物理化学学报 >> 2021, Vol. 37 >> Issue (9): 2009035.doi: 10.3866/PKU.WHXB202009035
所属专题: 燃料电池
黄磊, Zaman Shahid, 王志同, 牛慧婷, 游波, 夏宝玉()
收稿日期:
2020-09-09
录用日期:
2020-10-12
发布日期:
2020-10-23
通讯作者:
夏宝玉
E-mail:byxia@hust.edu.cn
作者简介:
Dr. Bao Yu Xia is currently a full professor in the School of Chemistry and Chemical Engineering at Huazhong University of Science and Technology (HUST), China. He received his Ph.D. degree in materials science at Shanghai Jiao Tong University (SJTU) in 2010. He worked at Nanyang Technological University (NTU) from 2011 to 2016. His research involves functional materials in sustainable energy and clean environment technologies including fuel cells, batteries, and electrocatalysis
基金资助:
Lei Huang, Shahid Zaman, Zhitong Wang, Huiting Niu, Bo You, Bao Yu Xia()
Received:
2020-09-09
Accepted:
2020-10-12
Published:
2020-10-23
Contact:
Bao Yu Xia
E-mail:byxia@hust.edu.cn
About author:
Bao Yu Xia, Email: byxia@hust.edu.cnSupported by:
摘要:
与其他铂基纳米晶体材料相比,铂基纳米框架催化剂因其独特的结构特征和优异的催化性能引起研究者的广泛关注。开放的空间结构设计和组分可控调制不仅提高了铂的原子利用率,而且能在减少铂消耗的同时改善其电催化活性。本文简要综述了铂基纳米框架电催化剂的最新进展。在介绍不同的铂基纳米框架制备和蚀刻策略之后,也对框架晶体的结构演变及其在醇燃料电池中氧还原反应和醇氧化反应的催化应用进行了总结。此外,基于纳米框架材料的类型、合成方法、结构形态和催化性能,对铂基纳米框架的当前存在的挑战和未来的发展前景进行了总结和展望。基于铂基纳米框架材料的改进机制和规模化制备策略,我们相信纳米框架材料将会在醇燃料电池等技术中发挥更大作用。
黄磊, Zaman Shahid, 王志同, 牛慧婷, 游波, 夏宝玉. 铂基空心纳米框架的合成及其在直接醇燃料电池中的应用[J]. 物理化学学报, 2021, 37(9), 2009035. doi: 10.3866/PKU.WHXB202009035
Lei Huang, Shahid Zaman, Zhitong Wang, Huiting Niu, Bo You, Bao Yu Xia. Synthesis and Application of Platinum-Based Hollow Nanoframes for Direct Alcohol Fuel Cells[J]. Acta Phys. -Chim. Sin. 2021, 37(9), 2009035. doi: 10.3866/PKU.WHXB202009035
Fig 1
TEM images of (a) solid polyhedrons, (b) hollow NFs for PtCuCo rhombic dodecahedron, PtPd cube, PtNi octahedra, respectively. Panels a1, b1 adapted from Ref. 24, copyright 2018 Wiley-VCH. Panels a2, b2 adapted from Ref. 25, copyright 2016 Wiley-VCH. Panels a3, b3 adapted from Ref. 26, copyright 2014 Springer-Verlag."
Table 1
The reported synthesis methods of Pt-based NFs with various shapes and compositions."
Synthesis method | Shape and composition of Pt-based NFs | ||
Oxidative etching | Rhombic dodecahedral PtCu | Rhombic dodecahedral PtCuNi | Cubic PtPdCu |
Octopod cubic PtCu | Five-Fold-Twinned PtCu | Concave cubic PtCu | |
Rhombic dodecahedral PtCuRh | Octahedral PtCu | Five-Fold-Twinned PtCuMn | |
Chemical etching | Rhombic dodecahedral PtNi | Vertex-Reinforced PtCuCo | Truncated octahedral PtNiAu |
Spiny rhombic dodecahedral PtCu | Vertex-Reinforced PtCuRh | Octahedral PtNi | |
Rhombic dodecahedral PtRuNi | Rhombic dodecahedral PtCuNi | Skeletal octahedral PtNi | |
Rhombic dodecahedral PtRhNi | Rhombic dodecahedral PtCo | Polyhedral PtCo | |
Core-Shell AgAuPt | Truncated octahedral PtAu | PtAu bipyramid | |
Ultra-Small PtPdRhAg | Porous Pt-Bi(OH)3 | Dendrite-Embedded PtNi | |
Galvanic replacement | Cubic PtPdCu | Triangular PtAg | |
CO etching | Tetrahexahedral PtNi |
Fig 2
(a) Schematic of the major steps involved in the formation of concave cubic PtCu NFs. Representative HAADF-STEM images of (b) concave cubic, (c) five-fold-twinned and (d) rhombic dodecahedral PtCu NFs, respectively. Panels a, b adapted from Ref. 40, copyright 2016 American Chemical Society. Panel c adapted from Ref. 39, copyright 2017 Wiley-VCH. Panel d adapted from Ref. 34, copyright 2018 Wiley-VCH."
