物理化学学报 >> 2020, Vol. 36 >> Issue (2): 1903052.doi: 10.3866/PKU.WHXB201903052
所属专题: 超级电容器
收稿日期:
2019-03-25
录用日期:
2019-04-25
发布日期:
2019-05-08
通讯作者:
张苏,范壮军
E-mail:suzhangs@163.com;fanzhj666@163.com
作者简介:
张苏,男,1989年生。分别于2011年、2016年在北京化工大学获得学士和博士学位,师从宋怀河教授。现为新疆大学应用化学研究所副教授,主要从事炭材料及其在超级电容器、锂离子电池方面的应用研究|范壮军,男,中国石油大学(华东)教授,2003年博士毕业于中国科学院山西煤炭化学研究所,曾获国家“万人计划”科技创新领军人才,省部级科技一等奖两项。目前主要从事纳米炭材料在储能、催化、环保领域的应用基础研究
基金资助:
Jiayao Zhu1,Yue Dong2,Su Zhang1,*(),Zhuangjun Fan3,*()
Received:
2019-03-25
Accepted:
2019-04-25
Published:
2019-05-08
Contact:
Su Zhang,Zhuangjun Fan
E-mail:suzhangs@163.com;fanzhj666@163.com
Supported by:
摘要:
炭-/石墨烯量子点作为新兴的炭纳米材料,因具有独特的小尺寸效应和丰富的边缘活性位点而在高性能超级电容器电极材料的研发方面展现出巨大潜力。针对目前炭-/石墨烯量子点在超级电容器电极材料方面的应用优势和存在的关键问题,本文以炭-/石墨烯量子点、量子点/导电炭复合材料、量子点/金属氧化物复合材料、量子点/导电聚合物复合材料以及量子点衍生炭这些电极材料为脉络,梳理了近年来该领域的发展状况,尝试阐释炭-/石墨烯量子点在电极材料、复合材料和衍生炭电极材料中所起到的关键作用,最后对炭-/石墨烯量子点电极材料的发展进行了展望。本综述以期为炭-/石墨烯量子点基电极材料的研究提供一定参考和依据。
朱家瑶, 董玥, 张苏, 范壮军. 炭-/石墨烯量子点在超级电容器中的应用[J]. 物理化学学报, 2020, 36(2), 1903052. doi: 10.3866/PKU.WHXB201903052
Jiayao Zhu, Yue Dong, Su Zhang, Zhuangjun Fan. Application of Carbon-/Graphene Quantum Dots for Supercapacitors[J]. Acta Physico-Chimica Sinica 2020, 36(2), 1903052. doi: 10.3866/PKU.WHXB201903052
表1
炭-/石墨烯量子点-导电炭复合电极材料超级电容器的性能"
Materials | Methods | Interaction | Function of CD/GQD | Specific surface area (m2.g−1) | Specific capacitance | Rate capability | Electrolyte | Testing system | Ref. |
CD/graphene oxide | microfluid spinning | hydrogen bond | pillar | 435.1 | 91.9 F∙g−1@ 0.1 mA∙cm−2 | 60.1 F∙g−1@ 1 mA∙cm−2 | H2SO4/PVA | solid | |
CD/activated carbon | sonication | – | – | 723 | 134 F∙g−1@ 1 A∙g−1 | 95 F∙g−1@ 50 mV∙s−1 | 6 mol∙L−1 KOH | two electrode | |
GQD/carbonized MOF-5 | electrochemical deposition | – | providing pseudocapacitance, increasing surface wettability | 704.2 | 780 F∙g−1@ 10 mV∙s−1 | – | 1 mol∙L−1 H2SO4 | three electrode | |
294.1 F∙g−1@ 0.5 A∙g−1 | 195.8 F∙g−1@ 20 A∙g−1 | two electrode | |||||||
GQD/graphene hydrogel | electrochemical deposition | – | providing sub-nanometer pores | 292 | 268 F∙g−1@ 1.25 A∙g−1 | 130 F∙g−1@ 5 A∙g−1 | 1 mol∙L−1 H2SO4 | two electrode | |
GQD/porous graphene oxide | ozone treatment | chemical bond | pillar | 7.24 | 353 F∙g−1@ 2 mV∙s−1 | 234 F∙g−1@ 500 mV∙s−1 | 6 mol∙L−1 KOH | three electrode | |
69.7 F∙g−1@ 2 mV∙s−1 | 26.2 F∙g−1@ 500 mV∙s−1 | 1 mol∙L−1 Na2SO4 | two electrode | ||||||
GQD/graphene | electrochemical deposition | metal chelating/coordination | – | – | 7.02 μF∙cm−2@ 0.02 μA∙cm−2 | 3.22 μF∙cm−2@ 0.03 μA∙cm−2 | H2SO4/PVA | solid | |
GQD/carbon nanofiber | low temperature synthesis | covalent ester bond | providing active sites | – | 213 F∙g−1@ 1 A∙g−1 | 31 F∙g−1@ 10 A∙g−1 | 1 mol∙L−1 H2SO4 | two electrode | |
GQD/chitosan-derived carbon | carbonization | – | – | – | 545 F∙g−1@ 1 A∙g−1 | 175 F∙g−1@ 20 A∙g−1 | 1 mol∙L−1 H2SO4 | three electrode | |
