物理化学学报 >> 2020, Vol. 36 >> Issue (1): 1907012.doi: 10.3866/PKU.WHXB201907012
所属专题: 庆祝唐有祺院士百岁华诞专刊
收稿日期:
2019-07-01
录用日期:
2019-09-06
发布日期:
2019-09-20
通讯作者:
王哲明,高松
E-mail:zmw@pku.edu.cn;gaosong@pku.edu.cn
基金资助:
Sa Chen,Ran Shang,Bingwu Wang,Zheming Wang*(),Song Gao*()
Received:
2019-07-01
Accepted:
2019-09-06
Published:
2019-09-20
Contact:
Zheming Wang,Song Gao
E-mail:zmw@pku.edu.cn;gaosong@pku.edu.cn
Supported by:
摘要:
作为与传统纯无机钙钛矿材料互补的体系,有机-无机或杂化钙钛矿材料结合了有机和无机成分各自的特性,在相变、临界现象和相关功能性质的研究中展现了众多新的可能性和机会。其中,金属甲酸铵钙钛矿表现优越,且其功能和性质十分依赖于金属离子和铵的特性。本工作借助固体化学中的固溶体策略,研究各向异性磁稀释杂化钙钛矿[CH3NH3][CoxZn1-x(HCOO)3]系列的制备、结构和磁性。该系列的全程固溶体(x = 0–1或摩尔百分比Co% = 0–100%)都可以用溶液化学方法制备获得,并由单晶和粉末X射线衍射确定了固溶体全程同构。它们都属于正交晶系,空间群Pnma,晶胞参数范围为a = 8.3015(2)–8.3207(3) Å,b = 11.6574(4)–11.6811(5) Å,c = 8.1315(3)–8.1427(4) Å,V = 787.89(5)–790.98(7) Å3 (1 Å = 0.1 nm)。钙钛矿结构由金属-甲酸的简单立方阴离子骨架和骨架孔穴中的CH3NH3+阳离子构成,CH3NH3+阳离子和骨架之间形成N―H···O氢键。在这个系列中,固溶体晶体结构的点阵和结构参数几乎没有变化。因此,该系列提供了一个很好的在结构和分子几何参数不变的条件下研究磁稀释效应的分子磁性体系。在逐步稀释的过程中,Co2+离子的磁各向异性和逐渐消失的较大自旋倾斜的贡献,抑制或减少了在低温和低场下的磁化强度,这与各向同性[CH3NH3][MnxZn1-x(HCOO)3]体系在磁稀释时磁化强度增大的行为相反。实验获得的逾渗阈值为(Co%)P = 27(1)% (或xP = 0.27(1)),低于按逾渗理论得到的简单立方格子上的逾渗阈值31%,这也是由于[CH3NH3][CoxZn1-x(HCOO)3]体系磁各向异性的缘故。此外,观察到纯金属Co和Zn成员在约120 K左右发生少见的非公度相变。低温下的非公度性对于磁性质也产生一定的影响。
陈洒,商冉,王炳武,王哲明,高松. 一个各向异性磁稀释杂化钙钛矿系列[CH3NH3][CoxZn1-x(HCOO)3][J]. 物理化学学报, 2020, 36(1), 1907012. doi: 10.3866/PKU.WHXB201907012
Sa Chen,Ran Shang,Bingwu Wang,Zheming Wang,Song Gao. An Anisotropic Diluted Magnetic Hybrid Perovskite Series of [CH3NH3][CoxZn1-x(HCOO)3][J]. Acta Physico-Chimica Sinica 2020, 36(1), 1907012. doi: 10.3866/PKU.WHXB201907012
Table 1
The brief crystallographic data for Co0, Co10, …, Co88, and Co100, all at 180 K, and in orthorhombic space group Pnma. In the last column the ranges for respective cell parameters are given."
