物理化学学报 >> 2019, Vol. 35 >> Issue (9): 940-953.doi: 10.3866/PKU.WHXB201810052
所属专题: 碳氢键活化
收稿日期:
2018-10-23
录用日期:
2018-11-21
发布日期:
2018-11-27
通讯作者:
单春晖,蓝宇
E-mail:chunhui.shan@cqu.edu.cn;lanyu@cqu.edu.cn
作者简介:
单春晖,生于1985年。2017年在重庆大学获得博士学位,目前在重庆大学从事博士后研究。研究方向为过渡金属催化C―H键官能团化反应|蓝宇,重庆大学化学化工学院教授,1981年生。2008年在北京大学获博士学位;2009–2012年在美国UCLA从事博士后研究;2012年4月加入重庆大学。研究方向为有机化学理论和理论有机化学
基金资助:
Chunhui SHAN1,*(),Ruopeng BAI2,Yu LAN2,3,*()
Received:
2018-10-23
Accepted:
2018-11-21
Published:
2018-11-27
Contact:
Chunhui SHAN,Yu LAN
E-mail:chunhui.shan@cqu.edu.cn;lanyu@cqu.edu.cn
Supported by:
摘要:
过渡金属催化活化C―H键来构建新共价键因具有原子经济和合成简捷的特点,已成为合成化学中最为有效策略之一。本文中,我们总结了过渡金属参与的C―H键切断的理论研究进展,并系统性提出了C―H键切断的相关模式,包括:C―H键对金属的氧化加成、碱协助的去质子化、σ-复分解、Friedel-Crafts型亲电芳香取代、α-或β-氢消除以及夺氢活化等。理论计算表明,当使用还原性较强的零价金属催化剂时,反应可按照氧化加成模式进行。当使用金属羧酸盐作为催化剂时,通常以协同金属化-去质子化机理模式实现C―H键切断。当使用阳离子金属催化剂,富电子芳烃比缺电子芳烃优先反应时,C―H键切断则会经历碱协助的内部亲电取代模式。σ-复分解是协同金属化-去质子化机理的另一种模式。如果亲电体对芳烃进行加成时,则可按照Friedel-Crafts型亲电芳香取代方式活化C―H键。α-或β-氢消除也是比较常见的活化C―H键模式。此外,夺氢活化可通过自由基过程实现C―H键活化。本文通过对过渡金属参与的C―H键活化模式的论述旨在为实验提供理论指导。
单春晖,白若鹏,蓝宇. 过渡金属参与C―H键切断模式的理论研究进展[J]. 物理化学学报, 2019, 35(9), 940-953. doi: 10.3866/PKU.WHXB201810052
Chunhui SHAN,Ruopeng BAI,Yu LAN. Theoretical Advances of Transition Metals Mediated C―H Bonds Cleavage[J]. Acta Physico-Chimica Sinica 2019, 35(9), 940-953. doi: 10.3866/PKU.WHXB201810052
图8
碱协助的内部亲电取代模式的C―H键活化的活化能 (a) Co(III)-mediated C―H alkylations of indoles (computational method: DFT with the TPSS-D3-(BJ) functional in 1, 2-dichloroethane solvent); (b) Ru-mediated C―H bond activation of benzamide (computational method: DFT with the B3LYP functional in tetrahydrofuran solvent). The bond lengths are in angstroms. "
图9
外源碱去质子化模式的C―H键活化的活化能 (a) Pd-mediated C―H trifluoroethylation of indoles (computational method: DFT with the M11-L functional in dimethylformamide solvent); (b) zinccatalyzed oxidative coupling of benzaldehyde (computational method: DFT with the M11-L functional in toluene solvent). The bond lengths are in angstroms. "
图13
α-氢消除模式的C―H键活化的活化能 (a) The reductive elimination from cobalt(III) dimethyl complex (computational method: DFT with the B3LYP functional in benzene solvent); (b) Ir(III)-catalyzed reaction of 2-(dimethylamino)pyridine (computational method: DFT with the B3PW91 functional in dichloroethane solvent). The bond lengths are in angstrom. "
1 |
Ackermann L. Chem. Rev 2011, 111, 1315.