CD/polyacrylamide-derived carbon | carbonization | – | – | 1025 | 468 F∙g−1@ 1 A∙g−1 | 374 F∙g−1@ 30 A∙g−1 | 3 mol∙L−1 KOH | three electrode | |
510 F∙g−1@ 1 A∙g−1 | 398 F∙g−1@ 30 A∙g−1 | 4 mol∙L−1 H2SO4 | three electrode | ||||||
438 F∙g−1@ 1 A∙g−1 | 312 F∙g−1@ 30 A∙g−1 | 1 mol∙L−1 Li2SO4 | three electrode | ||||||
N-doping GQD/carbonized MOF-8-CNT | electrochemical deposition | – | providing pseudocapacitance, increasing wettability | 520 | 540 F∙g−1@ 0.5 A∙g−1 | 332.1 F∙g−1@ 20 A∙g−1 | 1 mol∙L−1 H2SO4 | two electrode | |
CD/reduced graphene oxide | hydrothermal deposition | – | pillar | 44.52 | 308 F∙g−1@ 0.5 A∙g−1 | 222 F∙g−1@ 20 A∙g−1 | 6 mol∙L−1 KOH | three electrode | |
GQD/carbon nanotube/carbon cloth | electrochemical deposition | – | increasing interface interaction | – | 592.8 mF∙cm−2@ 0.5 mA∙cm−2 | 461 mF∙cm−2@ 20 mA∙cm−2 | H2SO4/PVA | solid | |
N-doping GQD/ graphene oxide | optical reduction | – | pillar | – | 344 F∙g−1@ 0.25 A∙g−1 | 210 F∙g−1@ 4.17 A∙g−1 | 6 mol∙L−1 KOH | three electrode | |
GQD/glucosamine hydrochloride | hydrothermal-carbonization | – | improving conductivity | 2829 | 388 F∙g−1@ 1 A∙g−1 | 233 F∙g−1@ 100 A∙g−1 | 6 mol∙L−1 KOH | two electrode |
表2
炭-/石墨烯量子点-赝电容组分复合电极材料"
Materials | Methods | Influence on morphologies | Electrolyte | Specific capacitance | Cycle stability | Function of CD/GQD | Ref. | |
CD/RuO2 | mixing | – | 1 mol∙L−1 H2SO4 | 594 F∙g−1@1 A∙g−1 460 F g−1@50 A∙g−1 | 97% @ 5000 cycles @ 5 A∙g−1 | improving conductivity | ||
CD/Ni(OH)2 | hydrothermal treatment | control morphology change | 2 mol∙L−1 KOH | 2750 F∙g−1@1 A g−1, 1763 F∙g−1@20 A∙g−1 | 96% @ 2000 cycles @ 20 A∙g−1 | improving conductivity, inducing morphology change, accelerating ion transport | ||
CD/NiCo2O4 | reflux-heat treatment | – | 2 mol∙L−1 KOH | 856 F∙g−1@1 A∙g−1 520 F∙g−1@100 A∙g−1 | 99% @ 10000 cycles @ 5 A∙g−1 | improving conductivity | ||
CD/NiCo2O4 | hydrothermal-air heat treatment | control morphology change | 3 mol∙L−1 KOH | 2168 F∙g−1@1 A∙g−1, 1620 F∙g−1@30 A∙g−1 | No fading @ 5000 cycles @ 30 A∙g−1 | inducing morphology change, accelerating ion transport, increasing wettability | ||
CD/MnO2 | hydrothermal treatment | control morphology change | 1 mol∙L−1 Na2SO4 | 340 F∙g−1@1 A∙g−1 260 F∙g−1@20 A∙g−1 | 76% @ 10000 cycles @ 1 A∙g−1 | improving conductivity and wettability | ||
GQD/MnO2 | plasma enhanced chemical vapor deposition | Mn-O-C bond | 1 mol∙L−1 Na2SO4 | 1094 F∙g−1@5 mV∙s−1, 380 F∙g−1@100 mV∙s−1 | 95% @ 10000 cycles @ 1 A∙g−1 | improving conductivity and stability | ||
GQD/halloysite nanotubes | electrostatic assembly | – | 1 mol∙L−1 Na2SO4 | 323 F∙g−1@5 mV∙s−1, 186 F∙g−1@100 mV∙s−1, 363 F∙g−1@0.5 A∙g−1, 216 F∙g−1@20 A∙g−1 | 88% @ 5000 cycles @ 6 A∙g−1 | accelerating ion transport | ||
