | EndNote (RIS)      

Abstract  

CeO2-based catalysts are promising for use in various important chemical reactions involving CO2, such as the dry reforming of methane to produce synthesis gas and methanol. CeO2 has a superior ability to store and release oxygen, which can improve the catalytic performance by suppressing the formation of coke. Although the adsorption and activation behavior of CO2 on the CeO2 surface has been extensively investigated in recent years, the intermediate species formed from CO2 on ceria has not been clearly identified. The reactivity of the ceria surface to CO2 has been reported to be tuned by introducing CaO, which increases the number of basic sites for the ceria-based catalysts. However, the mechanism by which Ca2+ ions affect CO2 decomposition is still debated. In this study, the morphologies and electronic properties of stoichiometric CeO2(111), partially reduced CeO2-x(111) (0 < x < 0.5), and calcium-doped ceria model catalysts, as well as their interactions with CO2, were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, and synchrotron radiation photoemission spectroscopy. Stoichiometric CeO2(111) and partially reduced CeO2-x(111) films were epitaxially grown on a Cu(111) surface. STM images show that the stoichiometric CeO2 film exhibits large, flat terraces that completely cover the Cu(111) surface. The reduced CeO2-x film also has a flat surface and an ordered structure, but dark spaces are observed on the film. Different Ca-doped ceria films were prepared by physical vapor deposition of metallic Ca on CeO2(111) at room temperature and subsequent annealing to 600 or 800 K in ultrahigh vacuum. The different preparation procedures produce samples with various surface components, oxidation states, and structures. Our results indicate that the deposition of metallic Ca on CeO2 at room temperature leads to a partial reduction of Ce from the +4 to the +3 state, accompanied by the oxidation of Ca to Ca2+. Large CaO nanofilms are observed on CeO2 upon annealing to 600 K. However, small CaO nanoislands appear near the step edges and more Ca2+ ions migrate into the subsurface of CeO2 upon annealing to 800 K. In addition, different surface-adsorbed species are identified after CO2 adsorption on ceria (CeO2 and reduced CeO2-x) and Ca-doped ceria films. CO2 adsorption on the stoichiometric CeO2 and partially reduced CeO2-x surfaces leads to the formation of surface carboxylate. Moreover, the surface carboxylate species is more easily formed on reduced CeO2-x with enhanced thermal stability than on stoichiometric CeO2. On Ca-doped ceria films, the presence of Ca2+ ions is observed to be beneficial for CO2 adsorption; further, the carbonate species is identified.



Key wordsCalcium      Ceria      Scanning tunneling microscopy      X-ray photoelectron spectroscopy      Synchrotron radiation photoemission spectroscopy     
Received: 14 March 2018      Published: 09 April 2018
MSC2000:  O643  
Fund:  The project was supported by the National Natural Science Foundation of China(U1732272);The project was supported by the National Natural Science Foundation of China(21473178);The project was supported by the National Natural Science Foundation of China(21403205);National Key Technologies R & D Program of China(2017YFA0403402);China Postdoctoral Science Foundation(BH2310000032)
Corresponding Authors: Shanwei HU,Junfa ZHU     E-mail: husw@ustc.edu.cn;jfzhu@ustc.edu.cn
Cite this article:

Yan WANG,Xiong LI,Shanwei HU,Qian XU,Huanxin JU,Junfa ZHU. Morphologies and Electronic Structures of Calcium-Doped Ceria Model Catalysts and Their Interaction with CO2. Acta Phys. -Chim. Sin., 2018, 34(12): 1381-1389.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201804092     OR     http://www.whxb.pku.edu.cn/Y2018/V34/I12/1381

 
 
 
 
 
 
