物理化学学报 >> 2023, Vol. 39 >> Issue (8): 2212053.doi: 10.3866/PKU.WHXB202212053
所属专题: 能源与环境催化
陈瑶1, 陈存1, 曹雪松2, 王震宇2, 张楠1,*(), 刘天西1,*()
收稿日期:
2022-12-17
录用日期:
2023-01-29
发布日期:
2023-03-23
通讯作者:
张楠,刘天西
E-mail:nzhang@jiangnan.edu.cn;txliu@jiangnan.edu.cn
作者简介:
第一联系人:†These authors contributed equally to this work.
基金资助:
Yao Chen1, Cun Chen1, Xuesong Cao2, Zhenyu Wang2, Nan Zhang1,*(), Tianxi Liu1,*()
Received:
2022-12-17
Accepted:
2023-01-29
Published:
2023-03-23
Contact:
Nan Zhang, Tianxi Liu
E-mail:nzhang@jiangnan.edu.cn;txliu@jiangnan.edu.cn
Supported by:
摘要:
实现碳氮循环是人类社会发展的迫切要求,也是催化领域的热门研究课题。在可再生能源的推动下,电催化技术引起了人们的广泛关注,且可以通过改变反应电压获得不同的目标产品。基于此,电催化技术被认为是缓解当前能源危机和环境问题的有效策略,对实现碳中和具有重要意义。其中,电催化CO2还原反应(CO2RR)和N2还原反应(N2RR)是一种有前途的小分子转化策略。然而,CO2和N2均为线性分子,其中C=O和N≡N键的高解离能导致了它们高的化学惰性。此外,最高占据分子轨道(HOMO)和最低未占分子轨道(LUMO)之间的巨大能量间隙使它们具有高的化学稳定性;且CO2和N2的低质子亲和力使它们难以被直接质子化。另一方面,由于CO2RR和N2RR与析氢反应(HER)具有相近的氧化还原电位,造成其与HER之间存在竞争性关系,这也是致使催化剂在CO2RR和N2RR转化效率低的重要影响因素。因此,CO2RR和N2RR仍然面临着过电位高及法拉第效率低等问题。为了克服这些瓶颈,人们为提升CO2RR和N2RR电催化剂性能做出了很多努力。众所周知,电催化过程发生在催化剂表面,主要涉及质量传递和电子转移等过程。由此可见,催化剂的性能与其质量和电子传输能力密切相关,而调控催化剂表面结构可以优化活性点的质量和电子转移行为。电催化剂的缺陷和界面工程可通过表面原子工程来实现电子结构调控,对于提高气体吸附能力、抑制HER、富集气体及稳定中间产物等具有重要意义。到目前为止,所报道的各种缺陷和复合电催化剂在提高CO2RR和N2RR催化性能等方面均表现出巨大的潜力。在此,我们综述了CO2RR和N2RR中催化剂缺陷工程及界面工程的最新进展;首先讨论了四种不同的缺陷(空位、高指数晶面、晶格应变和晶格无序)对CO2RR和N2RR性能的影响;然后,总结了界面工程在聚合物-无机复合材料催化剂中的重要作用,并给出了典型实例;最后,展望了原子级电催化剂工程的发展前景,提出了开发和设计高效CO2RR和N2RR电催化剂的未来发展方向。
陈瑶, 陈存, 曹雪松, 王震宇, 张楠, 刘天西. CO2和N2电还原中缺陷及界面工程的最新进展[J]. 物理化学学报, 2023, 39(8), 2212053. doi: 10.3866/PKU.WHXB202212053
Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2[J]. Acta Phys. -Chim. Sin. 2023, 39(8), 2212053. doi: 10.3866/PKU.WHXB202212053
Fig 3
EDX mappings of (a) LeFeO3, (b) La0.95FeO3−δ, and (c) La0.9FeO3−δ. (d) Schematic illustration of oxygen vacancies in A-site-deficient LaxFeO3−δ. (e) NH3 yield rates at applied potentials over the different catalysts. (f) Illustration of the synthesis route for porous lava-like high-entropy perovskite oxide of Bax(FeCoNiZrY)0.2O3−δ (x = 0.9, 1). (g) XRD patterns of Bax(FeCoNiZrY)0.2O3−δ (x = 0.9, 1). (h, i) SEM images of Ba0.9(FeCoNiZrY)0.2O3−δ. (j) d-band centers of Fe, Co, Ni, Zr, and Y for Bax(FeCoNiZrY)0.2O3−δ (x = 0.9, 1)-(110). (k) Charge density difference induced by oxygen vacancies. (a–e) Adapted from Wiley Publications publisher 37. (f–k) Adapted from Springer Link Publications publisher 40."
