物理化学学报 >> 2016, Vol. 32 >> Issue (9): 2301-2308.doi: 10.3866/PKU.WHXB201606032

论文 上一篇    下一篇

KCl-MgCl2-K2ZrF6-ZrO2熔盐体系中Mg-Zr合金的制备

姜涛1,田杰1,王宁1,彭述明1,*(),李梅2,韩伟2,张密林2   

  1. 1 中国工程物理研究院核物理与化学研究所,四川绵阳621999
    2 哈尔滨工程大学材料科学与化学工程学院,教育部超轻材料与表面技术重点实验室,哈尔滨150001
  • 收稿日期:2016-03-21 发布日期:2016-09-08
  • 通讯作者: 彭述明 E-mail:pengshuming@caep.cn
  • 基金资助:
    国家自然科学基金重大研究计划(91426302);国家自然科学基金资助项目(21301163)

Preparation of Mg-Zr Alloys in KCl-MgCl2-K2ZrF6-ZrO2 Molten System

Tao JIANG1,Jie TIAN1,Ning WANG1,Shu-Ming PENG1,*(),Mei LI2,Wei HAN2,Mi-Lin ZHANG2   

  1. 1 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, Sichuan Province, P. R. China
    2 Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
  • Received:2016-03-21 Published:2016-09-08
  • Contact: Shu-Ming PENG E-mail:pengshuming@caep.cn
  • Supported by:
    the Major Research Plan of the National Natural Science Foundation of China(91426302);National Natural Science Foundation of China(21301163)

摘要:

在1023 K条件下,开展了Zr(IV)在KCl-MgCl2-K2ZrF6和KCl-MgCl2-K2ZrF6-ZrO2熔盐中Mo电极上的电化学实验,并获得如下结果:Zr(IV)还原为Zr(0)是通过两步反应,即Zr(IV)+ 2e- → Zr(II)和Zr(II)+2e- → Zr(0)。两个反应是准可逆的。KCl-MgCl2-K2ZrF6-ZrO2熔盐中的电极反应表明在预沉积的Zr上欠电位沉积Mg可以用来制备Mg-Zr合金。感应耦合离体子体-原子发射光谱(ICP-AES)分析结果表明,在1023 K和KCl-MgCl2-K2ZrF6-ZrO2熔盐中K2ZrF6含量在9.2%(w)条件下,恒电流电解获得的Mg-Zr合金中Zr含量可以达到7.2%(w)。并采用X射线衍射(XRD)和扫描电镜-能谱仪(SEM-EPS)对合金进行表征。利用KCl、MgCl2、K2ZrF6、KF和ZrO2为原料,直接恒电流电解制备Mg-Zr合金是可行的,且在确定反应条件下实现合金中Zr含量可控;揭示了KCl-MgCl2熔盐体系可以实现Mg和Zr的共电沉积,并且验证了直接电解ZrO2获得Mg-Zr合金的可行性。

关键词: LiCl-KCl-K2ZrF6, ZrO2, Mg-Zr合金, 制备

Abstract:

To investigate the electrochemical co-reduction mechanism associated with the formation of Mg-Zr alloys, the electrochemical behaviors of Zr(IV) in KCl-MgCl2-K2ZrF6 and KCl-MgCl2-K2ZrF6-ZrO2 melts were studied on a molybdenum electrode at 1023 K. Cyclic voltammograms (CVs) and square-wave voltammograms (SWVs) showed that Zr(IV) was reduced to Zr metal by a two-step mechanism consisting of the Zr(IV)/Zr(II) and Zr(II)/Zr(0) pairs in the KCl-MgCl2-K2ZrF6 melt. The dissolution of ZrO2 in the KCl-MgCl2-K2ZrF6 melt was ascertained from CVs, while the Zr(IV) concentration in the melt was assessed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Mg-Zr alloys were obtained by galvanostatic electrolysis in KCl-MgCl2-K2ZrF6-KF-ZrO2 melts and subsequently characterized by X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). The Zr concentrations in the alloys as determined by ICP-AES were as high as 7.2% (w). The formation of Mg-Zr alloys could be controlled by varying both the reaction time and the melt composition. These results confirm the feasibility of the direct electrolysis of ZrO2 to obtain Mg-Zr alloys in KCl-MgCl2-K2ZrF6-ZrO2 melts.

Key words: LiCl-KCl-K2ZrF6, ZrO2, Mg-Zr alloy, Preparation