物理化学学报 >> 2020, Vol. 36 >> Issue (4): 1905029.doi: 10.3866/PKU.WHXB201905029
所属专题: 固体核磁共振
纪毅1,2,梁力鑫1,2,Changmiao Guo3,包信和1,Tatyana Polenova3,4,侯广进1,*()
收稿日期:
2019-05-06
录用日期:
2019-06-03
发布日期:
2020-03-12
通讯作者:
侯广进
E-mail:ghou@dicp.ac.cn
基金资助:
Yi Ji1,2,Lixin Liang1,2,Changmiao Guo3,Xinhe Bao1,Tatyana Polenova3,4,Guangjin Hou1,*()
Received:
2019-05-06
Accepted:
2019-06-03
Published:
2020-03-12
Contact:
Guangjin Hou
E-mail:ghou@dicp.ac.cn
Supported by:
摘要:
基于偶极耦合的同核相关固体核磁共振实验广泛应用于结构表征,RFDR是其中最广泛使用的零量子同核重耦序列之一。此前的研究中证明了RFDR的重耦效率非常依赖于魔角旋转转速、共振偏置、射频场不均匀性、化学位移各项异性及其它多种因素。本文基于对称性序列原理,在中等和高转速下考察了一系列RNN
纪毅, 梁力鑫, Changmiao Guo, 包信和, Tatyana Polenova, 侯广进. 固体核磁共振高速魔角旋转条件下对称性脉冲零量子同核重耦技术[J]. 物理化学学报, 2020, 36(4), 1905029. doi: 10.3866/PKU.WHXB201905029
Yi Ji, Lixin Liang, Changmiao Guo, Xinhe Bao, Tatyana Polenova, Guangjin Hou. Zero-Quantum Homonuclear Recoupling Symmetry Sequences in Solid-State Fast MAS NMR Spectroscopy[J]. Acta Physico-Chimica Sinica 2020, 36(4), 1905029. doi: 10.3866/PKU.WHXB201905029
Fig 1
(a) Pulse sequence for zero-quantum homonuclear correlation spectroscopy under fast or ultrafast MAS conditions; no 1H decoupling was applied during the mixing period. Various RNN1 symmetry sequences can be applied during the mixing time, including (b) basic RNnv (named RN), super phase cycled (c) RNnv RNn?v (named RNi), (d) [RNnv RNn?v]0[RNnv RNn?v]180 (named RNixix), (e) [RNnv RNn?v]0[RNnv RNn?v]120[RNnv RNn?v]240 (named RNixy3), (f) [RNnv RNn?v]0[RNnv RNn?v]90[RNnv RNn?v]180[RNnv RNn?v]270 (named RNixy4) symmetry sequences. Phase cycling for pulses shown in Fig. 1a: Φ1 = 1, 3; Φ2 = 0; Φ3 = 0, 0, 2, 2; Φ4 = 1, 1, 1, 1, 3, 3, 3, 3; Φ5 = 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2; Φrec = 1, 3, 3, 1, 3, 1, 1, 3, 3, 1, 1, 3, 1, 3, 3, 1"
Fig 2
Transfer efficiency plots of various RN-type symmetry sequences for ZQ recoupling as a function of frequency difference between spin pairs, Δδiso, at the MAS frequencies of 40 and 20 kHz. The mixing time is 2.4 ms for (a) R4, (b) R6, (c) R8-based sequences at the MAS frequency of 40 kHz and 4.8 ms for sequences (d) R4, (e) R6, (f) R8-based sequences at the MAS frequency of 20 kHz. No proton decoupling was applied during the mixing period. 13C RF field strength for π pulses applied in RN symmetry sequences was 60 kHz for the MAS frequencies of 40 and 20 kHz.00Fig. 2 Transfer efficiency plots of various RN-type symmetry sequences for ZQ recoupling as a function of frequency difference between spin pairs, Δδiso, at the MAS frequencies of 40 and 20 kHz. The mixing time is 2.4 ms for (a) R4, (b) R6, (c) R8-based sequences at the MAS frequency of 40 kHz and 4.8 ms for sequences (d) R4, (e) R6, (f) R8-based sequences at the MAS frequency of 20 kHz. No proton decoupling was applied during the mixing period. 13C RF field strength for π pulses applied in RN symmetry sequences was 60 kHz for the MAS frequencies of 40 and 20 kHz."