N-doped GQD /Fe3O4/halloysite nanotubes | electrostatic assembly | – | 1 mol∙L−1 Na2SO4 | 370 F∙g−1@5 mV ∙s−1, 210 F∙g−1@100 mV∙s−1, 418 F∙g−1@0.5 A∙g−1, 130 F∙g−1@10 A∙g−1 | 83% @ 3000 cycles @ 1 A∙g−1 | accelerating ion transport | ||
GQD/polyaniline | mixed oxidation-polymerization | control morphology change | 0.5 mol∙L−1 H2SO4 | 1044 F∙g−1@1 A∙g−1, 635 F∙g−1@10 A∙g−1 | 80% @ 3000 cycles @ 1 A∙g−1 | increase structural stability, accelerating ion transport | ||
CD/polyaniline | mixed oxidation-polymerization | control morphology change | 1 mol∙L−1 H2SO4 | 970 F∙g−1@1 A∙g−1, 610 F∙g−1@20 A∙g−1 | 85% @ 2000 cycles @ 10 A∙g−1 | improving structural stability and conductivity | ||
CD/polyaniline | electrochemical polymerization | – | 1 mol∙L−1 H2SO4 | 738 F∙g−1@1 A∙g−1, 495 F∙g−1@10 A∙g−1 | 78% @ 1000 cycles @ 5 A∙g−1 | increase structural stability, accelerating ion transport | ||
CD/polypyrrole | electrostatic adsorption | – | 1 mol∙L−1 KCl | 306 F∙g−1@0.5 A∙g−1, 210 F∙g-1 @ 40 A∙g-1 | 85% @ 5000 cycles @ 5mA∙cm−2 | Increase structural stability, accelerating ion transport | ||
graphene aerogel /CD/CuS | hydrothermal-heat treatment | – | 6 mol∙L−1 KOH | 782 F∙g−1@1 A∙g−1, 410 F∙g−1@10 A∙g−1 | 80% @ 5000 cycles @ 5 A∙g−1 | increasing interface bonding, providing pseudocapacitance | ||
Graphene/CD/ MnOx | low temperature chemical reduction | reductant, crystalline core | 1 mol∙L−1 Na2SO4 | 480 F∙g−1@0.2 A∙g−1, 100 F∙g−1@1.25 A∙g−1 | 94.7% @ 10000 cycles @ 1.2 A∙g−1 | protecting graphene structure | ||
graphene aerogel/CD/MnO2 | hydrothermal-oxidation | reducing MnO2 particle sizes | 1 mol∙L−1 Na2SO4 | 721 F∙g−1@1 A∙gW#8722;1, 643 F∙g−1@20 A∙g−1 | 92% @ 10000 cycles @ 10 A∙g−1 | increasing interface bonding and stability | ||
graphene oxide/CD/polypyrrole | blending polymerization | – | 1 mol∙L−1 LiCl | 576 F∙g−1@0.5 A∙g−1, 488 F∙g−1@10 A∙g−1 | 93% @ 1000 cycles @ 10 A∙g−1 | increasing interface bonding and dielectrical property |
1 |
Simon P. ; Gogotsi Y. Nat. Mater. 2008, 7, 845.
doi: 10.1038/nmat2297 |
2 |
Salanne M. ; Rotenberg B. ; Naoi K. ; Kaneko K. ; Taberna P. L. ; Grey C. P. ; Dunn B. ; Simon P. Nature Energy 2016, 1 (6), 16070.
doi: 10.1038/nenergy.2016.70 |
3 |
Wang F. ; Wu X. ; Yuan X. ; Liu Z. ; Zhang Y. ; Fu L. ; Zhu Y. ; Zhou Q. ; Wu Y. ; Huang W. Chem. Soc. Rev. 2017, 46 (22), 6816.
doi: 10.1039/c7cs00205j |
4 |
Wang G. ; Zhang L. ; Zhang J. Chem. Soc. Rev. 2012, 41 (2), 797.
doi: 10.1039/c1cs15060j |
5 |
Simon P. ; Gogotsi Y. Acc. Chem. Res. 2013, 46 (5), 1094.
doi: 10.1021/ar200306b |
6 |
Wang Y. ; Song Y. ; Xia Y. Chem. Soc. Rev. 2016, 45 (21), 5925.
doi: 10.1039/c5cs00580a |
7 |
Xu Y. ; Wang X. ; Zhang W. L. ; Lv F. ; Guo S. Chem. Soc. Rev. 2018, 47 (2), 586.
doi: 10.1039/c7cs00500h |
8 |
Lim S. Y. ; Shen W. ; Gao Z. Chem. Soc. Rev. 2015, 44 (1), 362.