1 Huang T. J. ; Jhao S. Y. Appl. Catal. A 2006, 302, 325.
2 Stacchiola D. J. Acc. Chem. Res. 2015, 48, 2151.
3 Rostrup-Nielsen J. R. Catal. Today 1997, 37, 225.
4 Wang X. ; Gorte R. J. Appl. Catal. A 2002, 224, 209.
5 Kong D. ; Zhu J. ; Ernst K. H. J. Phys. Chem. C 2016, 120, 5980.
6 Hahn K. R. ; Iannuzzi M. ; Seitsonen A. P. ; Hutter J. J. Phys. Chem. C 2013, 117, 1701.
7 Appel L. G. ; Eon J. G. ; Schmal M. Catal. Lett. 1998, 56, 199.
8 Jin T. ; Zhou Y. ; Mains G. J. ; White J. M. J. Phys. Chem. 1987, 91, 5931.
9 Valenzuela R. X. ; Bueno G. ; Solbes A. ; Sapi?a F. ; Martínez E. ; Cortés Corberán V. Top. Catal. 2001, 15, 181.
10 Pacchioni G. ; Ricart J. M. ; Illas F. J. Am. Chem. Soc. 1994, 116, 10152.
11 Kadossov E. ; Burghaus U. J. Phys. Chem. C 2008, 112, 7390.
12 Solis B. H. ; Cui Y. ; Weng X. ; Seifert J. ; Schauermann S. ; Sauer J. ; Shaikhutdinov S. ; Freund H. J. Phys. Chem. Chem. Phys. 2017, 19, 4231.
13 Kang M. ; Wu X. ; Zhang J. ; Zhao N. ; Wei W. ; Sun Y. RSC Adv. 2014, 4, 5583.
14 Istadi; ; Amin N. A. S. J. Molec. Catal. A: Chem. 2006, 259, 61.
15 Xu Q. ; Hu S. ; Cheng D. ; Feng X. ; Han Y. ; Zhu J. J. Chem. Phys. 2012, 136, 154705.
16 Wang W. ; Hu S. ; Han Y. ; Pan X. ; Xu Q. ; Zhu J. Surf. Sci. 2016, 653, 205.
17 Horcas I. ; Fernández R. ; Gómez-Rodríguez J. M. ; Colchero J. ; Gómez-Herrero J. ; Baro A. M. Rev. Sci. Instrum. 2007, 78, 013705.
18 Lu J. L. ; Gao H. J. ; Shaikhutdinov S. ; Freund H. J. Surf. Sci. 2006, 600, 5004.
19 Mullins D. R. ; Radulovic P. V. ; Overbury S. H. Surf. Sci. 1999, 429, 186.
20 Fukui K. I. ; Namai Y. ; Iwasawa Y. Appl. Surf. Sci. 2002, 188, 252.
21 Hu S. ; Wang Y. ; Wang W. ; Han Y. ; Fan Q. ; Feng X. ; Xu Q. ; Zhu J. J. Phys. Chem. C 2015, 119, 3579.
22 Campbell C. T. ; Peden C. H. F. Science 2005, 309, 713.
23 Mullins D. R. ; Overbury S. H. ; Huntley D. R. Surf. Sci. 1998, 409, 307.
24 Pfau A. ; Schierbaum K. D. Surf. Sci. 1994, 321, 71.
25 Skála T. ; ?utara F. ; Prince K. C. ; Matolín V. J. Electron Spectrosc. Relat. Phenom. 2009, 169, 20.
26 Skála T. ; ?utara F. ; ?koda M. ; Prince K. C. ; Matolín V. J. Phys.: Condens. Matter 2009, 21, 055005.
27 Dupin J. C. ; Gonbeau D. ; Vinatier P. ; Levasseur A. Phys. Chem. Chem. Phys. 2000, 2, 1319.
28 Li S. Q. ; Hu J. S. ; Liu B. ; Zhang G. H. ; Cao W. ; Wang Q. ; Zhang N. Cem. Concr. Res. 1999, 29, 1549.
29 Alba-Rubio A. C. ; Santamaría-González J. ; Mérida-Robles J. M. ; Moreno-Tost R. ; Martín-Alonso D. ; Jiménez-López A. ; Maireles-Torres P. Catal. Today 2010, 149, 281.
30 Barin, I. Thermochemical Data of Pure Substances, 3rd ed. ; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008; pp. 416–523.
31 Shao X. ; Myrach P. ; Nilius N. ; Freund H. J. J. Phys. Chem. C 2011, 115, 8784.
