物理化学学报 >> 2015, Vol. 31 >> Issue (7): 1265-1274.doi: 10.3866/PKU.WHXB201505131

热力学,动力学和结构化学 上一篇    下一篇

适用于HCCI燃烧的汽油替代燃料化学动力学简化模型

郑朝蕾, 梁振龙   

  1. 重庆大学低品位能源利用技术及系统教育部重点实验室, 重庆400044
  • 收稿日期:2015-01-13 修回日期:2015-05-13 发布日期:2015-07-08
  • 通讯作者: 郑朝蕾 E-mail:zhengzhaolei@cqu.edu.cn
  • 基金资助:

    国家自然科学基金(51376202)和中央高校基本科研基金(CDJZR13145501)资助项目

Reduced Chemical Kinetic Model of a Gasoline Surrogate Fuel for HCCI Combustion

ZHENG Zhao-Lei, LIANG Zhen-Long   

  1. Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
  • Received:2015-01-13 Revised:2015-05-13 Published:2015-07-08
  • Contact: ZHENG Zhao-Lei E-mail:zhengzhaolei@cqu.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (51376202) and Fundamental Research Funds for the Central Universities, China (CDJZR13145501).

摘要:

建立了一个适用于由正庚烷、异辛烷、甲苯和二异丁烯组成的汽油替代燃料均质压燃着火(HCCI)燃烧过程的简化机理模型, 包含103 种组分199 个反应. 二异丁烯主要通过燃料的脱氧反应消耗掉, 生成三种同分异构体, JC8H15-A、JC8H15-B和JC8H15-D; 燃料的分解反应也是二异丁烯的另外一条主要消耗路径, 生成两种重要的C4产物, TC4H9和IC4H7. 这些产物是CH2O的主要来源. 甲苯掺比燃料(TRF)机理主要是基于Andrae 等建立的TRF半详细机理, 甲苯和二异丁烯子机理是通过路径分析和敏感性分析得到. 简化机理能够很好地模拟激波管里的着火延迟和HCCI发动机实验, 由此可知, 本文提出的简化机理用来模拟HCCI燃烧是可靠的.

关键词: 反应机理, 汽油替代, 着火延迟时间, 反应路径, 均质压燃着火

Abstract:

A new reduced chemical kinetic model that includes 103 species and 199 reactions is developed and used to describe the oxidation of a gasoline surrogate fuel consisting of n-heptane, iso-octane, toluene, and diisobutylene (DIB) for homogeneous charge compression ignition (HCCI). DIB is mainly consumed by Habstraction reactions by OH radicals to form three isomers, namely JC8H15- A, JC8H15- B, and JC8H15- D. Decomposition reaction is also one of the main reactions of DIB consumption, and this process forms two important C4 products, namely TC4H9 and IC4H7. These products are the primary sources for CH2O generation. The skeletal mechanism of toluene reference fuel (TRF) is based on the existing semi-detailed TRF mechanism developed by Andrae. The toluene and DIB sub-mechanism is developed using reaction path and sensitivity analyses. Good agreements are achieved with the experimental ignition delays observed in a shock tube and an HCCI engine. The present reduced model has reliable performance for HCCI combustion simulations.

Key words: Reaction mechanism, Gasoline surrogate, Ignition delay time, Reaction path, Homogeneous charge compression ignition