doi: 10.1039/c4cs00269e |
9 |
Wang Y. ; Hu A. J. Mater. Chem. C 2014, 2 (34), 6921.
doi: 10.1039/c4tc00988f |
10 |
Li L. ; Wu G. ; Yang G. ; Peng J. ; Zhao J. ; Zhu J. J. Nanoscale 2013, 5 (10), 4015.
doi: 10.1039/c3nr33849e |
11 |
Zhang Z. ; Zhang J. ; Chen N. ; Qu L. Energy Environ. Sci. 2012, 5 (10), 8869.
doi: 10.1039/c2ee22982j |
12 |
Zheng X. T. ; Ananthanarayanan A. ; Luo K. Q. ; Chen P. Small 2015, 11 (14), 1620.
doi: 10.1002/smll.201402648 |
13 |
Xia R. ; Wang S. M. ; Dong W. W. ; Fang X. D. Acta Phys. -Chim. Sin. 2017, 33 (4), 670.
doi: 10.3866/PKU.WHXB201701101 |
夏锐; 王时茂; 董伟伟; 方晓东. 物理化学学报, 2017, 33 (4), 670.
doi: 10.3866/PKU.WHXB201701101 |
|
14 |
He P. ; Yuan F. L. ; Wang Z. F. ; Tan Z. A. ; Fan L. Z. Acta Phys. -Chim. Sin. 2018, 34 (11), 1250.
doi: 10.3866/PKU.WHXB201804041 |
贺平; 袁方龙; 王子飞; 谭占鳌; 范楼珍. 物理化学学报, 2018, 34 (11), 1250.
doi: 10.3866/PKU.WHXB201804041 |
|
15 |
Hu C. ; Mu Y. ; Li M. Y. ; Qiu J. S. Acta Phys. -Chim. Sin. 2019, 35 (6), 572.
doi: 10.3866/PKU.WHXB201806060 |
胡超; 穆野; 李明宇; 邱介山. 物理化学学报, 2019, 35 (6), 572.
doi: 10.3866/PKU.WHXB201806060 |
|
16 |
Liu J. ; Ye J. L. ; Pan F. ; Wang X. Y. ; Zhu Y. W. Sci. China Mater. 2019, 62 (4), 545.
doi: 10.1007/s40843-018-9309-x |
刘杰; 叶江林; 潘飞; 王向阳; 朱彦武. 中国科学材料科学, 2019, 62 (4), 545.
doi: 10.1007/s40843-018-9309-x |
|
17 |
Xie G. S. ; Hao F. ; Lu K. F. ; Zhang J. Battery Bimonthly 2017, 47 (6), 370.
doi: 10.19535/j.1001-1579.2017.06.014 |
谢观水; 郝凡; 路凯峰; 张坚. 电池, 2017, 47 (6), 370.
doi: 10.19535/j.1001-1579.2017.06.014 |
|
18 |
Shi Z. Q. ; Niu Y. F. ; Duan J. ; Wang J. ; Zhang J. J. Tianjin Polytech.c Univ. 2018, 37 (3), 49.
doi: 10.3969/j.issn.1671-024x.2018.03.009 |
时志强; 牛永芳; 段建; 王静; 张进. 天津工业大学学报, 2018, 37 (3), 49.
doi: 10.3969/j.issn.1671-024x.2018.03.009 |
|
19 | Wu K. ; Xu S. Z. ; Zhou X. J. ; Wu H. X. J. Electrochem. 2013, 19 (4), 361. |
吴坤; 许思哲; 周雪皎; 吴海霞. 电化学, 2013, 19 (4), 361. | |
20 |
Ding Z. C. ; Zhang L. ; Liu J. Sci. China Chem. 2018, 48 (8), 902.
doi: 10.13208/j.electrochem.2013.04.004 |
丁自成; 张璐; 刘俊. 中国科学:化学, 2018, 48 (8), 902.
doi: 10.13208/j.electrochem.2013.04.004 |
|
21 |
Liu H. ; Ye T. ; Mao C. Angew. Chem. Int. Ed. 2007, 46 (34), 6473.
doi: 10.1002/anie.200701271 |
22 |
Dong Y. ; Zhou N. ; Lin X. ; Lin J. ; Chi Y. ; Chen G. Chem. Mater. 2010, 22 (21), 5895.
doi: 10.1021/cm1018844 |
23 |
Liu R. ; Wu D. ; Liu S. ; Koynov K. ; Knoll W. ; Li Q. Angew. Chem. Int. Ed. 2009, 48 (25), 4598.
doi: 10.1002/anie.200900652 |
24 |
Pan D. ; Zhang J. ; Li Z. ; Wu M. Adv. Mater. 2010, 22 (6), 734.
doi: 10.1002/adma.200902825 |
25 |
Pan D. ; Guo L. ; Zhang J. ; Xi C. ; Xue Q. ; Huang H. ; Li J. ; Zhang Z. ; Yu W. ; Chen Z. ; et al J. Mater. Chem. 2012, 22 (8), 3314.