Fig 3
(a) Preparation process of the vertex-Reinforced PtCuRh NFs; HAADF-STEM images of (b) vertex-reinforced PtCuRh, (c) octahedral PtNi skeleton and (d) rhombic dodecahedral PtNi NFs, respectively; (e) TEM images of initial solid PtNi polyhedrons, PtNi intermediates, hollow PtNi NFs, PtNi NFs with Pt-skin, corresponding schematic illustrations of the samples obtained at four representative stages during the evolution process from polyhedrons to NFs. Panels a, b adapted from Ref. 50, copyright 2018 Wiley-VCH. Panel c adapted from Ref. 53, copyright 2015 American Chemical Society. Panel d adapted from Ref. 23, copyright 2016 American Chemical Society. Panel e adapted from Ref. 45, copyright 2014 American Association for the Advancement of Science."
Fig 4
(a) Schematic illustrating the formation process of PtPdCu concave nanocubes and NFs; (b) atomic ratio of the intermediate products in the formation stages of concave nanocubes; TEM images of (c) PtPdCu concave nanocubes and (d) PtPdCu NFs. Adapted from Ref. 37, copyright 2017 Elsevier ScienceDirect."
Table 2
The reported catalytic applications of Pt-based NFs with various shapes and compositions."
Electrocatalytic reaction | Shape and composition of Pt-based NFs | ||
Oxygen reduction | Rhombic dodecahedral PtCu | Rhombic dodecahedral PtCuNi | Cubic PtPdCu |
Octopod cubic PtCu | Rhombic dodecahedral PtNi | Cubic Pt | |
Five-Fold-Twinned PtCu | Rhombic dodecahedral PtCo | Tetrahexahedral PtNi | |
Vertex-Reinforced PtCuCo | Spiny rhombic dodecahedral PtCu | Skeletal octahedral PtNi | |
Octahedral PtCu | Five-Fold-Twinned PtCuMn | Dendrite-Embedded PtNi | |
Methanol oxidation | Rhombic dodecahedral PtCuRh | Rhombic dodecahedral PtCu | Cubic PtCu |
Concave cubic PtCu | Five-Fold-Twinned PtCu | Tetrahexahedral PtNi | |
Vertex-Reinforced PtCuCo | Octahedral PtNi | Truncated octahedronal PtNiAu | |
Rhombic dodecahedral PtRuNi | Rhombic dodecahedral PtCo | Octahedral PtCu | |
Core-Shell AgAuPt | truncated octahedral PtAu | AuPt bipyramid | |
Ultra-Small PtPdRhAg | |||
Ethanol oxidation | Rhombic dodecahedral PtCuRh | Vertex-Reinforced PtCuRh | Porous Pt-Bi(OH)3 |
Rhombic dodecahedral PtRhNi |
Fig 6
(a) Summary of the complete growth process of a PtNi heterogeneous rhombic dodecahedron, and corresponding composition of Pt and Ni in the products; (b) structural evolution models, (c) EDS mapping and (d) mass activity of hollow and excavated PtNi NFs; (e) ORR polarization curves, Tafel plots and TEM images of PtNi NFs before and after ADT test; (f) in situ XAS detection model of PtNi NFs in the ORR process; (g) models of solid PtCo rhombic dodecahedrons and PtCo alloy NFs; TEM images of (h) solid PtCo rhombic dodecahedrons and (i) carbon-supported PtNi NFs. (j) ORR polarization curves and Tafel plots of PtCo NFs before and after ADT test; (k) mass activity and specific activity of Pt/C, PtCo NFs and PtNi NFs; (l) TEM image of Octopod PtCu NFs, (m) HRTEM image and matching high-index facets of the tip area; (n) ORR curves, (o) mass activity of Pt/C and PtCu NFs. Panel a adapted from Ref. 91, copyright 2016 Nature group. Panels b–d adapted from Ref. 47, copyright 2017 American Chemical Society. Panel e adapted from Ref. 45, copyright 2014 American Association for the Advancement of Science. Panel f adapted from Ref. 44, copyright 2015 American Chemical Society. Panels g−k adapted from Ref. 55, copyright 2020 American Chemical Society. Panels l−o adapted from Ref. 38, copyright 2017 Wiley-VCH."
Fig 7
(a) Low-, (b) high-magnification TEM images of PtNi octahedrons; (c) MOR curves, (d) mass activity of Pt/C, PtNi porous octahedrons and PtNi NFs; (e) TEM image of truncated octahedral PtNiAu NFs, (f) MOR curves, (g) CO-stripping and (h) ADT tests of PtNi truncated octahedrons, PtNi NFs, PtNiAu NFs; TEM images of (i) PtCu concave cubic NFs and (j) PtCu octopod cubic NFs; (k) MOR curves and (l) FAOR curves of Pt/C, Pt black, PtCu concave cubic and octopod NFs. Panels a–d adapted from Ref. 26, copyright 2014 Springer-Verlag. Panels e–h adapted from Ref. 48, copyright 2014 American Chemical Society, Panels i–l adapted from Ref. 40, copyright 2016 American Chemical Society."
