物理化学学报 >> 2013, Vol. 29 >> Issue (04): 881-888.doi: 10.3866/PKU.WHXB201302051

材料物理化学 上一篇    

单分散SnO2中空微纳米球的制备和性质

蔡宏敏1, 任素贞1, 王萌1, 贾翠英2   

  1. 1 大连理工大学化学学院, 辽宁 大连 116024;
    2 大连理工大学化学实验中心, 辽宁 大连 116024
  • 收稿日期:2012-11-26 修回日期:2013-01-30 发布日期:2013-03-25
  • 通讯作者: 任素贞 E-mail:rensz@dlut.edu.cn
  • 基金资助:

    国家自然科学基金(21176043)资助项目

Preparation and Properties of Monodisperse SnO2 Hollow Micro/Nano Spheres

CAI Hong-Min1, REN Su-Zhen1, WANG Meng1, JIA Cui-Ying2   

  1. 1 College of Chemistry, Dalian University of Technology, Dalian, 116024, Liaoning Province, P. R. China;
    2 The experiment center of Chemistry, Dalian University of Technology, Dalian, 116024, Liaoning Province, P. R. China
  • Received:2012-11-26 Revised:2013-01-30 Published:2013-03-25
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (21176043).

摘要:

模板法是制备无机中空微纳米球的重要方法之一. 本文以苯乙烯为单体, 通过乳液聚合得到粒径约为620 nm的单分散聚苯乙烯(PS)微球. 以磺化后的聚苯乙烯(PSS)微球为模板, 利用阴阳离子静电吸附作用, 将PSS与前驱体SnSO4中的Sn2+结合. 通过Sn2+在乙醇-水介质中的水解作用得到核-壳复合结构, 再经高温煅烧, 得到SnO2中空微纳米球. 实验对前驱体的浓度、表面活性剂的用量、反应时间及模板选择等方面做了研究,通过扫描电镜(SEM)、X 射线衍射(XRD)、红外(IR) 光谱、热重分析(TGA)、H2 程序升温还原(H2-TPR)、Brunauer-Emmett-Teller (BET)比表面积等技术深入探究SnO2中空微纳米球的结构, 并对比中空SnO2与实心粒子的氧化还原特性. BET和H2-TPR显示将SnO2制备成微纳米空心球后其比表面积增大, 表面氧空位明显增多, 氧化活性明显提高. 从IR 及XRD推断核-壳结构形成机理, 进而优化出简单合理的实验方案, 获得表面光滑、结构致密, 包覆厚度可控的SnO2中空微纳米球.

关键词: SnO2, 中空微纳米球, 核-壳结构, 模板法, 水解反应

Abstract:

Templating is one of the most important methods for preparation of inorganic hollow micro/ nano spheres. We prepared monodisperse polystyrene (PS) microspheres having a diameter of 620 nm by the emulsion polymerization of styrene. Sulfonated polystyrene (PSS) microspheres were used as a template, through electrostatic adsorption of anions and cations, for modification with Sn2+ from SnSO4 precursor. The core-shell composite structures thereby produced through Sn2+ hydrolysis in an ethanolwater medium were calcined at high temperature to remove PSS and to obtain SnO2 hollow micro/nano spheres. We investigated the effects of precursor concentration, amount of surfactant, reaction time, and templates choice. Scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared (IR) spectroscopy, thermogravimetric analysis (TGA), H2 temperature programmed reduction (H2-TPR), Brunauer-Emmett-Teller (BET) measurement, and other technical probes were used to detect the structure and properties of the prepared SnO2 hollow micro/nano spheres, and compared them with those of solid SnO2. BET and H2-TPR showed that the hollow SnO2 micro/nano spheres had improved specific surface area, surface oxygen vacancies, and oxidation activity. We inferred the growth mechanism of the core-shell structure from IR spectroscopy and XRD pattern and optimized the simple and reasonable synthesis procedure to obtain SnO2 hollow micro/nano spheres which had smooth surface, compact structure, and well controlled cladding thickness.

Key words: SnO2, Hollow micro/nano sphere, Core-shell structure, Template method, Hydrolysis