Fig 3
Simulated dependence of homonuclear polarization transfer efficiency on RF field strength and the frequency difference between spin pairs at the MAS frequency of 40 kHz, for the following sequences: (a)–(c) basic R4, R6 and R8; (d)–(f) R4i, R6i and R8i; (g)–(i) R4ixy3, R6ixy3, and R8ixy3; (j)–(l) R4ixy4, R6ixy4 and R8ixy4. The mixing time was 2.4 ms. Labels A and B shown in (g) correspond to regions with relatively low transfer efficiency. 66 REPULSION angles (α, β) and 12 γ were used to get the powder average."
Fig 4
Transfer efficiency plots of R4-based (a) and R6-based (b) symmetry sequences for ZQ homonuclear recoupling as a function of Δδiso, corresponding to the traces extracted from Fig. 3g and Fig. 3h, respectively. Black, red, green, blue and purple lines correspond to the RF field strengths of 20, 60, 80, 100 and 200 kHz, respectively."
Fig 5
Transfer efficiency plots for various R4 and R6-type symmetry sequences with or without 1H-decoupling as a function of frequency difference between spin pairs, Δδiso, at MAS frequencies of 40 kHz (a)–(d) and 20 kHz (e)–(h). High power proton decoupling with RF field strength of 250 kHz was applied during the mixing period wherever indicated; the other simulation parameters are same as in Fig. 2."
Fig 6
Simulated dependencies of transfer efficiencies on RF mismatch and frequency difference between spin pairs at MAS frequency of 40 kHz, for R4-based schemes: (a) R4, (b) R4xy3, (c) R4i, (d) R4ixix, (e) R4ixy3, and (f) R4ixy4. The standard RF filed strength was 60 kHz, and was varied from 51 to 69 kHz, corresponding to RF mismatch up to ±15%. The mixing time was 2.4ms. 66 REPULSION angles (α, β) and 12 γ were used to get the powder average."
Fig 8
2D 13C–13C correlation NMR spectra of U-13C, 15N-enriched histidine recorded at the MAS frequency of 40 kHz by (a) R4, (b) R6, (c) R4ixy3 and (d) R4ixy4 recoupling sequences with the mixing time of 2.4 ms. 1D traces for representative carbon atoms are labeled. The first contour in all spectra is set at 4 × σ (σ is the noise rmsd (root-mean-square deviation))."
Fig 10
1D traces extracted from R6 -based 2D 13C–13C correlation NMR spectra of U-13C, 15N-enriched histidine at the MAS frequency of 40 kHz, corresponding to (a) Cα, (b) Cβ and (c) Cγ in ω1 dimension. The mixing time was 2.4 ms. Slices extracted from R4ixy3 and R4ixy4 are also included for comparison."
1 |
Lin Y. L. ; Cheng Y. S. ; Ho C. I. ; Guo Z. H. ; Huang S. J. ; Org M. L. ; Oss A. ; Samoson A. ; Chan J. C. C Chem. Commun. 2018, 54, 10459.
doi: 10.1039/c8cc05882b |
2 |
Penzel S. ; Oss A. ; Org M. L. ; Samoson A. ; Bockmann A. ; Ernst M. ; Meier B. H J. Biomol. NMR 2019, 73, 19.
doi: 10.1007/s10858-018-0219-9 |
3 |
Nishiyama Y. ; Malon M. ; Ishii Y. ; Ramamoorthy A J. Magn. Reson. 2014, 244, 1.
doi: 10.1016/j.jmr.2014.04.008 |
4 |
Nishiyama Y. ; Zhang R. ; Ramamoorthy A J. Magn. Reson. 2014, 243, 25.
doi: 10.1016/j.jmr.2014.03.004 |
5 |
Scholz I. ; van Beek J. D. ; Ernst M Solid State Nucl. Magn. Reson. 2010, 37, 39.
doi: 10.1016/j.ssnmr.2010.04.003 |
6 |
Bloembergen N Physica 1949, 15, 386.