Fig 8
HAADF-STEM images of (a) PtCuRh NFs and (b) multi-footed PtCuRh NFs; (c) EOR curves, (d) the durability tests of PtCuRh NFs, PtCu NFs and Pt/C; (e) TEM image, (f) HRTEM image of vertex-reinforced PtCuRh NFs; (g) EOR curves, (h) anti-poisoning ability measurements of Pt/C, PtCu, PtCuRh nanoparticles and vertex-reinforced PtCuRh NFs; (i) structural evolution from PtNi nanocrystals to PtNi NFs, (j) ORR curves, (k) MOR curves and (l) EOR curves of Pt/C and PtNi NFs. Panels a–d adapted from Ref. 41, copyright 2019 Royal Society of Chemistry, Panels e–h adapted from Ref. 50, copyright 2018 Wiley-VCH. Panels i–l adapted from Ref. 23, copyright 2016 American Chemical Society."
1 |
Choi S. I. ; Shao M. ; Lu N. ; Ruditskiy A. ; Peng H. C. ; Park J. ; Guerrero S. ; Wang J. ; Kim M. J. ; Xia Y. ACS Nano 2014, 8, 10363.
doi: 10.1021/nn5036894 |
2 |
Huang L. ; Wei M. ; Hu N. ; Tsiakaras P. ; Shen P. K. Appl. Catal. B. Environ. 2019, 258, 117974.
doi: 10.1016/j.apcatb.2019.117974 |
3 | Li M. G. ; Xia Z. H. ; Huang Y. R. ; Tao L. ; Chao Y. G. ; Yin K. ; Yang W. X. ; Yang W. W. ; Yu Y. S. ; Guo S. J. Acta Phys. -Chim. Sin. 2020, 36, 1912049. |
李蒙刚; 夏仲泓; 黄雅荣; 陶璐; 晁玉广; 尹坤; 杨文秀; 杨微微; 于永生; 郭少军; 物理化学学报, 2020, 36, 1912049.
doi: 10.3866/PKU.WHXB201912049 |
|
4 | Lv L. ; Zhang L. Y. ; He X. B. ; Yuan H. ; Ouyang S. X. ; Zhang T. R. Acta Phys. -Chim. Sin. 2021, 37, 2007079. |
吕琳; 张立阳; 何雪冰; 原弘; 欧阳述昕; 张铁锐; 物理化学学报, 2021, 37, 2007079.
doi: 10.3866/PKU.WHXB202007079 |
|
5 | Zhang Y. J. ; Zhu Y. Z. ; Li J. F. Acta Phys. -Chim. Sin. 2021, 37, 2004052. |
张月皎; 朱越洲; 李剑锋; 物理化学学报, 2021, 37, 2004052.
doi: 10.3866/PKU.WHXB202004052 |
|
6 |
Kongkanand A. ; Mathias M. F. J. Phys. Chem. Lett. 2016, 7, 1127.
doi: 10.1021/acs.jpclett.6b00216 |
7 |
Ma S. Y. ; Li H. H. ; Hu B. C. ; Cheng X. ; Fu Q. Q. ; Yu S. H. J. Am. Chem. Soc. 2017, 139, 5890.
doi: 10.1021/jacs.7b01482 |
8 | Li K. X. ; Zhang T. L. ; Li H. Z. ; Li M. Z. ; Song Y. L. Acta Phys. -Chim. Sin. 2020, 36, 1911057. |
李凯旋; 张泰隆; 李会增; 李明珠; 宋延林; 物理化学学报, 2020, 36, 1911057.
doi: 10.3866/PKU.WHXB201911057 |
|
9 |
Kang Y. ; Snyder J. ; Chi M. ; Li D. ; More K. L. ; Markovic N. M. ; Stamenkovic V. R. Nano Lett. 2014, 14, 6361.
doi: 10.1021/nl5028205 |
10 | Tang Z. Y. Acta Phys. -Chim. Sin. 2020, 36, 2004050. |
唐智勇; 物理化学学报, 2020, 36, 2004050.
doi: 10.3866/PKU.WHXB202004050 |
|
11 |
You H. ; Yang S. ; Ding B. ; Yang H. Chem. Soc. Rev. 2013, 42, 2880.
doi: 10.1039/C2CS35319A |
12 | Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q. N.; Xia, Y. Chem. Rev. 2020, doi: 10.1021/acs.chemrev.0c00454 |
13 |
Kwon T. ; Jun M. ; Lee K. Adv. Mater. 2020, 32, 2001345.
doi: 10.1002/adma.202001345 |
14 |
Park J. ; Kanti Kabiraz M. ; Kwon H. ; Park S. ; Baik H. ; Choi S. I. ; Lee K. ACS Nano 2017, 11, 10844.
doi: 10.1021/acsnano.7b04097 |
15 | Yang T. Y. ; Cui C. ; Rong H. P. ; Zhang J. T. ; Wang D. S. Acta Phys. -Chim. Sin. 2020, 36, 2003047. |
杨天怡; 崔铖; 戎宏盼; 张加涛; 王定胜; 物理化学学报, 2020, 36, 2003047.
doi: 10.3866/PKU.WHXB202003047 |
|
16 |
Zhang L. ; Roling L. T. ; Wang X. ; Vara M. ; Chi M. ; Liu J. ; Choi S. I. ; Park J. ; Herron J. A. ; Xie Z. ; et al Science 2015, 349, 412.