32 Shao X. ; Nilius N. ; Freund H. J. J. Am. Chem. Soc. 2012, 134, 2532.
33 Hu S. ; Wang W. ; Wang Y. ; Xu Q. ; Zhu J. J. Phys. Chem. C 2015, 119, 18257.
34 Skála T. ; Tsud N. ; Prince K. C. ; Matolín V. Appl. Surf. Sci. 2011, 257, 3682.
35 ?koda M. ; Cabala M. ; Cháb V. ; Prince K. C. ; Sedlá?ek L. ; Skála T. ; ?utara F. ; Matolín V. Appl. Surf. Sci. 2008, 254, 4375.
36 Ginting E. ; Hu S. ; Thorne J. E. ; Zhou Y. ; Zhu J. ; Zhou J. Appl. Surf. Sci. 2013, 283, 1.
37 Vayssilov G. N. ; Lykhach Y. ; Migani A. ; Staudt T. ; Petrova G. P. ; Tsud N. ; Skála T. ; Bruix A. ; Illas F. ; Prince K. C. ; et al Nat. Mater. 2011, 10, 310.
38 Skála T. ; Tsud N. ; Prince K. C. ; Matolín V. J. Phys.: Condens. Matter 2011, 23, 215001.
39 Staudt T. ; Lykhach Y. ; Tsud N. ; Skála T. ; Prince K. C. ; Matolín V. ; Libuda J. J. Phys. Chem. C 2011, 115, 8716.
40 Mudiyanselage K. ; Senanayake S. D. ; Feria L. ; Kundu S. ; Baber A. E. ; Graciani J. ; Vidal A. B. ; Agnoli S. ; Evans J. ; Chang R. Angew. Chem. Int. Ed. 2013, 52, 5101.
41 Doyle C. S. ; Kendelewicz T. ; Carrier X. ; Brown G. E. Surf. Rev. Lett. 1999, 06, 1247.
42 Lykhach Y. ; Staudt T. ; Streber R. ; Lorenz M. P. A. ; Bayer A. ; Steinrück H. P. ; Libuda J. Eur. Phys. J. B 2010, 75, 89.
43 Hari B. ; Ding X. ; Guo Y. ; Deng Y. ; Wang C. ; Li M. ; Wang Z. Mater. Lett. 2006, 60, 1515.
44 Altrusaitis J. ; Usher C. R. ; Grassian V. H. Phys. Chem. Chem. Phys. 2007, 9, 3011.
45 Kova?evi? V. ; Lu?i? S. ; Hace D. ; Packham D. ; ?mit I. Polym. Eng. Sci. 1999, 39, 1433.
46 Voigts F. ; Bebensee F. ; Dahle S. ; Volgmann K. ; Maus-Friedrichs W. Surf. Sci. 2009, 603, 40.
47 Fujimori Y. ; Zhao X. ; Shao X. ; Levchenko S. V. ; Nilius N. ; Sterrer M. ; Freund H. J. J. Phys. Chem. C 2016, 120, 5565.
48 Miao S. Appl. Surf. Sci. 2003, 220, 298.
49 Ni M. ; Ratner B. D. Surf. Interface Anal. 2008, 40, 1356.
50 Shui M. Appl. Surf. Sci. 2003, 220, 359.
51 Staudt T. ; Lykhach Y. ; Tsud N. ; Skála T. ; Prince K. C. ; Matolín V. ; Libuda J. J. Catal. 2010, 275, 181.
52 ?utara F. ; Cabala M. ; Sedlá?ek L. ; Skála T. ; ?koda M. ; Matolín V. ; Prince K. C. ; Cháb V. Thin Solid Films 2008, 516, 6120.
53 Matolín V. ; Cabala M. ; Cháb V. ; Matolínová I. ; Prince K. C. ; ?koda M. ; ?utara F. ; Skála T. ; Veltruská K. Surf. Interface Anal. 2008, 40, 225.
54 Ochs D. ; Braun B. ; Maus-Friedrichs W. ; Kempter V. Surf. Sci. 1998, 417, 406.
55 Vohs J. M. ; Barteau M. A. Surf. Sci. 1988, 201, 481.
56 von Niessen W. ; Bieri G. ; ?sbrink L. J. Electron Spectrosc. Relat. Phenom. 1980, 21, 175.
57 Tegeler E. ; Kosuch N. ; Wiech G. ; Faessler A. J. Electron Spectrosc. Relat. Phenom. 1980, 18, 23.
[1] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[2] Yeliang ZHAO,Bing WANG. Effect of Substrate on the Electron Spin Resonance Spectra of N@C60 Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1312-1320.