doi: 10.1021/cr100412j |
2 |
Cho S. H. ; Kim J. Y. ; Kwak J. ; Chang S. Chem. Soc. Rev 2011, 40, 5068.
doi: 10.1039/c1cs15082k |
3 |
Jiang Y. -Y. ; Man X. ; Bi S. Sci. China-Chem. 2016, 59, 1448.
doi: 10.1007/s11426-016-0330-3 |
4 |
Liu C. ; Zhang H. ; Shi W. ; Lei A. Chem. Rev 2011, 111, 1780.
doi: 10.1021/cr100379j |
5 |
Rao Y. ; Shan G. ; Yang X. Sci. China-Chem 2014, 57, 930.
doi: 10.1007/s11426-014-5130-y |
6 |
Shan C. ; Zhu L. ; Qu L. B. ; Bai R. ; Lan Y. Chem. Soc. Rev 2018, 47, 7552.
doi: 10.1039/c8cs00036k |
7 |
Yu J. L. ; Zhang S. Q. ; Hong X. J. Am. Chem.Soc 2017, 139, 7224.
doi: 10.1021/jacs.7b00714 |
8 |
Yuan C. ; Zhu L. ; Chen C. ; Chen X. ; Yang Y. ; Lan Y. ; Zhao Y. Nat. Commun 2018, 9, 1189.
doi: 10.1038/s41467-018-03341-6 |
9 |
Yuan C. ; Zhu L. ; Zeng R. ; Lan Y. ; Zhao Y. Angew. Chem. Int. Ed 2018, 57, 1277.
doi: 10.1002/anie.201711221 |
10 |
Zhang L. ; Zhu L. ; Zhang Y. ; Yang Y. ; Wu Y. ; Ma W. ; Lan Y. ; You J. ACS Catal 2018, 8, 8324.
doi: 10.1021/acscatal.8b02816 |
11 |
Ackermann L. Acc. Chem. Res 2014, 47, 281.
doi: 10.1021/ar3002798 |
12 |
Colby D. A. ; Bergman R. G. ; Ellman J. A. Chem. Rev 2010, 110, 624.
doi: 10.1021/cr900005n |
13 |
Li Y. ; Liu S. ; Qi Z. ; Qi X. ; Li X. ; Lan Y. Chem. -Eur. J 2015, 21, 10131.
doi: 10.1002/chem.201500290 |
14 |
Qin X. ; Li X. ; Huang Q. ; Liu H. ; Wu D. ; Guo Q. ; Lan J. ; Wang R. ; You J. Angew. Chem. Int. Ed 2015, 54, 7167.
doi: 10.1002/anie.201501982 |
15 |
Shin K. ; Kim H. ; Chang S. Acc. Chem. Res 2015, 48, 1040.
doi: 10.1021/acs.accounts.5b00020 |
16 |
Song G. ; Li X. Acc. Chem. Res 2015, 48, 1007.
doi: 10.1021/acs.accounts.5b00077 |
17 |
Yu S. ; Li Y. ; Kong L. ; Zhou X. ; Tang G. ; Lan Y. ; Li X. ACS Catal 2016, 6, 7744.
doi: 10.1021/acscatal.6b02668 |
18 |
Yu S. ; Liu S. ; Lan Y. ; Wan B. ; Li X. J. Am. Chem. Soc 2015, 137, 1623.
doi: 10.1021/ja511796h |
19 |
Arroniz C. ; Denis J. G. ; Ironmonger A. ; Rassias G. ; Larrosa I. Chem. Sci 2014, 5, 3509.
doi: 10.1039/c4sc01215a |
20 |
Arroniz C. ; Ironmonger A. ; Rassias G. ; Larrosa I. Org. Lett 2013, 15, 910.
doi: 10.1021/ol400065j |
21 |
Chiong H. A. ; Pham Q. N. ; Daugulis O. J. Am. Chem. Soc 2007, 129, 9879.
doi: 10.1021/ja071845e |
22 |
Engle K. M. ; Mei T. S. ; Wasa M. ; Yu J. Q. Acc. Chem. Res 2012, 45, 788.