Compound | Co0 | Co10 | Co19 | Co29 | Co40 | Co48 | Co59 | Co69 | Co78 | Co88 | Co100 | Cell para. range |
formula | C4H9NO6Zn | C4H9NO6Co0.10Zn0.90 | C4H9NO6Co0.19Zn0.81 | C4H9NO6Co0.29Zn0.71 | C4H9NO6Co0.40Zn0.60 | C4H9NO6Co0.48Zn0.52 | C4H9NO6Co0.59Zn0.41 | C4H9NO6Co0.69Zn0.31 | C4H9NO6Co0.78Zn0.22 | C4H9NO6Co0.88Zn0.12 | C4H9NO6Co | |
Mw | 232.49 | 231.85 | 231.24 | 230.60 | 229.93 | 229.38 | 228.68 | 228.04 | 227.48 | 226.81 | 226.05 | |
a/Å | 8.3194(4) | 8.3207(3) | 8.3141(3) | 8.3194(2) | 8.3119(3) | 8.3075(3) | 8.3191(4) | 8.3015(2) | 8.3031(3) | 8.3110(3) | 8.3039(4) | 8.3015–8.3207 |
b/Å | 11.6703(5) | 11.6774(4) | 11.6712(5) | 11.6753(3) | 11.6607(4) | 11.6574(4) | 11.6771(6) | 11.6721(2) | 11.6679(3) | 11.6811(5) | 11.6806(6) | 11.6574–11.6811 |
c/Å | 8.1368(4) | 8.1366(3) | 8.1315(3) | 8.1354(2) | 8.1331(3) | 8.1357(3) | 8.1424(4) | 8.1369(2) | 8.1353(3) | 8.1371(3) | 8.1427(4) | 8.1315–8.1427 |
α, β, γ /° | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 |
V/Å3 | 790.00(6) | 790.59(5) | 789.04(5) | 790.20(3) | 788.28(5) | 787.89(5) | 790.98(7) | 788.43(3) | 788.15(5) | 789.96(5) | 789.80(7) | 787.89–790.98 |
no. total/uniq/obs. reflns. | 12168/1067/922 | 12298/1066/909 | 12079/1064/859 | 37029/1067/977 | 13719/1063/944 | 16363/1061/923 | 6392/1038/787 | 43147/1064/958 | 18977/1064/956 | 15198/1065/949 | 12454/1063/912 | |
R1, wR2 [I ≥ 2σ(I)] | 0.0179, 0.0475 | 0.0184, 0.0456 | 0.0216, 0.0514 | 0.0155, 0.0431 | 0.0172, 0.0462 | 0.0202, 0.0573 | 0.0261, 0.0569 | 0.0193, 0.0545 | 0.0189, 0.0531 | 0.0181, 0.0491 | 0.0192, 0.0480 | |
GOF | 1.002 | 1.003 | 0.998 | 0.998 | 1.001 | 1.001 | 0.999 | 0.998 | 1.002 | 0.999 | 1.003 |
Table 2
Selected molecular geometries, bond distances (Å) and bond angles (°), N―H…O hydrogen bonds (N…O distances, Å, and N―H…O angles, °) between the CH3NH3+ cation and the anionic framework, shortest C…O contacts (Å), and the M…M distances (Å) in the structures of Co0, Co10, …, Co88, and Co100. The variation ranges for all respective molecular geometries are summarized in the last column."