[3] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.
[4] Rui GUO,Jialin ZHANG,Songtao ZHAO,Xiaojiang YU,Shu ZHONG,Shuo SUN,Zhenyu LI,Wei CHEN. LT-STM Investigation of the Self-Assembled F16CuPc-Corannulene Binary System on Ag (111) and Grap[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 627-632.
[5] Li WANG,He-Xia SHI,Wen-Yuan WANG,Hong SHI,Xiang SHAO. Identifying the Hydrogen Bonding Patterns of Melamine and Melem Self-Assemblies on Au(111) Surface[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 393-398.
[6] Xiao-Ning ZHANG,Valerie HOLLIMON,DaShan BRODUS. A Method for Attaching Thiol Groups Directly on a Silicon (111) Substrate[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2364-2368.
[7] Xiu-Neng SONG,Guang-Wei WANG,Yan CHANG,Yong MA,Chuan-Kui WANG. Theoretical Study on X-Ray Spectroscopy of 1, 1, 2, 3, 4, 5-Hexaphenylsilole[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 943-949.
[8] Liang YU,Fang-Yong YU,Li-Li YUAN,Wei-Zi CAI,Jiang LIU,Cheng-Hao YANG,Mei-Lin LIU. Electrical Performance of Ag-Based Ceramic Composite Electrodes and Their Application in Solid Oxide Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 503-509.
[9] Juan YE,Kai SUN,Min-Long TAO,Yu-Bing TU,Zheng-Bo XIE,Ya-Li WANG,Shao-Jie HAO,Hua-Fang XIAO,Jun-Zhong WANG. Chiral Features of the Achiral Copper Phthalocyanine on a Bi(111) Surface[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2593-2598.
[10] Gao-Chen GU,Na LI,Xue ZHANG,Shi-Min HOU,Yong-Feng WANG,Kai WU. Sierpiński Trangle Fractal Structures Investigated by STM[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 195-200.
[11] ZHONG Jing-Rong, SHAO Lang, YU Chun-Rong, REN Yi-Ming. Study of Thermal Chemical Reactio[J]. Acta Phys. -Chim. Sin., 2015, 31(Suppl): 25-31.
[12] CHEN Jun-Jie, XIAO Qian, Lü Zhan-Peng, AHSAN Ejaz, XIA Xiao-Feng, LIU Ting-Guang. Effects of Sulfate Ions on Anodic Dissolution and Passivity of Iron in Slightly Alkaline Solutions[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1093-1104.
[13] YAO Xiao-Jiang, GONG Ying-Tao, LI Hong-Li, YANG Fu-Mo. Research Progress of Ceria-Based Catalysts in the Selective Catalytic Reduction of NOx by NH3[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 817-828.
[14] Feng. CHEN,Bi-Chun. HUANG,Ying-Xin. YANG,Xiao-Qing. LIU,Cheng-Long. YU. Synthesis, Characterization and NH3-SCR Activity of MnSAPO-34 Molecular Sieves[J]. Acta Phys. -Chim. Sin., 2015, 31(12): 2375-2385.
[15] Yong. HAN,Qian. XU,Huan-Xin. JU,Jun-Fa. ZHU. Growth, Electronic Structure and Thermal Stability of Ni on ZrO2(111) Thin Film Surfaces[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2151-2157.