doi: 10.1126/science.aab0801 |
17 |
Nosheen F. ; Zhang Z. C. ; Zhuang J. ; Wang X. Nanoscale 2013, 5, 3660.
doi: 10.1039/C3NR00833A |
18 |
Carpenter M. K. ; Moylan T. E. ; Kukreja R. S. ; Atwan M. H. ; Tessema M. M. J. Am. Chem. Soc. 2012, 134, 8535.
doi: 10.1021/ja300756y |
19 |
Mourdikoudis S. ; Liz-Marzán L. M. Chem. Mater. 2013, 25, 1465.
doi: 10.1021/cm4000476 |
20 |
Liu H. L. ; Nosheen F. ; Wang X. Chem. Soc. Rev. 2015, 44, 3056.
doi: 10.1039/C4CS00478G |
21 |
Kong F. ; Ren Z. ; Norouzi Banis M. ; Du L. ; Zhou X. ; Chen G. ; Zhang L. ; Li J. ; Wang S. ; Li M. ; et al ACS Catal. 2020, 10, 4205.
doi: 10.1021/acscatal.9b05133 |
22 | Liu M. M. ; Yang M. M. ; Shu X. X. ; Zhang J. T. Acta Phys. -Chim. Sin. 2021, 37, 2007072. |
刘苗苗; 杨茅茂; 舒欣欣; 张进涛; 物理化学学报, 2021, 37, 2007072.
doi: 10.3866/PKU.WHXB202007072 |
|
23 |
Ding J. ; Bu L. ; Guo S. ; Zhao Z. ; Zhu E. ; Huang Y. ; Huang X. Nano Lett. 2016, 16, 2762.
doi: 10.1021/acs.nanolett.6b00471 |
24 |
Kwon T. ; Jun M. ; Kim H. Y. ; Oh A. ; Park J. ; Baik H. ; Joo S. H. ; Lee K. Adv. Funct. Mater. 2018, 28, 1706440.
doi: 10.1002/adfm.201706440 |
25 |
Park J. ; Wang H. ; Vara M. ; Xia Y. ChemSusChem 2016, 9, 2855.
doi: 10.1002/cssc.201600984 |
26 |
Wang Y. ; Chen Y. ; Nan C. ; Li L. ; Wang D. ; Peng Q. ; Li Y. Nano Res. 2014, 8, 140.
doi: 10.1007/s12274-014-0603-z |
27 |
Beermann V. ; Holtz M. E. ; Padgett E. ; de Araujo J. F. ; Muller D. A. ; Strasser P. Energy Environ. Sci. 2019, 12, 2476.
doi: 10.1039/C9EE01185D |
28 |
Cui C. ; Gan L. ; Heggen M. ; Rudi S. ; Strasser P. Nat. Mater. 2013, 12, 765.
doi: 10.1038/nmat3668 |
29 |
Zhu C. ; Du D. ; Eychmuller A. ; Lin Y. Chem. Rev. 2015, 115, 8896.
doi: 10.1021/acs.chemrev.5b00255 |
30 |
Bu L. ; Guo S. ; Zhang X. ; Shen X. ; Su D. ; Lu G. ; Zhu X. ; Yao J. ; Guo J. ; Huang X. Nat. Commun. 2016, 7, 11850.
doi: 10.1038/ncomms11850 |
31 |
Godinez-Salomon F. ; Mendoza-Cruz R. ; Arellano-Jimenez M. J. ; Jose-Yacaman M. ; Rhodes C. P. ACS Appl. Mater. Interfaces 2017, 9, 18660.
doi: 10.1021/acsami.7b00043 |
32 |
Huang X. Y. ; You L. X. ; Zhang X. F. ; Feng J. J. ; Zhang L. ; Wang A. J. Electrochim. Acta 2019, 299, 89.
doi: 10.1016/j.electacta.2019.01.002 |
33 |
Niu H. J. ; Chen H. Y. ; Wen G. L. ; Feng J. J. ; Zhang Q. L. ; Wang A. J. J. Colloid. Interface Sci. 2019, 539, 525.
doi: 10.1016/j.jcis.2018.12.066 |
34 |
Sun X. ; Huang B. ; Cui X. ; E B. ; Feng Y. ; Huang X. ChemCatChem 2018, 10, 931.
doi: 10.1002/cctc.201701768 |
35 |
Ding J. ; Zhu X. ; Bu L. ; Yao J. ; Guo J. ; Guo S. ; Huang X. Chem. Commun. 2015, 51, 9722.
doi: 10.1039/C5CC03190G |
36 |
Huang L. ; Jiang Z. ; Gong W. ; Wang Z. ; Shen P. K. J. Power Sources 2018, 406, 42.
doi: 10.1016/j.jpowsour.2018.10.041 |
37 |
Ye W. ; Chen S. ; Ye M. ; Ren C. ; Ma J. ; Long R. ; Wang C. ; Yang J. ; Song L. ; Xiong Y. Nano Energy 2017, 39, 532.
doi: 10.1016/j.nanoen.2017.07.025 |
38 |
Luo S. ; Tang M. ; Shen P. K. ; Ye S. Adv. Mater. 2017, 29, 1601687.
