物理化学学报 >> 2017, Vol. 33 >> Issue (10): 1989-1997.doi: 10.3866/PKU.WHXB201705175
收稿日期:
2017-04-11
发布日期:
2017-07-17
通讯作者:
郑旭明
E-mail:zxm@zstu.edu.cn
基金资助:
Ying-Chun JIN,Xu-Ming ZHENG*()
Received:
2017-04-11
Published:
2017-07-17
Contact:
Xu-Ming ZHENG
E-mail:zxm@zstu.edu.cn
Supported by:
摘要:
硫代嘧啶碱基是光动力疗法潜在的重要光敏剂,其最低单重激发态的光物理研究已有广泛报道。然而,其较高激发态的跃迁性质和反应动力学研究较为稀少。因此,本文采用共振拉曼光谱和密度泛函理论计算方法研究2,4-二硫代尿嘧啶的紫外光谱和几个较高单重激发态的短时结构动力学。首先,基于共振拉曼光谱强度与电子吸收带振子强度f的关系,将紫外光谱去卷积成四个吸收带,分别为358 nm(f=0.0336)中等强度吸收带(A带),338 nm(f=0.1491)、301 nm(f=0.1795)和278 nm(f=0.3532)强而宽的吸收带(B、C和D带)。这一结果既吻合密度泛函理论计算结果,又符合共振拉曼光谱强度模式对紫外光谱带的预期。据此,去卷积得到的四个吸收带被分别指认为S0→S2跃迁、S0→S6跃迁、S0→S7跃迁和S0→S8跃迁。同时,分别对B,C和D带共振拉曼光谱进行了详细的指认,获得了短时动力学信息。结果表明,S8态短时动力学的显著特征是在Franck-Condon区域或附近发生了S8(ππ*)/S(nπ*)势能面交叉引发的、伴随超快结构扭转的非绝热过程。S7和S6态短时动力学的主要特征是反应坐标的多维性,它们分别沿C5C6/C2S8/C4S10/N2C3+C4N3H9/N1C2N3/C2N1C6/C6N1H7/C5C6H12和C5C6/N3C2/C4S10/C2S8+C6N1H7/C5C6H12/C5C6N1/C5C6H12/C2N1C6/N1C2N3/C4N3H9/N1C2N3等内坐标演化。
金颖淳,郑旭明. 2, 4-二硫代尿嘧啶的紫外吸收光谱和共振拉曼光谱[J]. 物理化学学报, 2017, 33(10), 1989-1997. doi: 10.3866/PKU.WHXB201705175
Ying-Chun JIN,Xu-Ming ZHENG. UV Absorption and Resonance Raman Spectra of 2, 4-Dithiouracil[J]. Acta Physico-Chimica Sinica 2017, 33(10), 1989-1997. doi: 10.3866/PKU.WHXB201705175
表1
在PCM溶剂模型下由B3LYP-TD/6-311++G(3df, 3pd)计算获得的24DTU的电子跃迁能(△E)、跃迁轨道和振子强度(f)"
State(Cs) | Orbital Transition | Transition Energy(△E)/nm (eV) | f | ||||||
Calc. | Expt.a | Calc. | Expt.a | ||||||
S1(A") | nH→πL*(0.68) + nH-2→πL*(-0.16) | 415(2.98) | 0.0000 | ||||||
S2(A') | πH-1→πL*(0.61) + πH-3→πL*(-0.32) + πH-1→πL+1*(0.10) | 343(3.61) | (358) | 0.0541 | 0.0336 | ||||
S3(A") | πH-2→πL*(0.54)+nH→πL+1*(0.33)+πH-2→πL+1*(0.25) + nH→πL*(0.16) | 340(3.64) | 0.0001 | ||||||
S4(A") | nH→πL+1 * (0.42) + πH-2→πL+1*(-0.41) + πH-2→πL*(0.37) | 333(3.72) | 0.0005 | ||||||
S5(A") | πH-2→πL+1* (0.54) + nH→πL+1*(-0.44) | 307(4.03) | 0.0005 | ||||||
S6(A') | πH-3→πL*(0.51) + πH-3→πL+1*(0.40) +πH-1→πL+1*(0.18)+ πH-1→πL*(0.18) | 305(4.05) | (338) | 0.1789 | 0.1491 | ||||
S7(A') | πH-1→πL+1*(0.42)+πH-3→πL+1*(0.35) + πH-3→πL*(-0.32)+ πH-1→πL*(-0.28) | 282(4.54) | (301) | 0.3181 | 0.1795 | ||||
S8(A') | πH-3→πL+1*(0.57) + πH-1→πL+1* (-0.37) | 265(4.66) | (278) | 0.4187 | 0.3532 | ||||
H-5n | πH-4 | πH-3 | πH-2 | πH-1 | nH | πL* | πL+1* |
表2
24DTU在B3LYP/6-31+G(d)计算水平下的计算频率和实验观察到的傅里叶变换红外和拉曼光谱的振动频率和指认"
Mode | Computed/cm-1 | Exp/cm-1 | descriptions | Assignment (PED/%) | ||||
a | b | FT-Raman | FT-IR | R.R.c | ||||