doi: 10.1021/ar200185g |
23 |
Giri R. ; Maugel N. ; Li J. J. ; Wang D. H. ; Breazzano S. P. ; Saunders L. B. ; Yu J. Q. J. Am. Chem. Soc 2007, 129, 3510.
doi: 10.1021/ja0701614 |
24 |
He J. ; Wasa M. ; Chan K. S. L. ; Shao Q. ; Yu J. Q. Chem. Rev 2017, 117, 8754.
doi: 10.1021/acs.chemrev.6b00622 |
25 |
Wang D. H. ; Mei T. S. ; Yu J. Q. J. Am. Chem. Soc 2008, 130, 17676.
doi: 10.1021/ja806681z |
26 |
Zhang H. ; Wang H.-Y. ; Luo Y. ; Chen C. ; Cao Y. ; Chen P. ; Guo Y. -L. ; Lan Y. ; Liu G. ACS Catal. 2018, 8, 2173.
doi: 10.1021/acscatal.7b03220 |
27 |
Zhu C. ; Zhang Y. ; Kan J. ; Zhao H. ; Su W. Org. Lett 2015, 17, 3418.
doi: 10.1021/acs.orglett.5b01398 |
28 |
Shi R. ; Lu L. ; Xie H. ; Yan J. ; Xu T. ; Zhang H. ; Qi X. ; Lan Y. ; Lei A. Chem. Commun 2016, 52, 13307.
doi: 10.1039/c6cc06358f |
29 |
Song L. ; Zhu L. ; Zhang Z. ; Ye J. H. ; Yan S. S. ; Han J. L. ; Yin Z. B. ; Lan Y. ; Yu D. G. Org. Lett 2018, 20, 3776.
doi: 10.1021/acs.orglett.8b01363 |
30 |
Zhu R.-Y. ; Farmer M. E. ; Chen Y. -Q. ; Yu J. -Q. Angew. Chem. Int. Ed. 2016, 55, 10578.
doi: 10.1002/anie.201600791 |
31 |
Musaev D. G. ; Figg T. M. ; Kaledin A. L. Chem. Soc. Rev 2014, 43, 5009.
doi: 10.1039/c3cs60447k |
32 |
Xie H. ; Fan T. ; Lei Q. ; Fang W. Sci. Chin. Chem 2016, 59, 1432.
doi: 10.1007/s11426-016-0018-2 |
33 |
Xie H. ; Zhang H. ; Lin Z. New J. Chem 2013, 37, 2856.
doi: 10.1039/c3nj00531c |
34 |
Liu D. ; Li Y. ; Qi X. ; Liu C. ; Lan Y. ; Lei A. Org. Lett 2015, 17, 998.
doi: 10.1021/acs.orglett.5b00104 |
35 |
Aihara Y. ; Chatani N. J. Am. Chem. Soc 2014, 136, 898.
doi: 10.1021/ja411715v |
36 |
Heitz D. R. ; Tellis J. C. ; Molander G. A. J. Am. Chem. Soc 2016, 138, 12715.
doi: 10.1021/jacs.6b04789 |
37 |
Muto K. ; Yamaguchi J. ; Itami K. J. Am. Chem. Soc 2012, 134, 169.
doi: 10.1021/ja210249h |
38 |
Yamamoto T. ; Muto K. ; Komiyama M. ; Canivet J. ; Yamaguchi J. ; Itami K. Chem. -Eur. J 2011, 17, 10113.
doi: 10.1002/chem.201101091 |
39 |
Yokota A. ; Aihara Y. ; Chatani N. J. Org. Chem 2014, 79, 11922.
doi: 10.1021/jo501697n |
40 |
Liu R. R. ; Zhu L. ; Hu J. P. ; Lu C. J. ; Gao J. R. ; Lan Y. ; Jia Y. X. Chem. Commun 2017, 53, 5890.
doi: 10.1039/c7cc01015j |
41 |
Zeng Z. ; Zhang T. ; Yue X. ; Zhang H. ; Bai R. ; Lan Y. Sci. Sin. Chim 2018, 48, 736.
doi: 10.1360/N032018-00105 |
42 |
Murai S. ; Kakiuchi F. ; Sekine S. ; Tanaka Y. ; Kamatani A. ; Sonoda M. ; Chatani N. Nature 1993, 366, 529.
