物理化学学报 >> 2016, Vol. 32 >> Issue (10): 2411-2426.doi: 10.3866/PKU.WHXB201606227

综述 上一篇    下一篇

石墨烯基杂化材料在微生物燃料电池电极中的应用

王成显1,于飞1,2,3,*(),马杰2,3   

  1. 1 上海应用技术大学化学与环境工程学院,上海201418
    2 天津城建大学,天津市水质科学与技术重点实验室,天津300384
    3 同济大学,污染控制与资源化研究国家重点实验室,上海200092
  • 收稿日期:2016-04-22 发布日期:2016-09-30
  • 通讯作者: 于飞 E-mail:fyu@vip.163.com
  • 作者简介:王成显,1989年生。2015年本科毕业于青岛农业大学资源与环境学院环境工程专业,2015年至今于上海应用技术大学化学与环境工程学院攻读化学工程硕士学位。主要研究方向为微生物燃料电池石墨烯基电极材料。|于飞,硕士生导师。上海市优秀博士学位论文获得者,曾获教育部博士研究生学术新人奖,主持国家自然科学基金等项目,主要从事新兴污染物在水环境中的界面行为及吸附控制技术,土壤及地下水污染修复技术等。|马杰,副教授,硕士生导师。2009年博士毕业于上海交通大学,从事新型功能吸附材料,去离子电容及新能源(染料敏化太阳能电池,微生物燃料电池)开发研究,主持国家自然科学基金2项及多项省部级课题的实施。
  • 基金资助:
    国家自然科学基金(21577099);国家自然科学基金(51408362);天津市水质科学与技术重点实验室开放研究基金

Applications of Graphene-Based Hybrid Material as Electrodes in Microbial Fuel Cells

Cheng-Xian WANG1,Fei YU1,2,3,*(),Jie MA2,3   

  1. 1 School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
    2 Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, P. R. China
    3 State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P. R. China
  • Received:2016-04-22 Published:2016-09-30
  • Contact: Fei YU E-mail:fyu@vip.163.com
  • Supported by:
    National Natural Science Foundation of China(21577099);National Natural Science Foundation of China(51408362);Research Fund of Tianjin Key Laboratory of Aquatic Science and Technology, China

摘要:

微生物燃料电池(MFC)是利用生物催化剂将污水有机物中的化学能直接转化为电能的技术,因其功率密度和能量转化效率低,电极制作成本高,限制了其大规模实际应用。因此如何提高电极的催化性能并降低电极制作成本成为MFC的研究重点方向。由于石墨烯基杂化材料具有良好的导电性和催化特性,因此石墨烯基杂化材料成为在MFC电极应用中的热点之一。本文综述了近年来MFC石墨烯基杂化电极材料的最新研究进展,重点讨论了改性石墨烯电极、金属及非金属/石墨烯杂化电极、金属氧化物/石墨烯杂化电极、聚合物/石墨烯杂化电极和石墨烯凝胶电极的设计思路和制备方法及其催化性能,着重分析了石墨烯基阳极和阴极杂化材料对MFC产电性能的影响。最后对石墨烯基杂化材料在MFC应用中存在的问题及研究前景进行了总结和展望。

关键词: 石墨烯, 杂化材料, 微生物燃料电池, 阴极电极, 阳极电极

Abstract:

Microbial fuel cell (MFC) is a novel bioelectrochemical device that uses a biocatalyst to convert chemical energy stored in organic wastewater into electrical energy. However, multiple factors limit the practical applications of MFCs, such as the high cost of electrode production and their low conversion efficiencies of power density and energy. Therefore, improving the catalytic performance of the electrodes and lowering the cost of electrode production have become focuses in MFC research. Because of the excellent electrical conductivity and catalytic properties of graphene-based hybrid materials, the development of these electrode materials for use in MFCs has attracted much attention. This review summarizes recent advances of graphene-based hybrid electrodes in MFCs. The preparation methods and the catalytic performance of graphene-modified electrodes, metal and non-metallic/graphene hybrid electrodes, metal oxide/graphene hybrid electrodes, polymer/graphene hybrid electrodes, and graphene gel electrodes are discussed in detail. The influence of graphene-based hybrid anodes and cathodes on the electricity generation performance of MFCs is analyzed. Finally, the problems facing graphene-based hybrid electrodes for MFCs are summarized, and the application prospects of MFCs are considered.

Key words: Graphene, Hybrid material, Microbial fuel cell, Cathode electrode, Anode electrode