doi: 10.1039/c2jm16005f |
26 |
Lu J. ; Yan M. ; Ge L. ; Ge S. ; Wang S. ; Yan J. ; Yu J. Biosens. Bioelectron. 2013, 47, 271.
doi: 10.1016/j.bios.2013.03.039 |
27 |
Zhou J. G. ; Booker C. ; Li R. Y. ; Zhou X. T. ; Sham T. -K. ; Sun X. L. ; Ding Z. F. J. Am. Chem. Soc. 2007, 129 (4), 744.
doi: 10.1021/ja0669070 |
28 |
Peng J. ; Gao W. ; Gupta B. K. ; Liu Z. ; Romero-Aburto R. ; Ge L. ; Song L. ; Alemany L. B. ; Zhan X. ; Gao G. ; et al Nano Lett. 2012, 12 (2), 844.
doi: 10.1021/nl2038979 |
29 |
Bourlinos A. B. ; Stassinopoulos A. ; Anglos D. ; Zboril R. ; Karakassides M. ; Giannelis E. P. Small 2008, 4 (4), 455.
doi: 10.1002/smll.200700578 |
30 |
Dong Y. ; Shao J. ; Chen C. ; Li H. ; Wang R. ; Chi Y. ; Lin X. ; Chen G. Carbon 2012, 50 (12), 4738.
doi: 10.1016/j.carbon.2012.06.002 |
31 |
Yang Z. C. ; Wang M. ; Yong A. M. ; Wong S. Y. ; Zhang X. H. ; Tan H. ; Chang A. Y. ; Li X. ; Wang J. Chem. Commun. 2011, 47 (42), 11615.
doi: 10.1039/c1cc14860e |
32 |
Tang L. J. R. ; Cao X. ; Lin J. ; Jiang H. ; Li X. ; Teng K. S. ; Luk C. M. ; Zeng S. ; Hao J. ; Lau S. P. ACS Nano 2012, 6 (6), 5102.
doi: 10.1021/nn300760g |
33 |
Lu J. ; Yeo P. S. ; Gan C. K. ; Wu P. ; Loh K. P. Nat. Nanotechnol. 2011, 6 (4), 247.
doi: 10.1038/nnano.2011.30 |
34 |
Li Z. ; Qin P. ; Wang L. ; Yang C. ; Li Y. ; Chen Z. ; Pan D. ; Wu M. Electrochim. Acta 2016, 208, 260.
doi: 10.1016/j.electacta.2016.05.030 |
35 |
Wang L. ; Wang Y. ; Xu T. ; Liao H. ; Yao C. ; Liu Y. ; Li Z. ; Chen Z. ; Pan D. ; Sun L. ; et al Nat. Commun. 2014, 5 (1), 5357.
doi: 10.1038/ncomms6357 |
36 |
Randin J. P. ; Yeager E. J. Electroanal. Chem. 1972, 36 (2), 257.
doi: 10.1016/S0022-0728(72)80249-3 |
37 |
Randin J. P. ; Yeager E. J. Electroanal. Chem. 1975, 58 (2), 313.
doi: 10.1016/S0022-0728(75)80089-1 |
38 |
Chen J. ; Han Y. ; Kong X. ; Deng X. ; Park H. J. ; Guo Y. ; Jin S. ; Qi Z. ; Lee Z. ; Qiao Z. ; et al Angew. Chem. Int. Ed. 2016, 55 (44), 13822.
doi: 10.1002/anie.201605926 |
39 |
Zhu J. ; Childress A. S. ; Karakaya M. ; Dandeliya S. ; Srivastava A. ; Lin Y. ; Rao A. M. ; Podila R. Adv. Mater. 2016, 28 (33), 7185.
doi: 10.1002/adma.201602028 |
40 |
Wang H. ; Wang Y. ; Hu Z. ; Wang X. ACS Appl. Mater. Interfaces 2012, 4 (12), 6827.
doi: 10.1021/am302000z |
41 |
Liu W. W. ; Feng Y. Q. ; Yan X. B. ; Chen J. T. ; Xue Q. J. Adv. Funct. Mater. 2013, 23 (33), 4111.
doi: 10.1002/adfm.201203771 |
42 |
Liu W. ; Yan X. ; Chen J. ; Feng Y. ; Xue Q. Nanoscale 2013, 5 (13), 6053.
doi: 10.1039/c3nr01139a |
43 |
Shen B. ; Lang J. ; Guo R. ; Zhang X. ; Yan X. ACS Appl. Mater. Interfaces 2015, 7 (45), 25378.
doi: 10.1021/acsami.5b07909 |
44 |
Li Z. ; Cao L. ; Qin P. ; Liu X. ; Chen Z. ; Wang L. ; Pan D. ; Wu M. Carbon 2018, 139, 67.