doi: 10.1002/adma.201601687 |
39 |
Zhang Z. ; Luo Z. ; Chen B. ; Wei C. ; Zhao J. ; Chen J. ; Zhang X. ; Lai Z. ; Fan Z. ; Tan C. ; et al Adv. Mater. 2016, 28, 8712.
doi: 10.1002/adma.201603075 |
40 |
Luo S. ; Shen P. K. ACS Nano 2017, 11, 11946.
doi: 10.1021/acsnano.6b04458 |
41 |
Wang Z. ; Huang L. ; Tian Z. Q. ; Shen P. K. J. Mater. Chem. A 2019, 7, 18619.
doi: 10.1039/C9TA06119C |
42 |
Zhu G. ; Liu J. ; Li S. ; Zuo Y. ; Li D. ; Han H. ACS Appl. Energy Mater. 2019, 2, 2862.
doi: 10.1021/acsaem.9b00205 |
43 |
Qin Y. ; Zhang W. ; Guo K. ; Liu X. ; Liu J. ; Liang X. ; Wang X. ; Gao D. ; Gan L. ; Zhu Y. ; et al Adv. Funct. Mater. 2020, 30, 1910107.
doi: 10.1002/adfm.201910107 |
44 |
Becknell N. ; Kang Y. ; Chen C. ; Resasco J. ; Kornienko N. ; Guo J. ; Markovic N. M. ; Somorjai G. A. ; Stamenkovic V. R. ; Yang P. J. Am. Chem. Soc. 2015, 137, 15817.
doi: 10.1021/jacs.5b09639 |
45 |
Chen C. ; Kang Y. ; Huo Z. ; Zhu Z. ; Huang W. ; Xin H. L. ; Snyder J. D. ; Li D. ; Herron J. A. ; Mavrikakis M. ; Chi M. ; et al Science 2014, 343, 1339.
doi: 10.1126/science.1249061 |
46 |
Chen S. ; Niu Z. ; Xie C. ; Gao M. ; Lai M. ; Li M. ; Yang P. ACS Nano 2018, 12, 8697.
doi: 10.1021/acsnano.8b04674 |
47 |
Becknell N. ; Son Y. ; Kim D. ; Li D. ; Yu Y. ; Niu Z. ; Lei T. ; Sneed B. T. ; More K. L. ; Markovic N. M. ; et al J. Am. Chem. Soc. 2017, 139, 11678.
doi: 10.1021/jacs.7b05584 |
48 |
Wu Y. ; Wang D. ; Zhou G. ; Yu R. ; Chen C. ; Li Y. J. Am. Chem. Soc. 2014, 136, 11594.
doi: 10.1021/ja5058532 |
49 |
Lyu L. M. ; Kao Y. C. ; Cullen D. A. ; Sneed B. T. ; Chuang Y. C. ; Kuo C. H. Chem. Mater. 2017, 29, 5681.
doi: 10.1021/acs.chemmater.7b01550 |
50 |
Wang K. ; Du H. ; Sriphathoorat R. ; Shen P. K. Adv. Mater. 2018, 30, e1804074.
doi: 10.1002/adma.201804074 |
51 |
Ren F. ; Wang Z. ; Luo L. ; Lu H. ; Zhou G. ; Huang W. ; Hong X. ; Wu Y. ; Li Y. Chem. Eur. J. 2015, 21, 13181.
doi: 10.1002/chem.201501923 |
52 |
Shang C. ; Guo Y. ; Wang E. J. Mater. Chem. A 2019, 7, 2547.
doi: 10.1039/C9TA00191C |
53 |
Oh A. ; Baik H. ; Choi D. S. ; Cheon J. Y. ; Kim B. ; Kim H. ; Kwon S. J. ; Joo S. H. ; Jung Y. ; Lee K. ACS Nano 2015, 9, 2856.
doi: 10.1021/nn5068539 |
54 |
Gruzel G. ; Piekarz P. ; Pawlyta M. ; Donten M. ; Parlinska-Wojtan M. ACS Appl. Mater. Interfaces 2019, 11, 22352.
doi: 10.1021/acsami.9b04690 |
55 |
Chen S. ; Li M. ; Gao M. ; Jin J. ; van Spronsen M. A. ; Salmeron M. B. ; Yang P. Nano Lett. 2020, 20, 1974.
doi: 10.1021/acs.nanolett.9b05251 |
56 |
Becknell N. ; Zheng C. ; Chen C. ; Yu Y. ; Yang P. Surf. Sci. 2016, 648, 328.
doi: 10.1016/j.susc.2015.09.024 |
57 |
Yan X. ; Yu S. ; Tang Y. ; Sun D. ; Xu L. ; Xue C. Nanoscale 2018, 10, 2231.
doi: 10.1039/C7NR08899J |
58 |
Yoo S. ; Cho S. ; Kim D. ; Ih S. ; Lee S. ; Zhang L. ; Li H. ; Lee J. Y. ; Liu L. ; Park S. Nanoscale 2019, 11, 2840.
doi: 10.1039/C8NR08231F |
59 |
Fang C. ; Zhao G. ; Zhang Z. ; Ding Q. ; Yu N. ; Cui Z. ; Bi T. Chem. Eur. J. 2019, 25, 7351.