doi: 10.1016/0031-8914[49]90114-7 |
7 |
Takegoshi K. ; Nakamura S. ; Takehiko T Chem. Phys. Lett. 2001, 344, 631.
doi: 10.1016/S0009-2614[01]00791-6 |
8 |
Hou G. ; Yan S. ; Sun S. ; Han Y. ; Byeon I. J. ; Ahn J. ; Concel J. ; Samoson A. ; Gronenborn A. M. ; Polenova T J. Am. Chem. Soc. 2011, 133, 3943.
doi: 10.1021/ja108650x |
9 |
Hou G. ; Yan S. ; Trebosc J. ; Amoureux J. P. ; Polenova T J. Magn. Reson. 2013, 232, 18.
doi: 10.1016/j.jmr.2013.04.009 |
10 |
Lu X. ; Guo C. ; Hou G. ; Polenova T J. Biomol. NMR 2015, 61, 7.
doi: 10.1007/s10858-014-9875-6 |
11 |
Hu B. ; Lafon O. ; Trebosc J. ; Chen Q. ; Amoureux J. P J. Magn. Reson. 2011, 212, 320.
doi: 10.1016/j.jmr.2011.07.011 |
12 |
Weingarth M. ; Bodenhausen G. ; Tekely P Chem. Phys. Lett. 2010, 488, 10.
doi: 10.1016/j.cplett.2010.01.072 |
13 |
Hu B. ; Trebosc J. ; Lafon O. ; Chen Q. ; Masuda Y. ; Takegoshi K. ; Amoureux J. P ChemPhysChem 2012, 13, 3585.
doi: 10.1002/cphc.201200548 |
14 |
Shen M. ; Liu Q. ; Trebosc J. ; Lafon O. ; Masuda Y. ; Takegoshi K. ; Amoureux J. P. ; Hu B. ; Chen Q Solid State Nucl. Magn. Reson. 2013, 55-56, 42.
doi: 10.1016/j.ssnmr.2013.07.001 |
15 |
Veshtort M. ; Griffin R. G J. Chem. Phys. 2011, 135, 134509.
doi: 10.1063/1.3635374 |
16 |
Grommek A. ; Meier B. H. ; Ernst M Chem. Phys. Lett. 2006, 427, 404.
doi: 10.1016/j.cplett.2006.07.005 |
17 |
Dumez J. N. ; Emsley L Phys. Chem. Chem. Phys. 2011, 13, 7363.
doi: 10.1039/c1cp00004g |
18 |
Wittmann J. J. ; Hendriks L. ; Meier B. H. ; Ernst M Chem. Phys. Lett. 2014, 608, 60.
doi: 10.1016/j.cplett.2014.05.057 |
19 |
Hohwy M. ; Rienstra C. M. ; Jaroniec C. P. ; Griffin R. G J. Chem. Phys. 1999, 110, 7983.
doi: 10.1063/1.478702 |
20 |
De Paepe G. ; Lewandowski J. R. ; Griffin R. G J. Chem. Phys. 2008, 128, 124503.
doi: 10.1063/1.2834732 |
21 |
Bennett A. E. ; Griffin R. G. ; Ok J. H. ; Vega S J. Chem. Phys. 1992, 96, 8624.
doi: 10.1063/1.462267 |
22 |
Ishii Y J. Chem. Phys. 2001, 114, 8473.
doi: 10.1063/1.1359445 |
23 |
Brinkmann A. ; Schmedt auf der Günne J. ; Levitt M. H J. Magn. Reson. 2002, 156, 79.
doi: 10.1006/jmre.2002.2525 |
24 |
Verel R. ; Ernst M. ; Meier B. H J. Magn. Reson. 2001, 150, 81.
doi: 10.1006/jmre.2001.2310 |
25 |
Bayro M. J. ; Huber M. ; Ramachandran R. ; Davenport T. C. ; Meier B. H. ; Ernst M. ; Griffin R. G J. Chem. Phys. 2009, 130, 114506.
doi: 10.1063/1.3089370 |
26 |
Shen M. ; Hu B. ; Lafon O. ; Trebosc J. ; Chen Q. ; Amoureux J. P J. Magn. Reson. 2012, 223, 107.