Compound | Co0 | Co10 | Co19 | Co29 | Co40 | Co48 | Co59 | Co69 | Co78 | Co88 | Co100 | Data variation range |
M―O | 2.0929(8)×2 2.1010(9)×2 2.1173(8)×2 | 2.0916(9)×2 2.101(1)×2 2.1167(9)×2 | 2.090(1)×2 2.100(1)×2 2.114(1)×2 | 2.0908(7)×2 2.1000(7)×2 2.1158(7)×2 | 2.0889(8)×2 2.0975(8)×2 2.1137(7)×2 | 2.0880(9)×2 2.0960(9)×2 2.1126(8)×2 | 2.090(1)×2 2.103(1)×2 2.117(1)×2 | 2.0881(8)×2 2.0980(8)×2 2.1114(8)×2 | 2.0871(8)×2 2.0979(8)×2 2.1122(7)×2 | 2.0879(7)×2 2.0997(8)×2 2.1145(7)×2 | 2.0896(8)×2 2.0997(9)×2 2.1126(8)×2 | 2.0871–2.0929 2.0960–2.103 2.1114–2.1173 |
C―O | 1.241(1)–1.261(2) | 1.244(2)–1.261(2) | 1.241(2)–1.262(2) | 1.245(1)–1.261(1) | 1.244(1)–1.260(1) | 1.243(2)–1.262(2) | 1.240(2)–1.260(2) | 1.243(1)–1.263(1) | 1.245(1)–1.261(1) | 1.245(1)–1.262(1) | 1.244(1)–1.263(1) | 1.240–1.263 |
C―N | 1.476(3) | 1.475(3) | 1.476(4) | 1.477(3) | 1.476(3) | 1.477(3) | 1.478(4) | 1.475(3) | 1.475(3) | 1.478(3) | 1.477(3) | 1.475–1.478 |
cis- O―M―O | 87.23(3)–92.77(3) | 87.25(3)–92.75(4) | 87.27(4)–92.73(4) | 87.18(3)–92.82(3) | 87.18(3)–92.82(3) | 87.14(3)–92.86(3) | 87.21(5)–92.79(5) | 87.01(3)–92.99(3) | 87.04(3)–92.96(3) | 87.06(3)–92.94(3) | 87.01(3)–92.99(3) | 87.01–92.99 |
trans- O―M―O | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 |
M―O―C | 120.29(8)–121.72(8) | 120.22(8)–121.7(1) | 120.3(1)–121.7(1) | 120.24(6)–121.68(8) | 120.30(7)–121.77(7) | 120.31(8)–121.80(8) | 120.4(1)–122.0(1) | 120.25(7)–121.74(9) | 120.22(7)–121.74(7) | 120.26(7)–121.75(9) | 120.25(8)–121.73(9) | 120.22–122.0 |
O―C―O | 123.9(2)–124.6(1) | 124.1(2)–124.5(1) | 124.0(2)–124.6(2) | 124.0(1)–124.5(1) | 123.7(2)–124.6(1) | 124.0(2)–124.6(1) | 123.8(3)–124.8(2) | 124.0(2)–124.5(1) | 123.8(2)–124.5(1) | 123.9(2)–124.5(1) | 123.9(2)–124.4(1) | 123.7–124.6 |
N…O/N―H…O | 2.862(1)/173(2) 3.042(2)/147(1) | 2.862(1)/174(2) 3.045(2)/147(1) | 2.861(2)/172(2) 3.043(2)/148(1) | 2.862(1)/172(2) 3.044(2)/147.4(9) | 2.861(1)/172(2) 3.043(2)/147.8(9) | 2.859(1)/170(2) 3.045(2)/148.4(9) | 2.861(2)/171(2) 3.047(3)/148(1) | 2.861(1)/172(2) 3.045(2)/148.2(9) | 2.861(1)/171(2) 3.044(2)/147.9(9) | 2.864(1)/172(2) 3.043(2)/147.6(9) | 2.863(1)/173(2) 3.046(2)/147(1) | 2.859–2.864/170–173 3.042–3.047/147–148 |
C…O contacts | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 | > 3.11 |
M…M | 5.8185(2)–5.8352(3) | 5.8189(2)–5.8387(2) | 5.8148(2)–5.8356(3) | 5.8180(2)–5.8377(2) | 5.8145(2)–5.8304(2) | 5.8139(2)–5.8287(2) | 5.8204(2)–5.8386(3) | 5.8121(2)–5.8361(2) | 5.8122(2)–5.8340(2) | 5.8156(2)–5.8406(3) | 5.8150(2)–5.8403(3) | 5.8121–5.8406 |
Table 3
Summary of magnetic properties of Co10 to Co100. Magnetization and susceptibility data are represented for per mole Co and under 100 Oe if not otherwise specified. In last column the data in parentheses were taken from Ref. 6a (under different fields, temperatures and orientations of single crystal, see the reference 6a)."