Fig 4
(a) NH3 yield and FE of N2RR performance for Vr-ReSe2@CBC and Vp-ReSe2@CBC. (b) Schematic illustration of the preparation of CBC/Vr-ReSe2@CBC/CBC membrane. (c) Overall mechanism for the selectivity and enhancement of N2RR process by encapsulating Vr-ReSe2@CBC NFs in the hydrophobic CBC layer. (d) EDX elemental mapping images of CBC/Vr-ReSe2@CBC/CBC membrane. (e) NH3 yield and FE of N2RR performance for CBC/Vr-ReSe2@CBC/CBC membrane. (f) 1H NMR analysis of the membrane filled with 14N2 and 15N2 gases after N2RR process. (g) NH3 yield and FE under different temperatures at −0.25 V (vs. RHE). (h) STEM image, EDS mappings and (i) HRTEM image of the activated Bi2Te3 nanoplates/C. (j) Schematic illustration for electrochemical reduction reaction of small molecules by the activated Bi2Te3 nanoplates. (a–g) Adapted from Wiley Publications publisher 42. (h–j) Adapted from Wiley Publications publisher 43."
Fig 5
(a) TEM image, (b) HRTEM image of Rh2Sb RNRs. (c) NH3 yield of Rh2Sb RNRs/C, Rh2Sb SNRs/C and Rh NPs/C at various applied potentials. (d) EXAFS spectra of Rh K-edge of Rh powder, Rh2O3 powder, Rh2Sb RNRs/C and Rh2Sb SNRs/C. (e) N2-TPD profiles for the Rh2Sb RNRs/C and Rh2Sb SNRs/C. (f) SEM image and (g) HRTEM image of PdCuAuAgBiIn HEAAs. (h) FE of different products for PdCuAuAgBiIn HEAAs during CO2RR. (i) Schematic illustration for boosted HCOOH generation on PdCuAuAgBiIn HEAAs. (a–e) Adapted from Wiley Publications publisher 47. (f–i) Adapted from Wiley Publications publisher 71."
Fig 7
(a) Schematic illustration of interface microenvironment inside the catalyst layer with added PTFE. (b) CO partial current density of Ni-N-C and Ni-N-C 60% PTFE electrodes at various current densities under a 20 standard-state cubic centimeter per minute (sccm) CO2 flow rate. (c–e) Schematic illustration of different catalyst microenvironments and reaction interfaces. (f) Partial current densities for CO2RR on the Cu/C and Cu/C/PTFE electrodes with a CO2 gas flow rate of 4 sccm. (g) Schematic diagram of improving N2RR by using proton filtered COF with excellent N2 permeation flux. (h) H2 yields of BCP, ECOF@BCP and PVDF@BCP; inset: FEH2 of different electrodes. (a, b) Adapted from Wiley Publications publisher 85. (c–f) Adapted from Nature Publications publisher 86. (g, h) Adapted from Nature Publications publisher 87."
Fig 8
(a) Schematic diagram of POCs used as an additive to enhance the CO2 diffusion in flow cell catalyst layers. (b) Current density and (c) FE of C2+ products over Cu-nr/CC3 and Cu-nr. (d) Enrichment of CO2 species in the local reaction environment enabled by SSC ionomer conformably surrounding Cu surface. (e) Dominancy of the CO2RR over the HER upon SSC ionomer modification. (f) Ethylene FE for SSC-modified Cu/PTFE, and ethylene FE and partial current density for tetrahydro-phenanthrolinium/SSC-modified Cu/PTFE (red line), and ethylene partial current density for unmodified Cu/PTFE (yellow line). (g) Schematic illustration of the N2-microextractor. (h) FE of NH3 using NME@WE and common WE. Color online. (a–c) Adapted from Wiley Publications publisher 90. (d–f) Adapted from ACS Publications publisher 92. (g, h) Adapted from Wiley Publications publisher 93."
Fig 9
(a) Schematic illustrations of the CO2RR on Cu and Cu-PANI electrodes. FE of H2, C1 and C2+ production for (b) Cu electrode and (c) Cu-PANI electrode. (d) Schematic illustration of the poly-N-(6-aminohexyl)acrylamide (P1) and Cu co-electroplating on the GDL. (e) In situ electrochemical Raman spectroscopy obtained from Cu–P1 at OCP (blue) and a cathode potential of −0.47 V (orange). (f) Scheme for preparation of Cu NPs. (g) Cu LMM Auger spectra for Cu NPs. (h) Raman spectra of SPVP-Cu NPs, DPVP-Cu NPs, and NPVP-Cu NPs. (a–c) Adapted from ACS Publications publisher 97. (d, e) Adapted from Nature Publications publisher 98. (f–h) Adapted from Wiley Publications publisher 100."