doi: 10.1038/366529a0 |
43 |
Ackermann L. Chem. Commun 2010, 46, 4866.
doi: 10.1039/c0cc00778a |
44 |
Ackermann L. ; Hofmann N. ; Vicente R. Org. Lett 2011, 13, 1875.
doi: 10.1021/ol200366n |
45 |
Ackermann L. ; Vicente R. ; Althammer A. Org. Lett 2008, 10, 2299.
doi: 10.1021/ol800773x |
46 |
Fumagalli F. ; Warratz S. ; Zhang S. K. ; Rogge T. ; Zhu C. ; Stuckl A. C. ; Ackermann L. Chem. -Eur. J 2018, 24, 3984.
doi: 10.1002/chem.201800530 |
47 |
Liu W. ; Ackermann L. Org. Lett 2013, 15, 3484.
doi: 10.1021/ol401535k |
48 |
Warratz S. ; Burns D. J. ; Zhu C. ; Korvorapun K. ; Rogge T. ; Scholz J. ; Jooss C. ; Gelman D. ; Ackermann L. Angew. Chem. Int. Ed 2017, 56, 1557.
doi: 10.1002/anie.201609014 |
49 |
Ferrer Flegeau E. ; Bruneau C. ; Dixneuf P. H. ; Jutand A. J. Am. Chem. Soc 2011, 133, 10161.
doi: 10.1021/ja201462n |
50 |
Ozdemir I. ; Demir S. ; Cetinkaya B. ; Gourlaouen C. ; Maseras F. ; Bruneau C. ; Dixneuf P. H. J. Am. Chem. Soc 2008, 130, 1156.
doi: 10.1021/ja710276x |
51 |
Ryabov A. D. ; Sakodinskaya I. K. ; Yatsimirsky A. K. J. Chem. Soc., Dalton Trans 1985, 2629
doi: 10.1039/dt9850002629 |
52 |
Kurzeev S. A. ; Kazankov G. M. ; Ryabov A. D. Inorg. Chim. Acta 2002, 340, 192.
doi: 10.1016/s0020-1693[02]01148-9 |
53 |
Oxgaard J. ; Tenn W. J. ; Nielsen R. J. ; Periana R. A. ; Goddard W. A. Organometallics 2007, 26, 1565.
doi: 10.1021/om061189b |
54 |
Balcells D. ; Clot E. ; Eisenstein O. Chem. Rev 2010, 110, 749.
doi: 10.1021/cr900315k |
55 |
Wenz K. M. ; Liu P. ; Houk K. N. Organometallics 2017, 36, 3613.
doi: 10.1021/acs.organomet.7b00531 |
56 |
Xi Y. ; Su Y. ; Yu Z. ; Dong B. ; McClain E. J. ; Lan Y. ; Shi X. Angew. Chem. Int. Ed 2014, 53, 9817.
doi: 10.1002/anie.201404946 |
57 |
Shi F. Q. Org. Lett 2011, 13, 736.
doi: 10.1021/ol102974k |
58 |
Cho K. B. ; Kang H. ; Woo J. ; Park Y. J. ; Seo M. S. ; Cho J. ; Nam W. Inorg. Chem 2014, 53, 645.
doi: 10.1021/ic402831f |
59 |
Sun X. ; Sun X. ; Geng C. ; Zhao H. ; Li J. J. Phys. Chem. A, 2014, 118, 7146.
doi: 10.1021/jp505662x |
60 |
Tamura H. ; Yamazaki H. ; Sato H. ; Sakaki S. J. Am. Chem. Soc 2003, 125, 16114.
doi: 10.1021/ja0302937 |
61 |
Zhu L. ; Qi X. ; Li Y. ; Duan M. ; Zou L. ; Bai R. ; Lan Y. Organometallics 2017, 36, 2107.
doi: 10.1021/acs.organomet.7b00151 |
62 |
Murphy S. K. ; Park J. W. ; Cruz F. A. ; Dong V. M. Science 2015, 347, 56.
doi: 10.1126/science.1261232 |
63 |
Luo X. ; Bai R. ; Liu S. ; Shan C. ; Chen C. ; Lan Y. J. Org. Chem 2016, 81, 2320.