A'ν1 | 3633(89.04) | 3623 | N1H7 stretch | νN1H7 (100) | ||||
ν2 | 3585(32.96) | 3576 | N3H9 strech | νN3H9(100) | ||||
ν3 | 3267(93.21) | 3258 | C5H11 stretch | νC5H11(96) | ||||
ν4 | 3230(129.55) | 3221 | C6H12 stretch | νC6H12(96) | ||||
ν5 | 1658(134.44) | 1651 | 1604(m) | 1610 | 1618 | C5C6 stretch + C5C6H12 in plane bend | νC5C6(63) + δC5C6H12(10) | |
ν6 | 1573(3.90) | 1566 | 1549(w) | 1573 | 1546 | C4N3H9/C4N3H9in plane bend+ N1C2 strech | δC8N1H7(35) + δC4N3H9(24) + νN1C2(10) | |
ν7 | 1497(32.77) | 1490 | 1491(w) | 1487 | 1478 | C5C6H12/C6C3H11/C4N3H9 in plane bend+ N1C6 strech | δC4N3H9(26) + δC5C6H12(18) + δC6N3H11(15) + νN1C6(11) | |
ν8 | 1397(20.28) | 1391 | 1425(w) | 1412 | 1376 | C6N1H7/C4N3H9/C5C6H12 in plane bend | δC6N1H7(15) + δC6N3H9(23) + δC5C6H12(15) | |
ν9 | 1368(24.17) | 1362 | 1367(m) | 1359 | N1C2/N3C2 stretch | νN1C2(35) + νN3C2(17) | ||
ν10 | 1265(66.13) | 1259 | 1253(vs) | 1252 | N3C4/N3C2 stretch + C6C3H11 in plane bend | νN3C4(33) + δC6C5H11(18) + νN3C2(11) | ||
ν11 | 1241(29.72) | 1235 | 1228(vw) | 1232 | 1225 | N3C2/C4S10/C2S8 stretch + C5C6H12/C6N1H7 in plane bend | νN3C2(18) + νC4S10(18) + νC2S8(15) + δC5C6H12(11) + δC6N1H7(10) | |
ν12 | 1217(18.23) | 1211 | 1188(s) | 1211 | 1205 | C5C6H12/C6C3H11 in plane bend + N3C4 /N1C6 stretch | δC5C6H12(26) + δC6N3H11(14) + νN3C4(13) + νN1C6(13) | |
ν13 | 1128(18.35) | 1122 | 1118(w) | 1134 | 1122 | N1C2N3/C4N3H9 in plane bend + C4S10/C2S8 stretch | δN1C2N3(20) + νC4S10(15) + δC4N3H9(13) + νC2S8(15) | |
ν14 | 1086(15.33) | 1080 | 1077(w) | 1074 | 1069 | C6C3H11 in plane bend + N1C6/C5C6 stretch | δC6N3H11(28) + νN1C6(25) + νC5C6(10) | |
ν15 | 986(2.92) | 980 | 983(w) | 984 | 982 | C5C6N1/C5C6H12/C2N1C6/N1C2N3 in plane bend + N1C6 stretch | δC5C6N1(35) + δC5C6H12(14) + δC2N1C6(13) + δN1C2N3(11) + νN1C6(10) | |
ν16 | 878(1.25) | 872 | 860 | C2N1C6 in plane bend + C2S8/C4S10 stretch | δC2N1C6(25) + νC2S8(21) + νC4S10(19) | |||
ν17 | 693(24.32) | 688 | 683(s) | 680 | 684 | C2N1C6/N1C2N3/C2N3C4 in plane bend + N1C2 stretch | δC2N1C6(27) + νN1C2(20) + δN1C2N3(10) + δC2N3C4(13) | |
ν18 | 463(10.63) | 458 | 460(w) | 467 | 493 | C2S8 stretch + N1C2N3 in plane bend | νC2S8(34) + δN1C2N3(29) | |
ν19 | 445(20.36) | 440 | 443(m) | 447 | 463 | C2N3C4in plane bend + C4S10/N3C2 stretch | δC2N3C4(35) + νC4S10(28) + νN3C2(16) | |
ν20 | 388(2.21) | 383 | 387(w) | N3C2S8/C5C4H10 in plane bend | δN3C2S8(45) + δC5C4H10(45) | |||