1 |
De Luna P., Hahn C., Higgins D., Jaffer S. A., Jaramillo T. F., Sargent E. H. Science 2019, 364, eaav3506.
doi: 10.1126/science.aav3506 |
2 |
Zhu D. D., Liu J. L., Qiao S. Z. Adv. Mater. 2016, 28, 3423.
doi: 10.1002/adma.201504766 |
3 |
Chu S., Majumdar A. Nature 2012, 488, 294.
doi: 10.1038/nature11475 |
4 |
Armaroli N., Balzani V. Angew. Chem. Int. Ed. 2007, 46, 52.
doi: 10.1002/anie.200602373 |
5 |
Martín A. J., Shinagawa T., Pérez-Ramírez J. Chem 2019, 5, 263.
doi: 10.1016/j.chempr.2018.10.010 |
6 |
Tang C., Qiao S. Z. Chem. Soc. Rev. 2019, 48, 3166.
doi: 10.1039/C9CS00280D |
7 |
Liu H., Wei L., Liu F., Pei Z., Shi J., Wang Z.-J., He D., Chen Y. ACS Catal. 2019, 9, 5245.
doi: 10.1021/acscatal.9b00994 |
8 |
Fan L., Xia C., Yang F., Wang J., Wang H., Lu Y. Sci. Adv. 2020, 6, eaay3111.
doi: 10.1126/sciadv.aay3111 |
9 |
Han N., Ding P., He L., Li Y., Li Y. Adv. Energy Mater. 2020, 10, 1902338.
doi: 10.1002/aenm.201902338 |
10 |
Vasileff A., Xu C., Jiao Y., Zheng Y., Qiao S. Z. Chem 2018, 4, 1809.
doi: 10.1016/j.chempr.2018.05.001 |
11 |
Qing G., Ghazfar R., Jackowski S. T., Habibzadeh F., Ashtiani M. M., Chen C.-P., Smith III M. R., Hamann T. W. Chem. Rev. 2020, 120, 5437.
doi: 10.1021/acs.chemrev.9b00659 |
12 |
Li L., Li X., Sun Y., Xie Y. Chem. Soc. Rev. 2022, 51, 1234.
doi: 10.1039/D1CS00893E |
13 |
Shen H., Choi C., Masa J., Li X., Qiu J., Jung Y., Sun Z. Chem 2021, 7, 1708.
doi: 10.1016/j.chempr.2021.01.009 |
14 |
Pan F., Yang Y. Energy Environ. Sci. 2020, 13, 2275.
doi: 10.1039/D0EE00900H |
15 |
Lv J.-J., Yin R., Zhou L., Li J., Kikas R., Xu T., Wang Z.-J., Jin H., Wang X., Wang S. Angew. Chem. Int. Ed. 2022, 61, e202207252.
doi: 10.1002/anie.202207252 |
16 |
Ren Y., Yu C., Tan X., Huang H., Wei Q., Qiu J. Energy Environ. Sci. 2021, 14, 1176.
doi: 10.1039/D0EE03596C |
17 |
Singh A. R., Rohr B. A., Schwalbe J. A., Cargnello M., Chan K., Jaramillo T. F., Chorkendorff I., Nørskov J. K. ACS Catal. 2017, 7, 706.
doi: 10.1021/acscatal.6b03035 |
18 |
Birdja Y. Y., Pérez-Gallent E., Figueiredo M. C., Göttle A. J., Calle-Vallejo F., Koper M. T. M. Nat. Energy 2019, 4, 732.
doi: 10.1038/s41560-019-0450-y |
19 |
Yang C., Zhu Y., Liu J., Qin Y., Wang H., Liu H., Chen Y., Zhang Z., Hu W. Nano Energy 2020, 77, 105126.
doi: 10.1016/j.nanoen.2020.105126 |
20 |
Liang J., Liu Q., Alshehri A. A., Sun X. Nano Res. Energy 2022, 1, e9120010.
doi: 10.26599/NRE.2022.9120010 |
21 |
Liu, C.; Li, S.; Li, Z.; Zhang, L.; Chen, H.; Zhao, D.; Sun, S.; Luo, Y.; Alshehri, A. A.; Hamdy, M. S.; et al. Sustain. Energy Fuels 2022, 6, 3344.