doi: 10.1021/acs.joc.5b02828 |
64 |
Gorelsky S. I. ; Lapointe D. ; Fagnou K. J. Am. Chem. Soc 2008, 130, 10848.
doi: 10.1021/ja802533u |
65 |
Wang Q. ; Li Y. ; Qi Z. ; Xie F. ; Lan Y. ; Li X. ACS Catal 2016, 6, 1971.
doi: 10.1021/acscatal.5b02297 |
66 |
Yu S. ; Tang G. ; Li Y. ; Zhou X. ; Lan Y. ; Li X. Angew. Chem. Int. Ed 2016, 55, 8696.
doi: 10.1002/anie.201602224 |
67 |
Dateer R. B. ; Chang S. J. Am. Chem. Soc 2015, 137, 4908.
doi: 10.1021/jacs.5b01065 |
68 |
Li Y. ; Shan C. ; Yang Y. F. ; Shi F. ; Qi X. ; Houk K. N. ; Lan Y. J. Phys. Chem. A 2017, 121, 4496.
doi: 10.1021/acs.jpca.7b01020 |
69 |
Liu S. ; Qi X. ; Qu L. -B. ; Bai R. ; Lan Y. Catal. Sci. Technol. 2018, 8, 1645.
doi: 10.1039/c7cy02367g |
70 |
Luo Y. ; Liu S. ; Xu D. ; Qu L. -B. ; Luo X. ; Bai R. ; Lan Y. J. Organomet. Chem. 2018, 864, 148.
doi: 10.1016/j.jorganchem.2018.03.016 |
71 |
Tan G. ; Zhu L. ; Liao X. ; Lan Y. ; You J. J. Am. Chem. Soc 2017, 139, 15724.
doi: 10.1021/jacs.7b07242 |
72 |
Yang X. ; Liu S. ; Yu S. ; Kong L. ; Lan Y. ; Li X. Org. Lett 2018, 20, 2698.
doi: 10.1021/acs.orglett.8b00906 |
73 |
Yin J. ; Zhou F. ; Zhu L. ; Yang M. ; Lan Y. ; You J. Chem. Sci 2018, 9, 5488.
doi: 10.1039/c8sc01963k |
74 |
Zhang T. ; Qi X. ; Liu S. ; Bai R. ; Liu C. ; Lan Y. Chem. -Eur. J 2017, 23, 2690.
doi: 10.1002/chem.201605188 |
75 |
Qi X. ; Li Y. ; Bai R. ; Lan Y. Acc. Chem. Res 2017, 50, 2799.
doi: 10.1021/acs.accounts.7b00400 |
76 |
Gao B. ; Liu S. ; Lan Y. ; Huang H. Organometallics 2016, 35, 1480.
doi: 10.1021/acs.organomet.6b00072 |
77 |
Shan C. ; Luo X. ; Qi X. ; Liu S. ; Li Y. ; Lan Y. Organometallics 2016, 35, 1440.
doi: 10.1021/acs.organomet.6b00064 |
78 |
Zhou X. ; Luo Y. ; Kong L. ; Xu Y. ; Zheng G. ; Lan Y. ; Li X. ACS Catal 2017, 7, 7296.
doi: 10.1021/acscatal.7b02248 |
79 |
Li Y. ; Zou L. ; Bai R. ; Lan Y. Org. Chem. Front 2018, 5, 615.
doi: 10.1039/c7qo00850c |
80 |
Zell D. ; Bursch M. ; Muller V. ; Grimme S. ; Ackermann L. Angew. Chem. Int. Ed 2017, 56, 10378.
doi: 10.1002/anie.201704196 |
81 |
Bu Q. ; Rogge T. ; Kotek V. ; Ackermann L. Angew. Chem. Int. Ed 2018, 57, 765.
doi: 10.1002/anie.201711108 |
82 |
Yue X. ; Qi X. ; Bai R. ; Lei A. ; Lan Y. Chem. -Eur. J 2017, 23, 6419.
doi: 10.1002/chem.201700733 |
83 |
Lin Y. ; Zhu L. ; Lan Y. ; Rao Y. Chem. -Eur. J 2015, 21, 14937.