doi: 10.1002/chem.201900403 |
60 |
Saleem F. ; Ni B. ; Yong Y. ; Gu L. ; Wang X. Small 2016, 12, 5261.
doi: 10.1002/smll.201601299 |
61 |
Yuan X. ; Jiang B. ; Cao M. ; Zhang C. ; Liu X. ; Zhang Q. ; Lyu F. ; Gu L. ; Zhang Q. Nano Res. 2020, 13, 265.
doi: 10.1007/s12274-019-2609-z |
62 |
Kwon H. ; Kabiraz M. K. ; Park J. ; Oh A. ; Baik H. ; Choi S. I. ; Lee K. Nano Lett. 2018, 18, 2930.
doi: 10.1021/acs.nanolett.8b00270 |
63 |
Tsuji M. ; Hamasaki M. ; Yajima A. ; Hattori M. ; Tsuji T. ; Kawazumi H. Mater. Lett. 2014, 121, 113.
doi: 10.1016/j.matlet.2014.01.093 |
64 |
Wang C. ; Zhang L. ; Yang H. ; Pan J. ; Liu J. ; Dotse C. ; Luan Y. ; Gao R. ; Lin C. ; Zhang J. ; et al Nano Lett. 2017, 17, 2204.
doi: 10.1021/acs.nanolett.6b04731 |
65 |
Zheng Y. ; Zeng J. ; Ruditskiy A. ; Liu M. ; Xia Y. Chem. Mater. 2013, 26, 22.
doi: 10.1021/cm402023g |
66 |
Yu X. ; Li L. ; Su Y. ; Jia W. ; Dong L. ; Wang D. ; Zhao J. ; Li Y. Chem. Eur. J. 2016, 22, 4960.
doi: 10.1002/chem.201600079 |
67 |
Liao H. G. ; Zherebetskyy D. ; Xin H. ; Czarnik C. ; Ercius P. ; Elmlund H. ; Pan M. ; Wang L. W. ; Zheng H. Science 2014, 345, 916.
doi: 10.1126/science.1253149 |
68 |
Zhou J. ; Yang Y. ; Yang Y. ; Kim D. S. ; Yuan A. ; Tian X. ; Ophus C. ; Sun F. ; Schmid A. K. ; Nathanson M. ; et al Nature 2019, 570, 500.
doi: 10.1038/s41586-019-1317-x |
69 |
Wang D. ; Li Y. Adv. Mater. 2011, 23, 1044.
doi: 10.1002/adma.201003695 |
70 |
Gan L. ; Cui C. ; Heggen M. ; Dionigi F. ; Rudi S. ; Strasser P. Science 2014, 346, 1502.
doi: 10.1126/science.1261212 |
71 |
Chen M. ; Wu B. ; Yang J. ; Zheng N. Adv. Mater. 2012, 24, 862.
doi: 10.1002/adma.201104145 |
72 |
Xu X. ; Zhang X. ; Sun H. ; Yang Y. ; Dai X. ; Gao J. ; Li X. ; Zhang P. ; Wang H. H. ; Yu N. F. ; Sun S. G. Angew. Chem. Int. Ed. 2014, 53, 12522.
doi: 10.1002/ange.201406497 |
73 |
Jin H. ; Hong Y. ; Yoon J. ; Oh A. ; Chaudhari N. K. ; Baik H. ; Joo S. H. ; Lee K. Nano Energy 2017, 42, 17.
doi: 10.1016/j.nanoen.2017.10.033 |
74 |
Sun X. ; Jiang K. ; Zhang N. ; Guo S. ; Huang X. ACS Nano 2015, 9, 7634.
doi: 10.1021/acsnano.5b02986 |
75 |
Ahmadi M. ; Cui C. ; Mistry H. ; Strasser P. ; Cuenya B. R. ACS Nano 2015, 9, 10686.
doi: 10.1021/acsnano.5b01807 |
76 |
Hong J. W. ; Kim Y. ; Wi D. H. ; Lee S. ; Lee S. U. ; Lee Y. W. ; Choi S. I. ; Han S. W. Angew. Chem. Int. Ed. 2016, 55, 2753.
doi: 10.1002/anie.201510460 |
77 |
Saleem F. ; Zhang Z. ; Xu B. ; Xu X. ; He P. ; Wang X. J. Am. Chem. Soc. 2013, 135, 18304.
doi: 10.1021/ja4101968 |
78 |
Li Y. ; Quan F. ; Chen K. ; Chen L. ; Chen C. Catal. Today 2016, 278, 247.
doi: 10.1016/j.cattod.2016.01.047 |
79 |
Wang X. ; Vara M. ; Luo M. ; Huang H. ; Ruditskiy A. ; Park J. ; Bao S. ; Liu J. ; Howe J. ; Chi M. ; et al J. Am. Chem. Soc. 2015, 137, 15036.
doi: 10.1021/jacs.5b10059 |
80 |
Zhu J. ; Xie M. ; Chen Z. ; Lyu Z. ; Chi M. ; Jin W. ; Xia Y. Adv. Energy Mater. 2020, 10, 1904114.
doi: 10.1002/aenm.201904114 |
81 |
Luo X. ; Liu C. ; Wang X. ; Shao Q. ; Pi Y. ; Zhu T. ; Li Y. ; Huang X. Nano Lett. 2020, 20, 1967.