doi: 10.1016/j.carbon.2018.06.042 |
45 |
Hassan M. ; Haque E. ; Reddy K. R. ; Minett A. I. ; Chen J. ; Gomes V. G. Nanoscale 2014, 6 (20), 11988.
doi: 10.1039/c4nr02365j |
46 |
Miah M. ; Bhattacharya S. ; Gupta A. ; Saha S. K. Electrochim. Acta 2016, 222, 709.
doi: 10.1016/j.electacta.2016.11.027 |
47 |
Lee K. ; Lee H. ; Shin Y. ; Yoon Y. ; Kim D. ; Lee H. Nano Energy 2016, 26, 746.
doi: 10.1016/j.nanoen.2016.06.030 |
48 |
Li Q. ; Cheng H. ; Wu X. ; Wang C. F. ; Wu G. ; Chen S. J. Mater. Chem. A 2018, 6 (29), 14112.
doi: 10.1039/c8ta02124d |
49 |
Jiang L. ; Sheng L. ; Long C. ; Wei T. ; Fan Z. Adv. Energy Mater. 2015, 5 (15), 1500771.
doi: 10.1002/aenm.201500771 |
50 |
Xu Y. ; Li X. ; Hu G. ; Wu T. ; Luo Y. ; Sun L. ; Tang T. ; Wen J. ; Wang H. ; Li M. Appl. Surfurce Sci. 2017, 422, 847.
doi: 10.1016/j.apsusc.2017.05.189 |
51 |
Kumar V. B. ; Borenstein A. ; Markovsky B. ; Aurbach D. ; Gedanken A. ; Talianker M. ; Porat Z. J. Phys. Chem. C 2016, 120 (25), 13406.
doi: 10.1021/acs.jpcc.6b04045 |
52 |
Islam M. S. ; Deng Y. ; Tong L. ; Roy A. K. ; Faisal S. N. ; Hassan M. ; Minett A. I. ; Gomes V. G. Mater. Today Commun. 2017, 10, 112.
doi: 10.1016/j.mtcomm.2016.11.002 |
53 |
Li Z. ; Li Y. ; Wang L. ; Cao L. ; Liu X. ; Chen Z. ; Pan D. ; Wu M. Electrochim. Acta 2017, 235, 561.
doi: 10.1016/j.electacta.2017.03.147 |
54 |
Li Z. ; Bu F. ; Wei J. ; Yao W. ; Wang L. ; Chen Z. ; Pan D. ; Wu M. Nanoscale 2018, 10 (48), 22871.
doi: 10.1039/c8nr06986g |
55 |
Chen Q. ; Hu Y. ; Hu C. ; Cheng H. ; Zhang Z. ; Shao H. ; Qu L. Phys. Chem. Chem. Phys. 2014, 16 (36), 19307.
doi: 10.1039/c4cp02761b |
56 |
Li Z. ; Liu X. ; Wang L. ; Bu F. ; Wei J. ; Pan D. ; Wu M. Small 2018, 14 (39), e1801498.
doi: 10.1002/smll.201801498 |
57 |
Zhao X. ; Li M. ; Dong H. W. ; Liu Y. L. ; Hu H. ; Cai Y. J. ; Liang Y. R. ; Xiao X. ; Zheng M. T. ChemSusChem 2017, 10 (12), 2626.
doi: 10.1002/cssc.201700474 |
58 |
Tan W. ; Fu R. ; Ji H. ; Kong Y. ; Xu Y. ; Qin Y. Int. J. Biol. Macromol. 2018, 112, 561.
doi: 10.1016/j.ijbiomac.2018.02.014 |
59 |
Wei J. S. ; Ding C. ; Zhang P. ; Ding H. ; Niu X. Q. ; Ma Y. Y. ; Li C. ; Wang Y. G. ; Xiong H. M. Adv. Mater. 2019, 31 (5), e1806197.
doi: 10.1002/adma.201806197 |
60 |
Qing Y. ; Jiang Y. T. ; Lin H. ; Wang L. X. ; Liu A. J. ; Cao Y. L. ; Sheng R. ; Guo Y. ; Fan C. W. ; Zhang S. ; et al J. Mater. Chem. A 2019.
doi: 10.1039/C8TA11620B |
61 |
Ganganboina A. B. ; Chowdhury A. D. ; Doong R. Electrochim. Acta 2017, 245, 912.
doi: 10.1016/j.electacta.2017.06.002 |
62 |
Ganganboina A. B. ; Chowdhury A. D. ; Doong R. A. ACS Sustainable Chem. Eng. 2017, 5 (6), 4930.
doi: 10.1021/acssuschemeng.7b00329 |
63 |
Wei G. ; Du K. ; Zhao X. ; Wang Z. ; Liu M. ; Li C. ; Wang H. ; An C. ; Xing W. Nano Res. 2017, 10 (9), 3005.