Compound | Co10 | Co19 | Co29 | Co40 | Co48 | Co59 | Co69 | Co78 | Co88 | Co100 |
Co% | 10.0 | 19.4 | 29.3 | 39.7 | 48.4 | 59.2 | 69.1 | 77.7 | 88.3 | 100 |
Ca/cm3·K·mol-1 | 4.12 | 3.98 | 3.77 | 3.75 | 3.71 | 3.77 | 3.67 | 3.83 | 3.72 | 3.51 (3.42) j |
Θb/K | -35.4 | -37.4 | -34.6 | -36.9 | -35.4 | -43.7 | -44.9 | -48.4 | -50.6 | -51.7 (-43.5) j |
(χT)300 K/cm3·K·mol-1 | 3.71 | 3.57 | 3.38 | 3.34 | 3.32 | 3.30 | 3.21 | 3.31 | 3.19 | 2.99 (2.96) j |
(χT)50 K/cm3·K·mol-1 | 2.54 | 2.38 | 2.28 | 2.20 | 2.18 | 2.07 | 1.97 | 1.98 | 1.87 | 1.74 |
(χT)minc/cm3·K·mol-1, Tmin/K | 1.24, 7.0 | 1.28, 11.0 | 1.28, 13.0 | 1.19, 14.0 | 1.13, 15.0 | 1.12, 16.0 | 1.02, 16.0 | 0.96, 16.5 | ||
(χT)max c/cm3·K·mol-1, Tmax/K | 3.70, 2.6 | 5.90, 3.7 | 8.64, 5.1 | 11.8, 6.6 | 14.9, 8.2 | 18.6, 10.0 | 19.4, 12.0 | |||
(χT)2 K/cm3·K·mol-1 | 1.26 | 1.01 | 1.64 | 3.53 | 4.28 | 4.31 | 4.34 | 4.28 | 4.34 | 3.86 |
(M)2 K/cm3·G·mol-1 (ZFC, FC at 10 Oe) | 7.1, 7.1 | 6.1, 9.3 | 22.9, 44.6 | 72.0, 141.4 | 134.9, 190.7 | 133.0, 200.7 | 139.2, 204.7 | 135.8, 203.6 | 123.2, 207.5 | 128.3, 185.5 |
TP d/K (dZFC/dT, dFC/dT, at 10 Oe) | 2.2, 2.2 | 4.4, 4.2 | 6.4, 6.2 | 8.3, 8.1 | 10.4, 10.0 | 12.0, 12.0 | 14.1, 14.2 | |||
TP d/K (dχ/dT) | 2.4 | 4.2 | 6.2 | 8.2 | 10.1 | 12.0 | 14.2 | |||
TN e/K (average based on dc measurements) | 2.3 | 4.3 | 6.3 | 8.2 | 10.2 | 12.0 | 14.2 | |||
Tp/K (on χ′ and χ" at 10 Hz) | 2.1 4.1 | 4.2 | 6.6 7.0 | 8.6 8.6 | 10.4 10.4 | 12.4, 14.0 12.8, 14.0 | 14.2, 14.5, 15.2 14.1, 14.5, 15.2 | |||
HC f/kOe(at 2 K) | 0.075 | 0.29 | 0.68 | 2.53 | 3.87 | 4.58 | 5.21 | 4.98 (4) j | ||
MR g/Nβ (at 2 K) | ~0 | ~0 | 0.0074 | 0.027 | 0.038 | 0.041 | 0.040 | 0.038 | 0.036 | 0.031 (0.19/0) j |
M50 kOe h/Nβ (at 2 K) | 2.14 | 1.82 | 1.53 | 1.29 | 1.11 | 0.86 | 0.69 | 0.55 | 0.43 | 0.36 |
HSP i/kOe (at 2 K) | ~40 | ~40 | ~40 | ~50 | > 50 |
Fig 2
Magnetism for Co100 to Co10. (a) Plots of χT vs T (under 100 Oe field and T axis in logarithmic scale) and inset ZFC/FC plots (under 10 Oe). (b) The isothermal magnetization plots at 2 K and inset the plots in low field region. (c) The Co% dependence of the Curie constants, χT values at 300 K, 50 K and 2 K, and of the ZFC/FC magnetizations (under 10 Oe) at 2 K. (d) The Co% dependence of magnetizations (in logarithmic scale) under different fields, with plots at some fields highlighted, and the Co% dependence of HC."