doi: 10.1039/D2SE00557C |
22 |
Li Q., Shen P., Tian Y., Li X., Chu K. J. Colloid Interface Sci. 2022, 606, 204.
doi: 10.1016/j.jcis.2021.08.032 |
23 |
Chen, H.; Liang, J.; Dong, K.; Yue, L.; Li, T.; Luo, Y.; Feng, Z.; Li, N.; Hamdy, M. S.; Alshehri, A. A.; et al Inorg. Chem. Front. 2022, 9, 1514.
doi: 10.1039/D2QI00140C |
24 |
Liu Q., Xu T., Luo Y., Kong Q., Li T., Lu S., Alshehri A. A., Alzahrani K. A., Sun X. Curr. Opin. Electrochem. 2021, 29, 100766.
doi: 10.1016/j.coelec.2021.100766 |
25 | Xu T., Ma B., Liang J., Yue L., Liu Q., Li T., Zhao H., Luo Y., Lu S., Sun X. Acta Phys.-Chim. Sin. 2021, 37, 2009043. |
许桐, 马奔原, 梁杰, 岳鲁超, 刘倩, 李廷帅, 赵海涛, 罗永岚, 卢思宇, 孙旭平 物理化学学报, 2021, 37, 2009043.
doi: 10.3866/PKU.WHXB202009043 |
|
26 | Hao D., Sun Z. Acta Phys.-Chim. Sin. 2021, 37, 2009033. |
郝磊端, 孙振宇 物理化学学报, 2021, 37, 2009033.
doi: 10.3866/PKU.WHXB202009033 |
|
27 |
Wang Y., Han P., Lv X., Zhang L., Zheng G. Joule 2018, 2, 2551.
doi: 10.1016/j.joule.2018.09.021 |
28 |
Wang Q., Lei Y., Wang D., Li Y. Energy Environ. Sci. 2019, 12, 1730.
doi: 10.1039/C8EE03781G |
29 |
Kong X., Peng H.-Q., Bu S., Gao Q., Jiao T., Cheng J., Liu B., Hong G., Lee C.-S., Zhang W. J. Mater. Chem. A 2020, 8, 7457.
doi: 10.1039/D0TA01453B |
30 |
Yan D., Li H., Chen C., Zou Y., Wang S. Small Methods 2019, 3, 1800331.
doi: 10.1002/smtd.201800331 |
31 |
Guo D., Wang S., Xu J., Zheng W., Wang D. J. Energy Chem. 2022, 65, 448.
doi: 10.1016/j.jechem.2021.06.012 |
32 |
Li W., Wang D., Zhang Y., Tao L., Wang T., Zou Y., Wang Y., Chen R., Wang S. Adv. Mater. 2020, 32, 1907879.
doi: 10.1002/adma.201907879 |
33 |
Lu Y., Zhou L., Wang S., Zou Y. Nano Res. 2022,
doi: 10.1007/s12274-022-4858-5 |
34 |
Wang J., Liu J., Zhang B., Cheng F., Ruan Y., Ji X., Xu K., Chen C., Miao L., Jiang J. Nano Energy 2018, 53, 144.
doi: 10.1016/j.nanoen.2018.08.022 |
35 |
Bai S., Zhang N., Gao C., Xiong Y. Nano Energy 2018, 53, 296.
doi: 10.1016/j.nanoen.2018.08.058 |
36 |
Chen H.-J., Xu Z.-Q., Sun S., Luo Y., Liu Q., Hamdy M. S., Feng Z.-S., Sun X., Wang Y. Inorg. Chem. Front. 2022, 9, 4608.
doi: 10.1039/D2QI01173E |
37 |
Chu K., Liu F., Zhu J., Fu H., Zhu H., Zhu Y., Zhang Y., Lai F., Liu T. Adv. Energy Mater. 2021, 11, 2003799.
doi: 10.1002/aenm.202003799 |
38 |
Zheng H., Zhang Y., Wang Y., Wu Z., Lai F., Chao G., Zhang N., Zhang L., Liu T. Small 2022,
doi: 10.1002/smll.202205625 |
39 |
Chu K., Ras M. D., Rao D., Martens J. A., Hofkens J., Lai F., Liu T. ACS Appl. Mater. Interfaces 2021, 13, 13347.