doi: 10.1007/s12274-017-1516-4 |
64 |
Zhu C. ; Chao D. ; Sun J. ; Bacho I. M. ; Fan Z. ; Ng C. F. ; Xia X. ; Huang H. ; Zhang H. ; Shen Z. X. ; et al Adv. Mater. Interfaces 2015, 2 (2), 1400499.
doi: 10.1002/admi.201400499 |
65 |
Yin X. ; Chen H. ; Zhi C. ; Sun W. ; Lv L. P. ; Wang Y. Small 2018, 14 (22), e1800589.
doi: 10.1002/smll.201800589 |
66 |
Zhang W. ; Xu T. ; Liu Z. ; Wu N. L. ; Wei M. Chem. Commun. 2018, 54 (12), 1413.
doi: 10.1039/c7cc09406j |
67 |
Chao D. ; Zhu C. ; Xia X. ; Liu J. ; Zhang X. ; Wang J. ; Liang P. ; Lin J. ; Zhang H. ; Shen Z. X. ; et al Nano Lett. 2015, 15 (1), 565.
doi: 10.1021/nl504038s |
68 |
Deng G. ; Chao D. ; Guo Y. ; Chen Z. ; Wang H. ; Savilov S. V. ; Lin J. ; Shen Z. X. Energy Storage Mater. 2016, 5, 198.
doi: 10.1016/j.ensm.2016.07.007 |
69 |
Zhu Y. ; Ji X. ; Pan C. ; Sun Q. ; Song W. ; Fang L. ; Chen Q. ; Banks C. E. Energy Environ. Sci. 2013, 6 (12), 3665.
doi: 10.1039/c3ee41776j |
70 |
Lv H. ; Gao X. ; Xu Q. ; Liu H. ; Wang Y. G. ; Xia Y. ACS Appl. Mater. Interfaces 2017, 9 (46), 40394.
doi: 10.1021/acsami.7b14761 |
71 |
Jia H. ; Cai Y. ; Lin J. ; Liang H. ; Qi J. ; Cao J. ; Feng J. ; Fei W. Adv. Sci. 2018, 5 (5), 1700887.
doi: 10.1002/advs.201700887 |
72 |
Zhu Y. ; Wu Z. ; Jing M. ; Hou H. ; Yang Y. ; Zhang Y. ; Yang X. ; Song W. ; Jia X. ; Ji X. J. Mater. Chem. A 2015, 3 (2), 866.
doi: 10.1039/c4ta05507a |
73 |
Wei J. S. ; Ding H. ; Zhang P. ; Song Y. F. ; Chen J. ; Wang Y. G. ; Xiong H. M. Small 2016, 12 (43), 5927.
doi: 10.1002/smll.201602164 |
74 |
Mondal S. ; Rana U. ; Malik S. Chem. Commun. 2015, 51 (62), 12365.
doi: 10.1039/c5cc03981a |
75 |
Ghosh T. ; Ghosh R. ; Basak U. ; Majumdar S. ; Ball R. ; Mandal D. ; Nandi A. K. ; Chatterjee D. P. J. Mater. Chem. A 2018, 6 (15), 6476.
doi: 10.1039/c7ta11050b |
76 |
Zhao Z. ; Xie Y. J. Power Sources 2017, 337, 54.
doi: 10.1016/j.jpowsour.2016.10.110 |
77 |
Jian X. ; Li J. ; Yang H. ; Cao L. ; Zhang E. ; Liang Z. H. Carbon 2017, 114, 533.
doi: 10.1016/j.carbon.2016.12.033 |
78 |
Zhang X. ; Wang J. ; Liu J. ; Wu J. ; Chen H. ; Bi H. Carbon 2017, 115, 134.
doi: 10.1016/j.carbon.2017.01.005 |
79 |
De B. ; Kuila T. ; Kim N. H. ; Lee J. H. Carbon 2017, 122, 247.
doi: 10.1016/j.carbon.2017.06.076 |
80 |
Unnikrishnan B. ; Wu C. W. ; Chen I. W. P. ; Chang H. T. ; Lin C. H. ; Huang C. C. ACS Sustainable Chem. Eng. 2016, 4 (6), 3008.
doi: 10.1021/acssuschemeng.5b01700 |
81 |
Lv H. ; Yuan Y. ; Xu Q. ; Liu H. ; Wang Y. G. ; Xia Y. J. Power Sources 2018, 398, 167.
doi: 10.1016/j.jpowsour.2018.07.059 |
82 |
Chen G. ; Wu S. ; Hui L. ; Zhao Y. ; Ye J. ; Tan Z. ; Zeng W. ; Tao Z. ; Yang L. ; Zhu Y. Sci. Rep. 2016, 6, 19028.