doi: 10.1021/acs.nanolett.9b05250 |
82 |
Huang L. ; Zhang X. ; Han Y. ; Wang Q. ; Fang Y. ; Dong S. Chem. Mater. 2017, 29, 4557.
doi: 10.1021/acs.chemmater.7b01282 |
83 |
Wang Y. ; Chen S. ; Wang X. ; Rosen A. ; Beatrez W. ; Sztaberek L. ; Tan H. ; Zhang L. ; Koenigsmann C. ; Zhao J. ACS Appl. Energy Mater. 2020, 3, 768.
doi: 10.1021/acsaem.9b01930 |
84 |
Xia B. Y. ; Wu H. B. ; Wang X. ; Lou X. W. Angew. Chem. Int. Ed. 2013, 52, 12337.
doi: 10.1002/anie.201307518 |
85 |
Zhu X. ; Huang L. ; Wei M. ; Tsiakaras P. ; Shen P. K. Appl. Catal. B. Environ. 2021, 281, 119460.
doi: 10.1016/j.apcatb.2020.119460 |
86 |
Xia B. Y. ; Wu H. B. ; Wang X. ; Lou X. W. J. Am. Chem. Soc. 2012, 134, 13934.
doi: 10.1021/ja3051662 |
87 |
Lin R. ; Cai X. ; Zeng H. ; Yu Z. Adv. Mater. 2018, 30, e1705332.
doi: 10.1002/adma.201705332 |
88 |
Liu M. ; Zhao Z. ; Duan X. ; Huang Y. Adv. Mater. 2019, 31, 1802234.
doi: 10.1002/adma.201802234 |
89 |
Liu L. ; Samjeské G. ; Takao S. ; Nagasawa K. ; Iwasawa Y. J. Power Sources 2014, 253, 1.
doi: 10.1016/j.jpowsour.2013.12.028 |
90 |
Wang D. ; Xin H. L. ; Hovden R. ; Wang H. ; Yu Y. ; Muller D. A. ; DiSalvo F. J. ; Abruna H. D. Nat. Mater. 2013, 12, 81.
doi: 10.1038/nmat3458 |
91 |
Niu Z. ; Becknell N. ; Yu Y. ; Kim D. ; Chen C. ; Kornienko N. ; Somorjai G. A. ; Yang P. Nat. Mater. 2016, 15, 1188.
doi: 10.1038/nmat4724 |
92 |
Huang X. ; Zhao Z. ; Cao L. ; Chen Y. ; Zhu E. ; Lin Z. ; Li M. ; Yan A. ; Zettl A. ; Wang Y. M. ; et al Science 2015, 348, 1230.
doi: 10.1126/science.aaa8765 |
93 |
Lim B. ; Jiang M. ; Camargo P. H. C. ; Cho E. C. ; Tao J. ; Lu X. ; Zhu Y. ; Xia Y. Science 2009, 324, 1302.
doi: 10.1126/science.1170377 |
94 |
Strasser P. ; Koh S. ; Anniyev T. ; Greeley J. ; More K. ; Yu C. ; Liu Z. ; Kaya S. ; Nordlund D. ; Ogasawara H. ; et al Nat. Chem. 2010, 2, 454.
doi: 10.1038/nchem.623 |
95 |
Stamenkovic V. R. ; Fowler B. ; Mun B. S. ; Wang G. ; Ross P. N. ; Lucas C. A. ; Markovic N. M. Science 2007, 315, 493.
doi: 10.1126/science.1135941 |
96 |
Bu L. ; Zhang N. ; Guo S. ; Zhang X. ; Li J. ; Yao J. ; Wu T. ; Lu G. ; Ma J. Y. ; Su D. ; Huang X. Science 2016, 354, 1410.
doi: 10.1126/science.aah6133 |
97 |
Tian X. ; Zhao X. ; Su Y. Q. ; Wang L. ; Wang H. ; Dang D. ; Chi B. ; Liu H. ; Hensen E. J. M. ; Lou X. W. D. ; Xia B. Y. Science 2019, 366, 850.
doi: 10.1126/science.aaw7493 |
98 |
Pizzutilo E. ; Knossalla J. ; Geiger S. ; Grote J. P. ; Polymeros G. ; Baldizzone C. ; Mezzavilla S. ; Ledendecker M. ; Mingers A. ; Cherevko S. ; et al Adv. Energy Mater. 2017, 7, 1700835.
doi: 10.1002/aenm.201700835 |
99 |
Cao Y. ; Yang Y. ; Shan Y. ; Huang Z. ACS Appl. Mater. Interfaces 2016, 8, 5998.
doi: 10.1021/acsami.5b11364 |
100 |
Sneed B. T. ; Young A. P. ; Jalalpoor D. ; Golden M. C. ; Mao S. ; Jiang Y. ; Wang Y. ; Tsung C. K. ACS Nano 2014, 8, 7239.
doi: 10.1021/nn502259g |
101 |
Gunji T. ; Tanabe T. ; Jeevagan A. J. ; Usui S. ; Tsuda T. ; Kaneko S. ; Saravanan G. ; Abe H. ; Matsumoto F. J. Power Sources 2015, 273, 990.