1 | (a) Wang, Z. L.; Wang, Z. C. Functional and Smart Materials – Structural Evolution and Structural Analysis; Plenum Press: New York, 1998. |
(b) Müller, K. A.; Kool, T. W. Properties of Perovskites and Other Oxides; World Scientific Publishing Co. Pte. Ltd.: London, 2010. | |
2 | (a) Saparov, B.; Mitzi, D. B. Chem. Rev. 2016, 116, 4558. doi: 10.1021/acs.chemrev.5b00715 |
(b) Mitzi, D. B. Prog. Inorg. Chem. 1999, 48, 1. doi: 10.1002/9780470166499.ch1 | |
(c) Li, W.; Wang, Z. M.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Nat. Rev. Mater. 2017, 2, 16099. doi: 10.1038/natrevmats.2016.99 | |
(d) Xu, W. J.; Du, Z. Y.; Zhang, W. X.; Chen, X. M. CrystEngComm 2016, 18, 7915. doi: 10.1039/c6ce01485b | |
3 | (a) Shang, R.; Chen, S.; Wang, Z. M.; Gao, S. Functional Magnetic Materials Based on Metal Formate Frameworks. In Metal-Organic Framework Materials; Macgillivray, L. R., Lukehart, C. M. Eds; John Wiley & Sons, Ltd.: Chichester, 2014. doi: 10.1002/9781119951438.eibc2215 |
(b) Wang, Z. M.; Hu, K. L.; Gao, S.; Kobayashi, H. Adv. Mater. 2010, 22, 1526. doi: 10.1002/adma.200904438 | |
4 | (a) Wang, Z. M.; Zhang, B.; Otsuka, T.; Inoue, K.; Kobayashi, H.; Kurmoo, M. Dalton Trans. 2004, 2209. doi: 10.1039/b404466e |
(b) Wang, X. Y.; Gan, L.; Zhang, S. W.; Gao, S. Inorg. Chem. 2004, 43, 4615. doi: 10.1021/ic0498081 | |
(c) Hu, K. L.; Kurmoo, M.; Wang, Z. M.; Gao, S. Chem. Eur. J. 2009, 15, 12050. doi: 10.1002/chem.200901605 | |
5 | (a) Chen, S.; Shang, R.; Hu, K. L.; Wang, Z. M.; Gao, S. Inorg. Chem. Front. 2014, 1, 83. doi: 10.1039/c3qi00034f |
(b) Kieslich, G.; Kumagai, S.; Butler, K. T.; Okamura, T.; Hendon, C. H.; Sun, S.; Yamashita, M.; Walshd, A.; Cheetham, A. K. Chem. Commun. 2015, 51, 15538. doi: 10.1039/c5cc06190c | |
(c) Kieslich, G.; Forse, A. C.; Sun, S.; Butler, K. T.; Kumagai, S.; Wu, Y.; Warren, M. R.; Walsh, A.; Grey, C. P.; Cheetham, A. K. Chem. Mater. 2016, 28, 312. doi: 10.1021/acs.chemmater.5b04143 | |
6 | (a) Gómez-Aguirre, L. C.; Pato-Doldán, B.; Mira, J.; Castro-García, S.; Señarís-Rodríguez, M. A.; Sánchez-Andújar, M.; Singleton, J.; Zapf, V. S. J. Am. Chem. Soc. 2016, 138, 1122. doi: 10.1021/jacs.5b11688 |
(b) Fu, D. W.; Zhang, W.; Cai, H. L.; Zhang, Y.; Ge, J. Z.; Xiong, R. G.; Huang, S. D.; Nakamura, T. Angew. Chem. Int. Ed. 2011, 50, 11947. doi: 10.1002/anie.201103265 | |
(c) Jain, P.; Ramachandran, V.; Clark, R. J.; Zhou, H. D.; Toby, B. H.; Dalal, N. S.; Kroto, H. W.; Cheetham, A. K. J. Am. Chem. Soc. 2009, 131, 13625. doi: 10.1021/ja904156s | |
(d) Mączka, M.; Gągor, A.; Ptak, M.; Paraguassu, W. T.; da Silva, A.; Sieradzki, A.; Pikul, A. Chem. Mater. 2017, 29, 2264. doi: 10.1021/acs.chemmater.6b05249 | |
7 | (a) Yu, Y.; Shang, R.; Chen, S.; Wang, B. W.; Wang, Z. M.; Gao, S. Chem. Eur. J. 2017, 23, 9857. doi: 10.1002/chem.201701099 |
(b) Mączka, M.; Pietraszko, A.; Macalik, L.; Sieradzki, A.; Trzmiel, J.; Pikul, A. Dalton Trans. 2014, 43, 17075. doi: 10.1039/c4dt02586e | |