doi: 10.1038/srep19028 |
83 |
Tan Z. ; Ni K. ; Chen G. ; Zeng W. ; Tao Z. ; Ikram M. ; Zhang Q. ; Wang H. ; Sun L. ; Zhu X. ; et al Adv. Mater. 2017, 29 (8), 1603414.
doi: 10.1002/adma.201603414 |
84 |
Strauss V. ; Marsh K. ; Kowal M. D. ; El-Kady M. ; Kaner R. B. Adv. Mater. 2018, 30 (8), 1704449.
doi: 10.1002/adma.201704449 |
85 |
Zhang S. ; Zhu J. ; Qing Y. ; Fan C. ; Wang L. ; Huang Y. ; Sheng R. ; Guo Y. ; Wang T. ; Pan Y. ; et al Mater. Today Energy 2017, 6, 36.
doi: 10.1016/j.mtener.2017.08.003 |
86 |
Zhang S. ; Zhu J. ; Qing Y. ; Wang L. ; Zhao J. ; Li J. ; Tian W. ; Jia D. ; Fan Z. Adv. Funct. Mater. 2018, 28 (52), 1805898.
doi: 10.1002/adfm.201805898 |
[1] | 陈瑶, 陈存, 曹雪松, 王震宇, 张楠, 刘天西. CO2和N2电还原中缺陷及界面工程的最新进展[J]. 物理化学学报, 2023, 39(8): 2212053 -0 . |
[2] | 赵信硕, 邱海燕, 邵依, 王攀捷, 余石龙, 李海, 周郁斌, 周战, 马录芳, 谭超良. 银纳米粒子修饰的二维金属-有机框架纳米片用于光热增强银离子释放抗菌[J]. 物理化学学报, 2023, 39(7): 2211043 -0 . |
[3] | 孔菁, 张金贵, 张素芬, 奚菊群, 沈明. 可见光激发的BiOI/ZnO纳米复合抗菌剂制备及其抗菌活性与机制[J]. 物理化学学报, 2023, 39(12): 2212039 - . |
[4] | 彭景淞, 程群峰. 仿鲍鱼壳石墨烯多功能纳米复合材料[J]. 物理化学学报, 2022, 38(5): 2005006 - . |
[5] | 姜美慧, 盛利志, 王超, 江丽丽, 范壮军. 超级电容器用石墨烯薄膜:制备、基元结构及表面调控[J]. 物理化学学报, 2022, 38(2): 2012085 - . |
[6] | 王键, 尹波, 高天, 王星懿, 李望, 洪兴星, 汪竹青, 何海勇. 还原氧化石墨烯改性少层剥离石墨增强石墨基钾离子电池负极稳定性[J]. 物理化学学报, 2022, 38(2): 2012088 - . |
[7] | 张梦迪, 陈蓓, 吴明铂. 石墨烯作为硫载体在锂硫电池中的研究进展[J]. 物理化学学报, 2022, 38(2): 2101001 - . |
[8] | 贾晓庆, 白晓宇, 吉喆喆, 李轶, 孙妍, 秘雪岳, 展思辉. 二维层状NiO/g-C3N4复合材料在无铁光电类芬顿体系中有效去除环丙沙星的研究[J]. 物理化学学报, 2021, 37(8): 2010042 - . |
[9] | 凌云云, 夏云生. 金纳米复合材料:制备、性质及其癌症诊疗应用[J]. 物理化学学报, 2020, 36(9): 1912006 - . |
[10] | 王梁,朱澄鹭,殷丽莎,黄维. Pt-M (M = Co, Ni, Fe)/g-C3N4复合材料构建及其高效光解水制氢性能[J]. 物理化学学报, 2020, 36(7): 1907001 - . |
[11] | 王玖,吴南石,刘涛,曹少文,余家国. 用于超级电容器的锰钴氧化物/碳纤维材料[J]. 物理化学学报, 2020, 36(7): 1907072 - . |
[12] | 郁桂云,胡丰献,程伟伟,韩字童,刘超,戴勇. ZnCuAl-LDH/Bi2MoO6纳米复合材料的构建及其可见光催化降解性能[J]. 物理化学学报, 2020, 36(7): 1911016 - . |
[13] | 佟永丽, 戴美珍, 邢磊, 刘恒岐, 孙婉婷, 武祥. 基于NiCo2O4纳米片电极的非对称混合电容器[J]. 物理化学学报, 2020, 36(7): 1903046 - . |
[14] | 曹斌,李喜飞. 钠离子电池炭基负极材料研究进展[J]. 物理化学学报, 2020, 36(5): 1905003 - . |
[15] | 段树华,巫树锋,王磊,佘厚德,黄静伟,王其召. 棒状金属有机框架结构PCN-222(Cu)/TiO2复合材料的制备及其高效光催化CO2还原性能[J]. 物理化学学报, 2020, 36(3): 1905086 - . |
|