doi: 10.1021/acsami.1c01510 |
40 |
Chu, K.; Qin, J.; Zhu, H.; De Ras, M.; Wang, C.; Xiong, L.; Zhang, L.; Zhang, N.; Martens, J. A.; Hofkens, J.; et al. Sci. China Mater. 2022, 65, 2711.
doi: 10.1007/s40843-022-2021-y |
41 |
Gao S., Sun Z., Liu W., Jiao X., Zu X., Hu Q., Sun Y., Yao T., Zhang W., Wei S., et al. Nat. Commun. 2017, 8, 14503.
doi: 10.1038/ncomms14503 |
42 |
Lai, F.; Zong, W.; He, G.; Xu, Y.; Huang, H.; Weng, B.; Rao, D.; Martens, J. A.; Hofkens, J.; Parkin, I. P.; et al. Angew. Chem. Int. Ed. 2020, 59, 13320.
doi: 10.1002/anie.202003129 |
43 |
Zhang N., Zheng F., Huang B., Ji Y., Shao Q., Li Y., Xiao X., Huang X. Adv. Mater. 2020, 32, 1906477.
doi: 10.1002/adma.201906477 |
44 |
Tian N., Zhou Z.-Y., Sun S.-G., Ding Y., Wang Z. L. Science 2007, 316, 732.
doi: 10.1126/science.1140484 |
45 |
Bu L., Ding J., Guo S., Zhang X., Su D., Zhu X., Yao J., Guo J., Lu G., Huang X. Adv. Mater. 2015, 27, 7204.
doi: 10.1002/adma.201502725 |
46 |
Bu L., Guo S., Zhang X., Shen X., Su D., Lu G., Zhu X., Yao J., Guo J., Huang X. Nat. Commun. 2016, 7, 11850.
doi: 10.1038/ncomms11850 |
47 |
Zhang N., Li L., Wang J., Hu Z., Shao Q., Xiao X., Huang X. Angew. Chem. Int. Ed. 2020, 59, 8066.
doi: 10.1002/anie.201915747 |
48 |
Choi, C.; Kwon, S.; Cheng, T.; Xu, M.; Tieu, P.; Lee, C.; Cai, J.; Lee, H. M.; Pan, X.; Duan, X.; et al. Nat. Catal. 2020, 3, 804.
doi: 10.1038/s41929-020-00504-x |
49 |
Jansonius R. P., Reid L. M., Virca C. N., Berlinguette C. P. ACS Energy Lett. 2019, 4, 980.
doi: 10.1021/acsenergylett.9b00191 |
50 |
Mistry H., Varela A. S., Kühl S., Strasser P., Cuenya B. R. Nat. Rev. Mater. 2016, 1, 16009.
doi: 10.1038/natrevmats.2016.9 |
51 |
Yu D., Gao L., Sun T., Guo J., Yuan Y., Zhang J., Li M., Li X., Liu M., Ma C., et al. Nano Lett. 2021, 21, 1003.
doi: 10.1021/acs.nanolett.0c04051 |
52 |
Chen Y., Pei J., Chen Z., Li A., Ji S., Rong H., Xu Q., Wang T., Zhang A., Tang H., et al. Nano Lett. 2022, 22, 7563.
doi: 10.1021/acs.nanolett.2c02572 |
53 |
Bu L., Zhang N., Guo S., Zhang X., Li J., Yao J., Wu T., Lu G. Ma J.-Y., Su D., et al. Science 2016, 354, 1410.
doi: 10.1126/science.aah6133 |
54 |
Xia Z., Guo S. Chem. Soc. Rev. 2019, 48, 3265.
doi: 10.1039/C8CS00846A |
55 |
Luo M., Guo S. Nat. Rev. Mater. 2017, 2, 17059.
doi: 10.1038/natrevmats.2017.59 |
56 |
Li H., Zhang N., Bai S., Zhang L., Lai F., Chen Y., Zhu X., Liu T. Chem. Mater. 2022, 34, 7995.
doi: 10.1021/acs.chemmater.2c01917 |
57 |
Feng Y., Huang B., Yang C., Shao Q., Huang X. Adv. Funct. Mater. 2019, 29, 1904429.
doi: 10.1002/adfm.201904429 |
58 |
Pi Y., Xu Y., Li L., Sun T., Huang B., Bu L., Ma Y., Hu Z., Pao C.-W., Huang X. Adv. Funct. Mater. 2020, 30, 2004375.
doi: 10.1002/adfm.202004375 |
59 |
Tao L., Sun M., Zhou Y., Luo M., Lv F., Li M., Zhang Q., Gu L., Huang B., Guo S. J. Am. Chem. Soc. 2022, 144, 10582.