doi: 10.1016/j.jpowsour.2014.09.182 |
102 |
Han L. ; Liu H. ; Cui P. ; Peng Z. ; Zhang S. ; Yang J. Sci. Rep. 2014, 4, 6414.
doi: 10.1038/srep06414 |
103 | Bao Y. F. ; Feng L. G. Acta Phys. -Chim. Sin. 2021, 37, 2008031. |
包玉菲; 冯立纲; 物理化学学报, 2021, 37, 2008031.
doi: 10.3866/PKU.WHXB202008031 |
|
104 |
Yang S. ; Li S. ; Song L. ; Lv Y. ; Duan Z. ; Li C. ; Praeg R. F. ; Gao D. ; Chen G. Nano Res. 2019, 12, 2881.
doi: 10.1007/s12274-019-2530-5 |
105 |
Dong J. C. ; Su M. ; Briega-Martos V. ; Li L. ; Le J. B. ; Radjenovic P. ; Zhou X. S. ; Feliu J. M. ; Tian Z. Q. ; Li J. F. J. Am. Chem. Soc. 2020, 142, 715.
doi: 10.1021/jacs.9b12803 |
106 | Fang B. ; Feng L. G. Acta Phys. -Chim. Sin. 2020, 36, 1905023. |
方波; 冯立纲; 物理化学学报, 2020, 36, 1905023.
doi: 10.3866/PKU.WHXB201905023 |
[1] | 于彦会, 饶鹏, 封苏阳, 陈民, 邓培林, 李静, 苗政培, 康振烨, 沈义俊, 田新龙. 钴原子团簇用于高效氧还原反应[J]. 物理化学学报, 2023, 39(8): 2210039 -0 . |
[2] | 兰畅, 楚宇逸, 王烁, 刘长鹏, 葛君杰, 邢巍. 质子交换膜燃料电池阴极非贵金属M-Nx/C型氧还原催化剂研究进展[J]. 物理化学学报, 2023, 39(8): 2210036 -0 . |
[3] | 胡洋, 刘斌, 徐路遥, 董自强, 仵亚婷, 刘杰, 钟澄, 胡文彬. 基于微流控技术平台的Pt基三元电催化剂高通量合成和筛选[J]. 物理化学学报, 2023, 39(3): 2209004 -0 . |
[4] | 张婧雯, 马华隆, 马军, 胡梅雪, 李启浩, 陈胜, 宁添姝, 葛创新, 刘晰, 肖丽, 庄林, 张熠霄, 陈立桅. 碱性聚合物电解质膜的表面锥形阵列结构提升燃料电池性能[J]. 物理化学学报, 2023, 39(2): 2111037 -0 . |
[5] | 李景学, 于跃, 徐斯然, 闫文付, 木士春, 张佳楠. 电子自旋效应在电催化剂中的作用[J]. 物理化学学报, 2023, 39(12): 2302049 - . |
[6] | 崔同慧, 李航越, 吕泽伟, 王怡戈, 韩敏芳, 孙再洪, 孙凯华. 大尺寸固体氧化物燃料电池的电极过程解析方法[J]. 物理化学学报, 2022, 38(8): 2011009 - . |
[7] | 孙轲, 赵永青, 殷杰, 靳晶, 刘翰文, 席聘贤. 有机配体表面改性NiCo2O4纳米线用于水全分解[J]. 物理化学学报, 2022, 38(6): 2107005 - . |
[8] | 韩爱娣, 闫晓晖, 陈俊任, 程晓静, 章俊良. 分散溶剂对PEMFC催化层中超薄Nafion离聚物质子传导的影响[J]. 物理化学学报, 2022, 38(3): 1912052 - . |
[9] | 张月皎, 朱越洲, 李剑锋. 拉曼光谱在燃料电池领域的应用[J]. 物理化学学报, 2021, 37(9): 2004052 - . |
[10] | 李孟婷, 郑星群, 李莉, 魏子栋. 碱性介质中氢氧化和析氢反应机理研究现状[J]. 物理化学学报, 2021, 37(9): 2007054 - . |
[11] | 刘苗苗, 杨茅茂, 舒欣欣, 张进涛. 燃料电池碳基氧还原催化剂的设计与应用[J]. 物理化学学报, 2021, 37(9): 2007072 - . |
[12] | 包玉菲, 冯立纲. PdNi/石墨烯气凝胶电催化甲酸氧化[J]. 物理化学学报, 2021, 37(9): 2008031 - . |
[13] | 田立亮, 张玮琦, 解政, 彭凯, 马强, 徐谦, Pasupathi Sivakumar, 苏华能. 催化层掺杂共价有机框架材料提升高温聚电解质膜燃料电池性能[J]. 物理化学学报, 2021, 37(9): 2009049 - . |
[14] | 罗芳, 潘书媛, 杨泽惠. 中高温质子交换膜燃料电池催化剂研究进展[J]. 物理化学学报, 2021, 37(9): 2009087 - . |
[15] | 李峥嵘, 申涛, 胡冶州, 陈科, 陆贇, 王得丽. 有序金属间化合物电催化剂在燃料电池中的应用进展[J]. 物理化学学报, 2021, 37(9): 2010029 - . |
|