(c) Mączka, M.; Bondzior, B.; Dereń, P.; Sieradzki, A.; Trzmiel, J.; Pietraszko, A.; Hanuza, J. Dalton Trans. 2015, 44, 6871. doi: 10.1039/c5dt00060b | |
(d) Ptak, M.; Mączka, M.; Gągor, A.; Sieradzki, A.; Stroppa, A.; Di Sante, D.; Perez-Mato, J. M.; Macalik, L. Dalton Trans. 2016, 45, 2574. doi: 10.1039/c5dt04536c | |
(e) Ptak, M.; Mączka, M.; Gągor, A.; Sieradzki, A.; Bondzior, B.; Dereń, P.; Pawlus, S. Phys. Chem. Chem. Phys. 2016, 18, 29629. doi: 10.1039/c6cp05151k | |
8 | (a) Chen, S.; Shang, R.; Wang, B. W.; Wang, Z. M.; Gao, S. Angew. Chem. Int. Ed. 2015, 54, 11093. doi: 10.1002/anie.201504396 |
(b) Kieslich, G.; Kumagai, Sh.; Forse, A. C.; Sun, S.; Henke, S.; Yamashita, M.; Greyd, C. P.; Cheetham, A. K. Chem. Sci. 2016, 7, 5108. doi: 10.1039/c6sc01247g | |
9 | (a) Evans, N. L.; Thygesen, P. M. M.; Boströ m, H. L. B.; Reynolds, E. M.; Collings, I. E.; Phillips, A. E.; Goodwin, A. L. J. Am. Chem. Soc. 2016, 138, 9393. doi: 10.1021/jacs.6b05208 |
(b) Shang, R.; Sun, X.; Wang, Z. M.; Gao, S. Chem. Asian J. 2012, 7, 1697. doi: 10.1002/asia.201200139 | |
10 | (a) Chen, S. Ammonium-Metal-Formate Perovskites: Coexistence and Manipulation of Magnetic and Electric Ordering. Ph. D. Dissertation, Peking University, Beijing, 2016. |
(b) Yu, Y. The Study on the Functional Materials of Heterometallic Ammonium Metal Formates. Ph. D. Dissertation, Peking University, Beijing, 2017. | |
11 | (a) de Jongh, L. J. Static Thermodynamic Properties of Site-Random Magnetic Systems and Percolation Problem. In Magnetic Phase Transitions - Proceedings of a Summer School; Ausloos, M., Elliott R. J. Eds.; Springer-Verlag: Berlin Heidelberg, 1983; pp. 172-194. |
(b) Binder, K.; Kob, W. Glassy Materials and Disordered Solids – An Introduction to Their Statictical Mechanics; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2005. | |
(c) Zallen, R. The Physics of Amorphous Solids; Wiley: New York, 1983. | |
12 | CrysAlisPro software, Rigaku Oxford Diffraction: Tokyo, Japan, 2015. |
13 | Sheldrick G.M. SHELX-97, Program for Crystal Structure Determination Germany: University of Göttingen, 1997. |
14 | Mulay L.N. ; Boudreaux E.A. Theory and Applications of Molecular Diamagnetism New York: John Wiley & Sons Inc., 1976. |
15 | Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds New York: Wiley, 1986. |
16 | (a) Mączka, M.; Ciupa, A.; Gągor, A.; Sieradzki, A.; Pikul, A.; Macalik, B.; Drozd, M. Inorg. Chem. 2014, 53, 5260. doi: 10.1021/ic500479e |
(b) Mączka, M.; Ptak, M.; Macalik, L. Vib. Spectrosc. 2014, 71, 98. doi: 10.1016/j.vibspec.2014.01.013 | |
(c) Mączka, M.; Szymborska-Małek, K.; Ciupa, A.; Hanuza, J. Vib. Spectrosc. 2015, 77, 17. doi: 10.1016/j.vibspec.2015.02.003 | |
17 | (a) van Smaalen, S. Incommensurate Crystallography; Oxford University Press Inc.: New York, 2007. |
(b) Janssen, T.; Chapuis, G.; de Boissieu, M. Aperiodic Crystals: from Modulated Phases to Quasicrystals; Oxford University Press Inc.: New York, 2007. | |
18 |
Chen S. ; Shang R. ; Wang B.W. ; Wang Z.M. ; Gao S. APL Mater. 2018, 6, 114205.