doi: 10.1016/j.jmr.2012.07.013 |
27 |
Zhang R. ; Nishiyama Y. ; Sun P. ; Ramamoorthy A J. Magn. Reson. 2015, 252, 55.
doi: 10.1016/j.jmr.2014.12.010 |
28 |
Li C. ; Shen M. ; Hu B Acta Phys. -Chim. Sin. 2020, 36, 1902019.
doi: 10.3866/PKU.WHXB201902019 |
李超; 沈明; 胡炳文. 物理化学学报, 2020, 36, 1902019.
doi: 10.3866/PKU.WHXB201902019 |
|
29 |
Hellwagner J. ; Wili N. ; Ibanez L. F. ; Wittmann J. J. ; Meier B. H. ; Ernst M J. Magn. Reson. 2018, 287, 65.
doi: 10.1016/j.jmr.2017.12.015 |
30 |
Brinkmann A. ; Levitt M. H J. Chem. Phys. 2001, 115, 357.
doi: 10.1063/1.1377031 |
31 |
Bak M. ; Rasmussen J. T. ; Nielsen N. C J. Magn. Reson. 2011, 213, 366.
doi: 10.1016/j.jmr.2011.09.008 |
32 |
Vega S. ; Gullion T Chem. Phys. Lett. 1992, 194, 423.
doi: 10.1016/0009-2614[92]86076-T |
33 |
Bayro M. J. ; Ramachandran R. ; Caporini M. A. ; Eddy M. T. ; Griffin R. G J. Chem. Phys. 2008, 128, 052321.
doi: 10.1063/1.2834736 |
[1] | 李超, 沈明, 胡炳文. 面向金属离子电池研究的固体核磁共振和电子顺磁共振方法[J]. 物理化学学报, 2020, 36(4): 1902019 - . |
[2] | 李诗涵,赵侦超,李世坤,邢友东,张维萍. DFT计算结合固体NMR研究富铝SSZ-13的铝分布和Brønsted酸性[J]. 物理化学学报, 2020, 36(4): 1903021 - . |
[3] | 石峰,胡丽丽,任进军,杨秋红. 固体核磁共振研究碱土金属磷硅酸盐玻璃的六配位硅结构[J]. 物理化学学报, 2020, 36(4): 1902018 - . |
[4] | 刘小龙, 王强, 王超, 徐君, 邓风. Silicalite-1分子筛氢键诱导晶化机制的固体核磁共振研究[J]. 物理化学学报, 2020, 36(4): 1905035 - . |
[5] | 邓静,马涛,常自伟,赵伟静,杨俊. 基于固体核磁共振方法的蛋白质组装体三维结构解析[J]. 物理化学学报, 2020, 36(4): 1905019 - . |
[6] | 李玉红,吴新平,刘聪,王萌,宋本腾,郁桂云,杨刚,侯文华,龚学庆,彭路明. 部分还原二氧化钛的NMR和EPR研究[J]. 物理化学学报, 2020, 36(4): 1905021 - . |
[7] | 史永超, 唐明学. 可充电池的磁共振研究[J]. 物理化学学报, 2020, 36(4): 1905004 - . |
[8] | 李申慧,李静,郑安民,邓风. 固体酸催化剂结构与催化反应机理的核磁共振研究[J]. 物理化学学报, 2017, 33(2): 270 -282 . |
[9] | 邓益斌, 胡炳文, 周平. 类蜘蛛丝聚合物结构及分子运动的固体核磁共振研究[J]. 物理化学学报, 2009, 25(07): 1427 -1433 . |
[10] | 贺鹤勇;邹艳;马卓娜;岳斌. 低碳烷烃催化反应机理的固体核磁共振研究[J]. 物理化学学报, 2004, 20(08S): 1024 -1031 . |
[11] | 张岩, 肖湘竹, 冯钰锜, 达世禄, 裘鉴卿, 叶朝辉. 硅胶键合杯[4]芳烃固定相的合成和核磁共振表征[J]. 物理化学学报, 2000, 16(01): 65 -69 . |
|