物理化学学报 >> 2012, Vol. 28 >> Issue (03): 609-614.doi: 10.3866/PKU.WHXB201201162

电化学和新能源 上一篇    下一篇

碳纳米管/聚苯胺/石墨烯复合纳米碳纸及其电化学电容行为

靳瑜1,2, 陈宏源2,3, 陈名海2, 刘宁1, 李清文2   

  1. 1. 合肥工业大学材料科学与工程学院, 合肥 230009;
    2. 中国科学院苏州纳米技术与纳米仿生研究所, 苏州 215123;
    3. 中国科学院研究生院, 北京 100049
  • 收稿日期:2011-10-09 修回日期:2011-12-28 发布日期:2012-02-23
  • 通讯作者: 陈名海, 刘宁 E-mail:mhchen2008@sinano.ac.cn; ningliu@mail.hf.ah.cn
  • 基金资助:

    苏州市科技项目(SYG201018)及江苏省产学研联合创新项目(BY2011178)资助

Carbon Nanotube/Polyaniline/Graphene Composite Paper and Its Electrochemical Capacitance Behaviors

JIN Yu1,2, CHEN Hong-Yuan2,3, CHEN Ming-Hai2, LIU Ning1, LI Qing-Wen2   

  1. 1. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China;
    2. Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, P. R. China;
    3. Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
  • Received:2011-10-09 Revised:2011-12-28 Published:2012-02-23
  • Contact: CHEN Ming-Hai, LIU Ning E-mail:mhchen2008@sinano.ac.cn; ningliu@mail.hf.ah.cn
  • Supported by:

    The project was supported by the Science and Technology Project of Suzhou, China (SYG201018) and Production and Research Collaborative Innovation Project of Jiangsu Province, China (BY2011178).

摘要: 通过真空抽滤的方法制备碳纳米管纸, 并对其进行循环伏安电化学氧化处理. 以该电化学氧化处理的碳纳米管(CV-CNT)纸为基体, 采用电化学聚合沉积聚苯胺(PANI), 随后吸附石墨烯(GR), 制备具有三明治夹心结构的碳纳米管/聚苯胺/石墨烯(CV-CNT/PANI/GR)复合纳米碳纸. 该结构外层为GR, 内层由PANI 包裹的CNT形成网络骨架, 充分发挥三者各自优势构建柔性电极材料. 用场发射扫描电镜(FE-SEM)、透射电子显微镜(TEM)、拉曼光谱对其形貌与结构进行表征, 并测试其电化学性能. 研究发现: PANI呈纳米晶须状, 并均匀包裹在CV-CNT表面; 该复合碳纸具有良好的电容特性、大电流充放电特性以及良好的循环稳定性能. 电流密度为0.5 A·g-1时, 比电容可达415 F·g-1; 20 A·g-1时仍能保持106 F·g-1的比电容. 由于GR的保护作用, 1000 次循环之后较CV-CNT/PANI 保持更高的有效比电容. 该CV-CNT/PANI/GR 复合碳纸展现出在高性能超级电容器柔性电极材料的潜在应用价值.

关键词: 碳纳米管, 聚苯胺, 石墨烯, 电化学聚合, 电容

Abstract: Flexible carbon nanotube/polyaniline/graphene (CNT/PANI/GR) composite papers were prepared by electrochemical polymerization of PANI on cyclic voltammetry electrochemical oxidized CNT (CV-CNT) papers and the successive adsorption of GR. CNT, PANI, and GR provided a flexible conducting network skeleton, faradaic pseudocapacitive material, and surface conductivity modification properties, respectively. The composite papers exhibited a sandwich structure with an outer layer of GR and an inner layer composite network of CV-CNT/PANI, taking full advantage of the superior properties of the three components. The structure and morphology were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The chemical capacitance characteristics were studied thoroughly. It was shown that PANI nanowhiskers wrapped around the CV-CNT surface evenly. The composite paper exhibited enhanced capacitance and high current charge/discharge characteristics as a supercapacitor electrode. The specific capacitance level could reach 415 F·g-1 at a current density of 0.5 A·g-1 and maintain a level of 106 F·g-1 at the higher current density of 20 A·g-1. In the protection of GR, the composite maintained a higher capacitance than CV-CNT/PANI after 1000 cycles, suggesting that the CV-CNT/PANI/GR composite would be an ideal flexible electrode material for a supercapacitor.

Key words: Carbon nanotube, Polyaniline, Graphene, Electrochemical polymerization, Capacitance