doi: 10.1063/1.5040688 |
19 | Carlin R.L. ; van Duyneveldt A.J. Magnetic Properties of Transition Metal Compounds; New York: Springer-Verlag 1977. |
20 | (a) Kurmoo, M. Chem. Soc. Rev. 2009, 38, 1353. doi: 10.1039/b804757j |
(b) Lloret, F.; Julve, M.; Cano, J.; Ruiz-García, R.; Pardo, E. Inorg. Chim. Acta 2008, 361, 3432. doi: 10.1016/j.ica.2008.03.114 | |
(c) Palii, A. V.; Tsukerblat, B. S.; Coronado, E.; Clemente-Juan, J. M.; Borras-Almenar, J. J. Inorg. Chem. 2003, 42, 2455. doi: 10.1021/ic0259686 | |
21 |
Boča M. ; Svoboda I. ; Renz F. ; Fuess H. Acta Cryst. C. 2004, 60, m631.
doi: 10.1107/s0108270104025776 |
22 | Casey, A. T.; Mitra, S. Magnetic Behavior of Components Containing dn Ions. In Theory and Application of Molecular Paramagnetism; Mulay, L. N., Boudreaux, E. A. Eds; Wiley: New York, 1976; pp. 211-215. |
23 | (a) Breed, D. J.; Gilijamse, K.; Sterkenburg, J. W. E.; Miedema, A. R. J. Appl. Phys. 1970, 41, 1267. doi: 10.1063/1.1658906 |
(b) Harris, A. B.; Kirkpatrick, S. Phys. Rev. B 1977, 16, 542. doi: 10.1103/physrevb.16.542 | |
(c) King, A. R.; Jaccarino, V. J. Appl. Phys. 1981, 52, 1785. doi: 10.1063/1.329714 | |
24 |
ManakaH. ; Nagata S. ; Watanabe Y. ; Kikunaga K. ; Yamamoto T. ; Terada N. ; Obara K. J. Phys.: Conf. Ser. 2009, 145, 012080.
