物理化学学报 >> 2011, Vol. 27 >> Issue (12): 2799-2804.doi: 10.3866/PKU.WHXB20112799

理论与计算化学 上一篇    下一篇

Cu2+对腺嘧啶-胸腺嘧啶碱基对阴离子质子转移的影响

张凤, 王红艳, 林月霞   

  1. 西南交通大学物理科学与技术学院, 成都 610031
  • 收稿日期:2011-06-28 修回日期:2011-09-10 发布日期:2011-11-25
  • 通讯作者: 王红艳 E-mail:fengfeng0514@126.com
  • 基金资助:

    国家自然科学基金(10974161, 11004160)和中央高校基本科研业务费专项基金(SWJTU09CX079, 2010ZT06)资助项目

Effects of Cu2+ on Proton Transfer Processes in an Adenine-Thymine Anion Base Pair

ZHANG Feng, WANG Hong-Yan, LIN Yue-Xia   

  1. School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China
  • Received:2011-06-28 Revised:2011-09-10 Published:2011-11-25
  • Contact: WANG Hong-Yan E-mail:fengfeng0514@126.com
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (10974161, 11004160) and Fundamental Research Funds for the Central Universities, China (SWJTU09CX079, 2010ZT06).

摘要: 采用B3LYP/DZP++方法研究了腺嘌呤-胸腺嘧啶(A-T)碱基对阴离子(AT)-的单质子转移机理以及金属离子Cu2+对(AT)-碱基对质子转移的影响. (AT)-碱基对的单质子转移路径是由胸腺嘧啶N25位上的质子H26沿分子间的氢键N25-H26…N10转移到腺嘌呤的N10位. 金属Cu2+可通过络合作用分别吸附在(AT)-碱基对O24、O28、N4、N13上, 从而影响(AT)-碱基对中质子转移过程. Cu2+络合作用在胸腺嘧啶(T)的O24、O28上时, 发生了从胸腺嘧啶到腺嘌呤方向上的单质子转移反应; 而作用在腺嘌呤(A)的N4、N13上时, 得到了双质子转移的稳定产物.

关键词: 密度泛函理论, 碱基对, 质子转移, 络合作用, DNA破损

Abstract: The proton-transfer processes of the adenine-thymine (A-T) base pair anion (AT)- and the Cu2+ cationized (A-T) base pair anion were investigated using the B3LYP/DZP ++ method. A single protontransfer process was found for the (A-T) base pair anion in which proton H26 at the N25 site of thymine transferred to the N10 site of adenine. The metal cation Cu2+ can coordinate to the N4 and N13 sites of adenine as well as the O24 and O28 sites of thymine in (AT)- by coordination interactions. For Cu2+ coordinated to the O24 and O28 sites of thymine the single proton transfer from thymine to adenine is possible. However, when Cu2+ interacts with the N4 or N13 of adenine the double proton-transferred product was found to be stable.

Key words: Density functional theory, Base pair, Proton-transfer, Coordination, DNA damage