doi: 10.1002/chem.201502140 |
84 |
Ahmad K. ; Khan B. A. ; Roy S. K. ; Zai-ul A. ; Mahmood R. ; Khan J. ; Ashraf H. Comput. Theor. Chem 2018, 1130, 140.
doi: 10.1016/j.comptc.2018.03.025 |
85 |
Clot E. ; Chen J. ; Lee D. H. ; Sung S. Y. ; Appelhans L. N. ; Faller J. W. ; Crabtree R. H. ; Eisenstein O. J. Am. Chem. Soc 2004, 126, 8795.
doi: 10.1021/ja048473j |
86 |
Chen Z. M. ; Hilton M. J. ; Sigman M. S. J. Am. Chem. Soc 2016, 138, 11461.
doi: 10.1021/jacs.6b06994 |
87 |
Werner E. W. ; Mei T. S. ; Burckle A. J. ; Sigman M. S. Science 2012, 338, 1455.
doi: 10.1126/science.1229208 |
88 |
Xu L. ; Hilton M. J. ; Zhang X. ; Norrby P. O. ; Wu Y. D. ; Sigman M. S. ; Wiest O. J. Am. Chem. Soc 2014, 136, 1960.
doi: 10.1021/ja4109616 |
89 |
Limberg C. Angew. Chem. Int. Ed 2003, 42, 5932.
doi: 10.1002/anie.200300578 |
90 |
Che C. M. ; Lo V. K. ; Zhou C. Y. ; Huang J. S. Chem. Soc. Rev 2011, 40, 1950.
doi: 10.1039/c0cs00142b |
91 |
Zhang L. ; Liu Y. ; Deng L. J. Am. Chem. Soc 2014, 136, 15525.
doi: 10.1021/ja509731z |
92 |
Hu L. ; Chen H. ACS Catal 2016, 7, 285.
doi: 10.1021/acscatal.6b02694 |
93 |
Maurice D. ; Head-Gordon M. Mol. Phys 1999, 96, 1533.
doi: 10.1080/00268979909483096 |
94 |
Head-Gordon M. ; Rico R. J. ; Oumi M. ; Lee T. J. Chem. Phys. Lett 1994, 219, 21.
doi: 10.1016/0009-2614[94]00070-0 |
95 |
Purvis G. D. ; Bartlett R. J. J. Chem. Phys 1982, 76, 1910.
doi: 10.1063/1.443164 |
96 |
Krishnan R. ; Pople J. A. Int. J.Quantum Chem 1978, 14, 91.
doi: 10.1002/qua.560140109 |
97 |
Van Voorhis T. ; Head-Gordon M. J. Chem. Phys 2001, 115, 5033.
doi: 10.1063/1.1390516 |
98 |
Meyer H. D. ; Manthe U. ; Cederbaum L. S. Chem. Phys. Lett 1990, 165, 73.
doi: 10.1016/0009-2614[90]87014-i |
99 |
M ller C. ; Plesset M. S. Phys. Rev 1934, 46, 618.
doi: 10.1103/PhysRev.46.618 |
100 |
Grimme S. J. Comput. Chem 2004, 25, 1463.
doi: 10.1002/jcc.20078 |
101 |
Zhao Y. ; Schultz N. E. ; Truhlar D. G. J. Chem. Theory Comput 2006, 2, 364.
doi: 10.1021/ct0502763 |
102 |
Becke A. D. J. Chem. Phys 1993, 98, 5648.
doi: 10.1063/1.464913 |
103 |
Lee C. ; Yang W. ; Parr R. G. Phys. Rev. B 1988, 37, 785.
doi: 10.1103/PhysRevB.37.785 |
104 |
Goerigk L. ; Grimme S. J. Chem. Theory Comput 2011, 7, 291.
doi: 10.1021/ct100466k |
105 |
Grimme S. ; Antony J. ; Ehrlich S. ; Krieg H. J. Chem. Phys 2010, 132, 154104.
doi: 10.1063/1.3382344 |
106 |
Zhao Y. ; Truhlar D. G. Theor. Chem. Acc 2008, 119, 525.