doi: 10.1021/jacs.2c03544 |
60 |
Han G., Li M., Liu H., Zhang W., He L., Tian F., Liu Y., Yu Y., Yang W., Guo S. Adv. Mater. 2022, 34, 2202943.
doi: 10.1002/adma.202202943 |
61 |
Wang H., Fang Q., Gu W., Du D., Lin Y., Zhu C. ACS Appl. Mater. Interfaces 2020, 12, 52234.
doi: 10.1021/acsami.0c14007 |
62 |
Cai B., Eychmüller A. Adv. Mater. 2019, 31, 1804881.
doi: 10.1002/adma.201804881 |
63 |
Du R., Joswig J.-O., Hübner R., Zhou L., Wei W., Hu Y., Eychmüller A. Angew. Chem. Int. Ed. 2020, 59, 8293.
doi: 10.1002/anie.201916484 |
64 |
Du R., Fan X., Jin X., Hübner R., Hu Y., Eychmüller A. Matter 2019, 1, 39.
doi: 10.1016/j.matt.2019.05.006 |
65 |
Jiang X., Du R., Hübner R., Hu Y., Eychmüller A. Matter 2021, 4, 54.
doi: 10.1016/j.matt.2020.10.001 |
66 |
Zhang Z., Hu J., Li B., Qi Q., Zhang Y., Chen J., Dong P., Zhang C., Zhang Y., Leung M. K. H. J. Alloys Compd. 2022, 918, 165585.
doi: 10.1016/j.jallcom.2022.165585 |
67 |
Zhai Y., Ren X., Wang B., Liu S. Adv. Funct. Mater. 2022, 32, 2207536.
doi: 10.1002/adfm.202207536 |
68 |
Löffler T., Ludwig A., Rossmeisl J., Schuhmann W. Angew. Chem. Int. Ed. 2021, 60, 26894.
doi: 10.1002/anie.202109212 |
69 |
Zhan C., Xu Y., Bu L., Zhu H., Feng Y., Yang T., Zhang Y., Yang Z., Huang B., Shao Q., et al. Nat. Commun. 2021, 12, 6261.
doi: 10.1038/s41467-021-26425-2 |
70 |
Hu J., Cao L., Wang Z., Liu J., Zhang J., Cao Y., Lu Z., Cheng H. Compos. Commun. 2021, 27, 100866.
doi: 10.1016/j.coco.2021.100866 |
71 |
Li H., Huang H., Chen Y., Lai F., Fu H., Zhang L., Zhang N., Bai S., Liu T. Adv. Mater. 2023, 35, 2209242.
doi: 10.1002/adma.202209242 |
72 |
Wakerley D., Lamaison S., Ozanam F., Menguy N., Mercier D., Marcus P., Fontecave M., Mougel V. Nat. Mater. 2019, 18, 1222.
doi: 10.1038/s41563-019-0445-x |
73 |
Ge W., Chen Y., Fan Y., Zhu Y., Liu H., Song L., Liu Z., Lian C., Jiang H., Li C. J. Am. Chem. Soc. 2022, 144, 6613.
doi: 10.1021/jacs.2c02486 |
74 |
Chen Y., Shen L., Wang C., Feng S., Zhang N., Xiang S., Feng T., Yang M., Zhang K., Yang B. Appl. Catal. B-Environ. 2020, 274, 119112.
doi: 10.1016/j.apcatb.2020.119112 |
75 |
Ma Y., Wang J., Yu J., Zhou J., Zhou X., Li H., He Z., Long H., Wang Y., Lu P., et al. Matter 2021, 4, 888.
doi: 10.1016/j.matt.2021.01.007 |
76 |
Liu H., Xiang K., Liu Y., Zhu F., Zou M., Yan X., Chai L. ChemElectroChem 2018, 5, 3991.
doi: 10.1002/celc.201801132 |
77 |
Zhang L., Wei Z., Thanneeru S., Meng M., Kruzyk M., Ung G., Liu B., He J. Angew. Chem. Int. Ed. 2019, 58, 15834.
doi: 10.1002/anie.201909069 |
78 |
An, P.; Wei, L.; Li, H.; Yang, B.; Liu, K.; Fu, J.; Li, H.; Liu, H.; Hu, J.; Lu, Y.-R.; et al. J. Mater. Chem. A 2020, 8, 15936.
doi: 10.1039/D0TA03645E |
79 |
Ahn S., Klyukin K., Wakeham R. J., Rudd J. A., Lewis A. R., Alexander S., Carla F., Alexandrov V., Andreoli E. ACS Catal. 2018, 8, 4132.