ν21 | 215(7.84) | 210 | 229(w) | C5C4H10/N3C2S8 in plane bend | δC5C4H10(39) + δN3C2S8(37) | |||
A"ν22 | 963(3.55) | 957 | 964(vw) | C4C5C6H12/N1C6C5H11/C2N1C6C5 Torsion | τC4C5C6H12(55) + τN1C6C5H11(26) + τC2N1C6C5(14) | |||
ν23 | 799(0.15) | 793 | N1C6C5H11/C4C5C6H12 Torsion | τN1C6C5H11(61)+τC4C5C6H12(29) | ||||
ν24 | 740(0.81) | 734 | C5C4N3H9 Ring deformation | τC5C4N3H9(92) | ||||
ν25 | 680(0.65) | 675 | N3C4C5S10 Out of plane bend + C5C6N1H7/C2N1C6C5/N1C2N3C4 Torsion | γC4C5N3S10(27) + τC5C6N1H7(18)+ τC2N1C6C5(13) + τN1C2N3C4(13) | ||||
ν26 | 621(1.60) | 616 | C5C2N3S8 Out of plane bend + C5C6N1H7 Torsion | γC5C2N3S8(51) + τC5C6N1H7(41) | ||||
ν27 | 592(3.65) | 587 | 611(vw) | C5C6N1H7 Torsion + N3C4C5S10/N5C2N3S8 Out of plane bend | τC5C6N1H7(37) + γN3C4C5S10(28) + γC5C2N3S8(21) | |||
ν28 | 390(0.62) | 385 | 386 | C2N1C6C5/C4C5C6H12 Torsion + N3C4C5S10 Out of plane bend | τC2N1C6C5(46) + γN3C4C5S10(22) + τC4C5C6H12(13) | |||
ν29 | 148(0.06) | 143 | C6N1C2N3/ C2N1C6C5/N1C2N3C4 Torsion | τC6N1C2N3(55) + τC2N1C6C5(21)+ τN1C2N3C4(15) | ||||
ν30 | 127(0.01) | 122 | N1C2N3C4/C6N1C2N3 Torsion + N3C4C5S10 Out of plane bend | τN1C2N3C4(65) + τC6N1C2N3(14) + γC4C5N3S10(10) |
1 |
Crespo-Hernández C. E. ; Cohen B. ; Hare P. M. ; Kohler B. Chem. Rev 2004, 104 (4), 1977.
doi: 10.1021/cr0206770 |
2 |
Crespo-Hernández C. E. ; Cohen B. ; Kohler B. Nature 2005, 436 (7054), 1141.
doi: 10.1038/nature03933 |
3 |
Middleton C. T. ; De La Harpe K. ; Su C. ; Law Y. K. ; Crespo-Hernández C. E. B ; Kohler B. Ann. Rev. Phys. Chem 2009, 60, 217.
doi: 10.1146/annurev.physchem.59.032607.093719 |
4 |
Buchvarov I. ; Wang Q. ; Raytchev M. ; Trifonov A. ; Fiebig T Proc. Nat. Acad. Sci 2007, 104 (12), 4794.
doi: 10.1073/pnas.0606757104 |
5 |
Markovitsi D. ; Onidas D. ; Gustavsson T. ; Talbot F. ; Lazzarotto E. J.Am. Chem. Soc. 2005, 127 (49), 17130.
doi: 10.1021/ja054955z |
6 |
Kuramochi H. ; Kobayashi T. ; Suzuki T. ; Ichimura T. J.Phys. Chem. A 2010, 114 (26), 8782- 8789.
doi: 10.1021/jp102067t |
7 |
Pollum M. ; Crespo-Hernández C. E. J.Phys. Chem. 2014, 140, 07110.
doi: 10.1063/1.4866447 |
8 |
Pollum M. ; Jockusch S. ; Crespo-Hernández C. E. J.Am. Chem. Soc. 2014, 136 (52), 17930.
doi: 10.1021/ja510611j |
9 |
Taras-Goślińska K. ; Burdziński G. ; Wenska G. J.Photochem. Photobiol. A 2014, 275, 89.
doi: 10.1016/j.jphotochem.2013.11.003 |
10 |
Harada Y. ; Suzuki T. ; Ichimura T. ; Xu Y. J.Phys. Chem. B 2007, 111 (19), 5518.