doi: 10.1007/s00214-007-0401-8 |
107 |
Peverati R. ; Truhlar D. G. J. Phys. Chem. Lett 2011, 3, 117.
doi: 10.1021/jz201525m |
108 |
Peverati R. ; Truhlar D. G. J. Chem. Theory Comput 2012, 8, 2310.
doi: 10.1021/ct3002656 |
109 |
Zhao Y. ; Truhlar D. G. J. Phys. Chem. A 2005, 109, 5656.
doi: 10.1021/jp050536c |
[1] | 徐涵煜, 宋雪旦, 张青, 于畅, 邱介山. 理论研究Cu@C2N催化剂表面上水分子对电催化CO2还原反应机理的影响[J]. 物理化学学报, 2024, 40(1): 2303040 - . |
[2] | 李萌, 杨甫林, 常进法, Schechter Alex, 冯立纲. MoP-NC纳米球负载Pt纳米粒子用于高效甲醇电解[J]. 物理化学学报, 2023, 39(9): 2301005 -0 . |
[3] | 高凤雨, 刘恒恒, 姚小龙, Sani Zaharaddeen, 唐晓龙, 罗宁, 易红宏, 赵顺征, 于庆君, 周远松. 球形表面富锰MnxCo3−xO4−ƞ尖晶石型催化剂选择性催化还原NOx研究[J]. 物理化学学报, 2023, 39(9): 2212003 -0 . |
[4] | 李真, 刘雯, 陈春旭, 马婷婷, 张金锋, 王正华. 将In2O3/CdSe-DETA纳米复合材料中的电荷转移从Type-I转变为S-Scheme以提高光催化制氢的活性和稳定性[J]. 物理化学学报, 2023, 39(6): 2208030 - . |
[5] | 吴倩, 高庆平, 单彬, 王文政, 齐玉萍, 台夕市, 王霞, 郑冬冬, 严虹, 应斌武, 罗永嵩, 孙圣钧, 刘倩, Hamdy Mohamed S., 孙旭平. 自支撑过渡金属海水电解析氧催化剂研究进展[J]. 物理化学学报, 2023, 39(12): 2303012 - . |
[6] | 李莹, 来雪琦, 曲津朋, 赖勤志, 伊廷锋. 钠离子电池用高性能锑基负极材料的调控策略研究进展[J]. 物理化学学报, 2022, 38(11): 2204049 - . |
[7] | 陈鹏, 周莹, 董帆. 二维光催化材料电子结构和性能调控策略研究进展[J]. 物理化学学报, 2021, 37(8): 2010010 - . |
[8] | 秦睿, 王鹏彦, 林灿, 曹菲, 张金咏, 陈磊, 木士春. 过渡金属氮化物的活性起源、合成方法及电催化应用[J]. 物理化学学报, 2021, 37(7): 2009099 - . |
[9] | 费新刚, 谭海燕, 程蓓, 朱必成, 张留洋. 理论计算研究二维/二维BP/g-C3N4异质结的光催化CO2还原性能[J]. 物理化学学报, 2021, 37(6): 2010027 - . |
[10] | 刘东, 陈圣韬, 李仁杰, 彭天右. 用于光催化能量转换的Z-型异质结的研究进展[J]. 物理化学学报, 2021, 37(6): 2010017 - . |
[11] | 华凯敏, 刘晓放, 魏百银, 张书南, 王慧, 孙予罕. 过渡金属催化CO2/H2参与的羰基化研究进展[J]. 物理化学学报, 2021, 37(5): 2009098 - . |
[12] | 赵梦迪,陆文军. 普通烷烃C―H键的活化官能化[J]. 物理化学学报, 2019, 35(9): 977 -988 . |
[13] | 胡媛媛,王从洋. 双金属促进的均相碳氢键活化反应[J]. 物理化学学报, 2019, 35(9): 913 -922 . |
[14] | 陈世豪,王明,姜雪峰. C―H官能化构建硫醚[J]. 物理化学学报, 2019, 35(9): 954 -967 . |
[15] | 陈强,姜利学,李海方,陈娇娇,赵艳霞,何圣贵. 钒硼双原子阳离子活化甲烷研究[J]. 物理化学学报, 2019, 35(9): 1014 -1020 . |
|