doi: 10.1021/acscatal.7b04347 |
80 |
Lee J. H., Kattel S., Xie Z., Tackett B. M., Wang J., Liu C.-J., Chen J. G. Adv. Funct. Mater. 2018, 28, 1804762.
doi: 10.1002/adfm.201804762 |
81 |
Zhou X., Liu H., Xia B. Y., Ostrikov K., Zheng Y., Qiao S. Z. SmartMat 2022, 3, 111.
doi: 10.1002/smm2.1109 |
82 |
Shi R., Shang L., Zhang T. ACS Appl. Energy Mater. 2021, 4, 1045.
doi: 10.1021/acsaem.0c02989 |
83 |
Niu Z.-Z., Gao F.-Y., Zhang X.-L., Yang P.-P., Liu R., Chi L.-P., Wu Z.-Z., Qin S., Yu X., Gao M.-R. J. Am. Chem. Soc. 2021, 143, 8011.
doi: 10.1021/jacs.1c01190 |
84 |
Buckley A. K., Lee M., Cheng T., Kazantsev R. V., Larson D. M., Goddard III W. A., Toste F. D., Toma F. M. J. Am. Chem. Soc. 2019, 141, 7355.
doi: 10.1021/jacs.8b13655 |
85 |
Sheng X., Ge W., Jiang H., Li C. Adv. Mater. 2022, 34, 2201295.
doi: 10.1002/adma.202201295 |
86 |
Xing Z., Hu L., Ripatti D. S., Hu X., Feng X. Nat. Commun. 2021, 12, 136.
doi: 10.1038/s41467-020-20397-5 |
87 |
Liu S., Qian T., Wang M., Ji H., Shen X., Wang C., Yan C. Nat. Catal. 2021, 4, 322.
doi: 10.1038/s41929-021-00599-w |
88 |
Zheng W., Nayak S., Yuan W., Zeng Z., Hong X., Vincent K. A., Tsang S. C. E. Chem. Commun. 2016, 52, 13901.
doi: 10.1039/C6CC07212G |
89 |
Wang J., Cheng T., Fenwick A. Q., Baroud T. N., Rosas-Hernández A., Ko J. H., Gan Q., Goddard III W. A., Grubbs R. H. J. Am. Chem. Soc. 2021, 143, 2857.
doi: 10.1021/jacs.0c12478 |
90 |
Chen C., Yan X., Wu Y., Liu S., Zhang X., Sun X., Zhu Q., Wu H., Han B. Angew. Chem. Int. Ed. 2022, 61, e202202607.
doi: 10.1002/anie.202202607 |
91 |
Jeong S., Ohto T., Nishiuchi T., Nagata Y., Fujita J.-I., Ito Y. ACS Catal. 2021, 11, 9962.
doi: 10.1021/acscatal.1c02646 |
92 |
Ozden, A.; Li, F.; Garcı́a de Arquer, F. P.; Rosas-Hernández, A.; Thevenon, A.; Wang, Y.; Hung, S.-F.; Wang, X.; Chen, B.; Li, J.; et al. ACS Energy Lett. 2020, 5, 2811.
doi: 10.1021/acsenergylett.0c01266 |
93 |
Shen X., Liu S., Xia X., Wang M., Ji H., Wang Z., Liu J., Zhang X., Yan C., Qian T. Adv. Funct. Mater. 2022, 32, 2109422.
doi: 10.1002/adfm.202109422 |
94 |
Sa Y. J., Lee C. W., Lee S. Y., Na J., Lee U., Hwang Y. J. Chem. Soc. Rev. 2020, 49, 6632.
doi: 10.1039/D0CS00030B |
95 |
Li F., Zhao S.-F., Chen L., Khan A., MacFarlane D. R., Zhang J. Energy Environ. Sci. 2016, 9, 216.
doi: 10.1039/C5EE02879E |
96 |
Li J., Li F., Liu C., Wei F., Gong J., Li W., Xue L., Yin J., Xiao L., Wang G., et al. ACS Energy Lett. 2022, 7, 4045.
doi: 10.1021/acsenergylett.2c01955 |
97 |
Wei X., Yin Z., Lyu K., Li Z., Gong J., Wang G., Xiao L., Lu J., Zhuang L. ACS Catal. 2020, 10, 4103.