doi: 10.1021/jp0678094 |
11 |
Harada Y. ; Okabe C. ; Kobayashi T. ; Suzuki T. ; Ichimura T. ; Nishi N. ; Xu Y. Z. J.Phys. Chem. Lett. 2009, 1 (2), 480.
doi: 10.1021/jz900276x |
12 |
Reichardt C. ; Crespo-Hernández C. E. J.Phys. Chem. Lett. 2010, 1 (15), 2239.
doi: 10.1021/jz100729w |
13 |
Reichardt C. ; Crespo-Hernández C. E Chem. Commun 2010, 46 (32), 5963.
doi: 10.1039/C0CC01181A |
14 |
Zhang Y. ; Zhu X. ; Smith J. ; Haygood M. ; Gao R. J.Phys. Chem. B 2011, 115 (8), 1889.
doi: 10.1021/jp109590t |
15 |
Reichardt C. ; Guo C. ; Crespo-Hernández C. E J.Phys. Chem. B 2011, 115 (12), 3263- 3270.
doi: 10.1021/jp112018u |
16 |
Martínez-Fernández L. ; González L. ; Corral I. Chem. Commun. 2012, 48 (15), 2134.
doi: 10.1039/C2CC15775F |
17 |
Cui G. ; Fang W. J.Chem. Phys. 2013, 138 (4), 044315.
doi: 10.1063/1.4776261 |
18 | Pollum, M,; Martínez-Fernández, L.; Crespo-Hernández, C. E. Photoinduced Phenomena in Nucleic Acid I; Springer: NY, US, 1970; p 33. doi: 10.1007/128_2014_554 |
19 |
Gobbo J. P. ; Borin A. C. ; Serrano-Andrés L. J. Phys. Chem. B 2011, 115 (19), 6243.
doi: 10.1021/jp200297z |
20 |
Kobayashi T. ; Kuramochi H. ; Harada Y. ; Suzuki T. Ichimura T. J.Phys. Chem. A 2009, 113 (44), 12088.
doi: 10.1021/jp905433s |
21 |
Kobayashi T. ; Harada Y. ; Suzuki T. ; Ichimura T. J. Phys. Chem. A 2008, 112 (51), 13308.
doi: 10.1021/jp803096j |
22 |
Jiang J. ; Zhang T. S. ; Xue J. D. ; Zheng X. M. J.Chem. Phys. 2015, 143 (17), 11B605_1.
doi: 10.1063/1.4935047 |
23 |
Xie B. B. ; Wang Q. ; Guo W. W. ; Cui G. L. Phys. Chem. Chem. Phys. 2017, 19 (11), 7689.
doi: 10.1039/C7CP00478H |
24 |
Li M. J. ; Liu M. X. ; Zheng X. J. Acta Phys.-Chim. Sin. 2013, 29 (5), 903.
doi: 10.3866/PKU.WHXB201302272 |
李明娟; 刘明霞; 郑旭明. 物理化学学报, 2013, 29 (5), 903.
doi: 10.3866/PKU.WHXB201302272 |
|
25 | Frisch M. J. ; Treucks G. W. ; Schlegel H.B. ; et al Gauss 09 Gaussian Inc.: Wallingford, CT, 2009. |
26 |
Jamróz M. H. Spectrochim. Acta A 2013, 114, 220.
doi: 10.1016/j.saa.2013.05.096 |
27 | Dennington, R.; Keith, T.; Millam, J. GaussView, version 5.Semichem Inc.: Shawnee Mission, KS, 2009. |
28 |
Galica G. E. ; Johnson B. R. ; Kinsey J. L. ; Hale M. O. J.Phys. Chem. 1991, 95, 7994.
doi: 10.1021/j100174a003 |
29 |
Phillips D. L. ; Myers A. B. J.Chem. Phys. 1991, 95, 226.
doi: 10.1063/1.461479 |
30 |
Biswas N. ; Umapathy S. J.Phys. 1997, 48 (4), 937.
doi: 10.1007/BF02845597 |
31 |
Tang J. ; Albrecht A. C. J.Chem. Phys. 1968, 49 (3), 1144.
doi: 10.1063/1.1670202 |
32 |
Tang J ; Albrecht A. C. Raman Spectrosc 1970, 33
doi: 10.1007/978-1-4684-3027-1_2 |
33 |
Li M. J. ; Liu M. X. ; Zhao Y. Y. ; Pei K. M. ; Wang H. G. J.Phys Chem. B 2013, 117 (39), 11660.