doi: 10.1088/1742-6596/145/1/012080 |
25 | (a) Christensen, K.; Moloney, N. R. Complexity and Criticality; Imperial College Press: London, 2005. |
(b) Stinchcombe, R. B. J. Phys. C: Solid State Phys. 1979, 12, 4533. doi: 10.1088/0022-3719/12/21/020 | |
(c) Sur, A.; Lebowitz, J. L.; Marro, J.; Kalos, M. H.; Kirkpatrick, S. J. Statis. Phys. 1976, 15, 345. doi: 10.1007/bf01020338 | |
26 | (a) Enoki, T.; Tsujikawa, I. J. Phys. Soc. Japan 1975, 39, 324. doi: 10.1143/jpsj.39.324 |
(b) Elliott, R. J.; Heap, B. R. Proc. R. Soc. London. Ser. A 1962, 265, 264. doi: 10.1098/rspa.1962.0008 |
[1] | 张城城, 吴之怡, 沈家辉, 何乐, 孙威. 硅纳米结构阵列:光热CO2催化的新兴平台[J]. 物理化学学报, 2024, 40(1): 2304004 - . |
[2] | 冀连连, 王现鹏, 张莹莹, 申学礼, 薛娣, 王璐, 王滋, 王文冲, 黄丽珍, 迟力峰. 有机-有机界面效应的原位及非原位研究[J]. 物理化学学报, 2024, 40(1): 2304002 - . |
[3] | Faizan Muhammad, 赵国琪, 张天旭, 王啸宇, 贺欣, 张立军. 空位有序双钙钛矿A2BX6的弹性和热电性质的第一性原理研究[J]. 物理化学学报, 2024, 40(1): 2303004 - . |
[4] | 王宁, 李一, 崔乾, 孙晓玥, 胡悦, 罗运军, 杜然. 金属气凝胶:可控制备与应用展望[J]. 物理化学学报, 2023, 39(9): 2212014 -0 . |
[5] | 罗耀武, 王定胜. 单原子催化剂电子结构调控实现高效多相催化[J]. 物理化学学报, 2023, 39(9): 2212020 -0 . |
[6] | 高凤雨, 刘恒恒, 姚小龙, Sani Zaharaddeen, 唐晓龙, 罗宁, 易红宏, 赵顺征, 于庆君, 周远松. 球形表面富锰MnxCo3−xO4−ƞ尖晶石型催化剂选择性催化还原NOx研究[J]. 物理化学学报, 2023, 39(9): 2212003 -0 . |
[7] | 陈帅, 余创, 罗启悦, 魏超超, 李莉萍, 李广社, 程时杰, 谢佳. 卤化物固态电解质研究进展[J]. 物理化学学报, 2023, 39(8): 2210032 -0 . |
[8] | 梁秋菊, 常银霞, 梁朝伟, 祝浩雷, 郭子宾, 刘剑刚. 结晶动力学策略在非富勒烯体系太阳能电池形貌调控领域的应用[J]. 物理化学学报, 2023, 39(7): 2212006 -0 . |
[9] | 周文杰, 景启航, 李家馨, 陈颖芝, 郝国栋, 王鲁宁. 有机光催化剂用于太阳能水分解:分子水平和聚集体水平改性[J]. 物理化学学报, 2023, 39(5): 2211010 -0 . |
[10] | 唐甜蜜, 王振旅, 管景奇. 调控单位点M-N-C电催化剂的电子结构提升二氧化碳还原性能[J]. 物理化学学报, 2023, 39(4): 2208033 -0 . |
[11] | 齐亚娥, 夏永姚. 电解液调控策略提升水系锌离子电池正极材料电化学性能[J]. 物理化学学报, 2023, 39(2): 2205045 -0 . |
[12] | 张婧雯, 马华隆, 马军, 胡梅雪, 李启浩, 陈胜, 宁添姝, 葛创新, 刘晰, 肖丽, 庄林, 张熠霄, 陈立桅. 碱性聚合物电解质膜的表面锥形阵列结构提升燃料电池性能[J]. 物理化学学报, 2023, 39(2): 2111037 -0 . |
[13] | 王正慜, 洪庆玲, 王晓慧, 黄昊, 陈煜, 李淑妮. 氮掺杂石墨烯气凝胶锚定RuP纳米粒子用于水合肼氧化辅助产氢[J]. 物理化学学报, 2023, 39(12): 2303028 - . |
[14] | 郑书逸, 吴佳, 王可, 胡梦晨, 文欢, 尹诗斌. 钴掺杂电子调控Ni-Mo-O多孔纳米棒选择性氧化5-羟甲基糠醛耦合制氢[J]. 物理化学学报, 2023, 39(12): 2301032 - . |
[15] | 高振飞, 宋清泉, 肖志华, 李兆龙, 李涛, 罗家俊, 王珊珊, 周万立, 李兰英, 于俊荣, 张锦. 亚微米尺寸、高结晶度石墨烯增强间位芳纶纤维力学性能[J]. 物理化学学报, 2023, 39(10): 2307046 - . |
|