doi: 10.1021/acscatal.0c00049 |
98 |
Chen X., Chen J., Alghoraibi N. M., Henckel D. A., Zhang R., Nwabara U. O., Madsen K. E., Kenis P. J. A., Zimmerman S. C., Gewirth A. A. Nat. Catal. 2021, 4, 20.
doi: 10.1038/s41929-020-00547-0 |
99 |
Peterson A. A., Nørskov J. K. J. Phys. Chem. Lett. 2012, 3, 251.
doi: 10.1021/jz201461p |
100 |
Fan Q., Zhang X., Ge X., Bai L., He D., Qu Y., Kong C., Bi J., Ding D., Cao Y., et al. Adv. Energy Mater. 2021, 11, 2101424.
doi: 10.1002/aenm.202101424 |
[1] | 霍春安, 邱圣杰, 梁青满, 耿碧君, 雷志超, 王干, 邹玉玲, 田中群, 杨扬. 光镊捕获和操控尺度极限的进展[J]. 物理化学学报, 2024, 40(1): 2303037 - . |
[2] | 胡荣, 韦丽云, 鲜靖林, 房光钰, 吴植傲, 樊淼, 郭家越, 李青翔, 刘凯思, 姜会钰, 徐卫林, 万骏, 姚永刚. 微波热冲快速制备二维多孔La0.2Sr0.8CoO3钙钛矿用于高效电催化析氧反应[J]. 物理化学学报, 2023, 39(9): 2212025 -0 . |
[3] | 雷淦昌, 郑勇, 曹彦宁, 沈丽娟, 王世萍, 梁诗景, 詹瑛瑛, 江莉龙. 钾改性氧化铝基羰基硫水解催化剂及其失活机理[J]. 物理化学学报, 2023, 39(9): 2210038 -0 . |
[4] | 赵永智, 陈晨阳, 刘文燚, 胡伟飞, 刘金平. 固态锂电池界面优化策略的研究进展[J]. 物理化学学报, 2023, 39(8): 2211017 -0 . |
[5] | 刘元凯, 余涛, 郭少华, 周豪慎. 高性能硫化物基全固态锂电池设计:从实验室到实用化[J]. 物理化学学报, 2023, 39(8): 2301027 -0 . |
[6] | 鲁航语, 侯瑞林, 褚世勇, 周豪慎, 郭少华. 高比能锂离子电池层状富锂正极材料改性策略研究进展[J]. 物理化学学报, 2023, 39(7): 2211057 -0 . |
[7] | 刘欢, 马宇, 曹斌, 朱奇珍, 徐斌. MXenes在水系锌离子电池中的应用研究进展[J]. 物理化学学报, 2023, 39(5): 2210027 -0 . |
[8] | 傅焰鹏, 朱昌宝. 钠离子电池电极材料的设计策略——固态离子学视角[J]. 物理化学学报, 2023, 39(3): 2209002 -0 . |
[9] | 汪茹, 刘志康, 严超, 伽龙, 黄云辉. 高安全锂离子电池复合集流体的界面强化[J]. 物理化学学报, 2023, 39(2): 2203043 -0 . |
[10] | 张涛, 龚思敏, 陈平, 陈琪, 陈立桅. 利用多氟丙烯酸酯添加剂提升准二维钙钛矿发光二极管性能[J]. 物理化学学报, 2023, 39(12): 2301024 - . |
[11] | 李景学, 于跃, 徐斯然, 闫文付, 木士春, 张佳楠. 电子自旋效应在电催化剂中的作用[J]. 物理化学学报, 2023, 39(12): 2302049 - . |
[12] | 彭芦苇, 张杨, 何瑞楠, 徐能能, 乔锦丽. 电催化二氧化碳还原催化剂、电解液、反应器和隔膜研究进展[J]. 物理化学学报, 2023, 39(12): 2302037 - . |
[13] | 孔菁, 张金贵, 张素芬, 奚菊群, 沈明. 可见光激发的BiOI/ZnO纳米复合抗菌剂制备及其抗菌活性与机制[J]. 物理化学学报, 2023, 39(12): 2212039 - . |
[14] | 王文亮, 张灏纯, 陈义钢, 史海峰. 具有光催化与光芬顿反应协同作用的2D/2D α-Fe2O3/g-C3N4 S型异质结用于高效降解四环素[J]. 物理化学学报, 2022, 38(7): 2201008 - . |
[15] | 朱思颖, 李辉阳, 胡忠利, 张桥保, 赵金保, 张力. 锂离子电池氧化亚硅负极结构优化和界面改性研究进展[J]. 物理化学学报, 2022, 38(6): 2103052 - . |
|