doi: 10.1021/jp403798d |
34 |
Fang W. X. ; Zheng X. M. ; Wang H. G. ; Zhao Y. Y. ; Guang X.G. ; Phillips D. L. ; Chen X. B. ; Fang W. H. J.Phys. Chem. 2008, 133, 134507.
doi: 10.1021/jp510396y |
35 |
Yang Y. ; Pan S. ; Xue J. D. ; Zheng X. D. ; Phillips D. L. ; Fang W.H. J.Raman Spectrosc. 2014, 45 (1), 105.
doi: 10.1002/jrs.4420 |
36 |
Liu M X. ; Xie B. B. ; Li M. J. ; Zhao Y. Y. ; Pei K. M. ; Wang H. G. ; Zheng X. M. J.Raman Spectrosc. 2013, 44 (3), 440.
doi: 10.1002/jrs.4213 |
[1] | 徐涵煜, 宋雪旦, 张青, 于畅, 邱介山. 理论研究Cu@C2N催化剂表面上水分子对电催化CO2还原反应机理的影响[J]. 物理化学学报, 2024, 40(1): 2303040 - . |
[2] | 王鹤然, 陈凯, 伏硕, 王晧暄, 袁加轩, 胡星奕, 许文娟, 密保秀. 三种同分异构的双苯并吩噻嗪材料的合成、理论计算及光物理性质[J]. 物理化学学报, 2024, 40(1): 2303047 - . |
[3] | 罗铖, 龙庆, 程蓓, 朱必成, 王临曦. Pt-C3N4/BiOCl S型异质结应用于光催化CO2还原的理论计算研究[J]. 物理化学学报, 2023, 39(6): 2212026 - . |
[4] | 李若宁, 张雪, 薛娜, 李杰, 吴天昊, 徐榛, 王一帆, 李娜, 唐浩, 侯士敏, 王永锋. Ag(111)表面Ag配位结构的分等级组装[J]. 物理化学学报, 2022, 38(8): 2011060 - . |
[5] | 卢浩然, 魏雅清, 龙闰. 纳米孔缺陷导致单层黑磷电荷局域极大抑制非辐射电子-空穴复合的时域模拟[J]. 物理化学学报, 2022, 38(5): 2006064 - . |
[6] | 杨贻顺, 周敏, 邢燕霞. 基于γ-石墨炔分子磁隧道结对称性依赖的输运性质[J]. 物理化学学报, 2022, 38(4): 2003004 - . |
[7] | 李孟婷, 郑星群, 李莉, 魏子栋. 碱性介质中氢氧化和析氢反应机理研究现状[J]. 物理化学学报, 2021, 37(9): 2007054 - . |
[8] | 周君慧, 敖志敏, 安太成. 基于密度泛函理论下H2S在单原子催化剂V/Ti2CO2上的分解机理研究[J]. 物理化学学报, 2021, 37(8): 2007086 - . |
[9] | 王云飞, 刘建华, 于美, 钟锦岩, 周琪森, 邱俊明, 张晓亮. SnO2表面卤化提高钙钛矿太阳能电池光伏性能[J]. 物理化学学报, 2021, 37(3): 2006030 - . |
[10] | 施俊杰, 胡子琦, 杨逸豪, 步宇翔, 施祖进. 内嵌金属碳氮化物团簇富勒烯的稳定性与生成机理[J]. 物理化学学报, 2021, 37(10): 1907077 - . |
[11] | 李诗涵,赵侦超,李世坤,邢友东,张维萍. DFT计算结合固体NMR研究富铝SSZ-13的铝分布和Brønsted酸性[J]. 物理化学学报, 2020, 36(4): 1903021 - . |
[12] | 肖雪珠, 曹小芳, 赵东波, 荣春英, 刘述斌. 运用概念密度泛函理论和信息论方法定量描述胺类分子的分子碱度[J]. 物理化学学报, 2020, 36(11): 1906034 - . |
[13] | 黄智超,戴亚中,温晓杰,刘丹,林宇轩,徐珍,裴坚,吴凯. Au(111)表面Verdazyl自由基的构象转换[J]. 物理化学学报, 2020, 36(1): 1907043 - . |
[14] | 王丹,丁迅雷,廖珩璐,戴佳钰. 单个金或银原子掺杂的氧化钒团簇上的甲烷活化反应[J]. 物理化学学报, 2019, 35(9): 1005 -1013 . |
[15] | 陈强,姜利学,李海方,陈娇娇,赵艳霞,何圣贵. 钒硼双原子阳离子活化甲烷研究[J]. 物理化学学报, 2019, 35(9): 1014 -1020 . |
|