物理化学学报 >> 2023, Vol. 39 >> Issue (12): 2302049.doi: 10.3866/PKU.WHXB202302049

所属专题: 能源与环境催化

综述 上一篇    下一篇

电子自旋效应在电催化剂中的作用

李景学1,2, 于跃1,2, 徐斯然1,2, 闫文付3, 木士春4, 张佳楠1,2,*()   

  1. 1 郑州大学材料科学与工程学院, 郑州 450001
    2 郑州大学材料科学与工程学院, 郑州市先进能源催化功能材料制备技术重点实验室, 郑州 450012
    3 吉林大学化学学院, 无机合成与制备化学国家重点实验室, 长春 130012
    4 武汉理工大学, 材料复合新技术国家重点实验室, 武汉 430070
  • 收稿日期:2023-02-27 录用日期:2023-03-20 发布日期:2023-03-28
  • 通讯作者: 张佳楠 E-mail:zjn@zzu.edu.cn
  • 作者简介:第一联系人:

    These authors contributed equally to this work.

  • 基金资助:
    国家自然科学基金(U22A20107);国家自然科学基金(U1967215);郑州大学杰出青年创新团队(32320275);河南省高等教育教学改革研究与实践项目(研究生教育)(2021SJGLX093Y);河南省省级科技研发计划联合基金(优势学科培育类)(222301420001)

Function of Electron Spin Effect in Electrocatalysts

Jingxue Li1,2, Yue Yu1,2, Siran Xu1,2, Wenfu Yan3, Shichun Mu4, Jia-Nan Zhang1,2,*()   

  1. 1 College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
    2 Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450012, China
    3 State Key Laboratory of Inorganic Synthesis and Preparation Chemistry, School of Chemistry, Jilin University, Changchun 130012, China
    4 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received:2023-02-27 Accepted:2023-03-20 Published:2023-03-28
  • Contact: Jia-Nan Zhang E-mail:zjn@zzu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(U22A20107);the National Natural Science Foundation of China(U1967215);the Distinguished Young Scholars Innovation Team of Zhengzhou University(32320275);the Academic Degrees & Graduate Education Reform Project of Henan Province(2021SJGLX093Y);the Science and Technology Research Support Plan in Henan Province(222301420001)

摘要:

高效电催化剂的开发对于能源转换及储存技术的发展至关重要。自旋作为粒子的内禀性质,能够对化学反应的过程产生独特的影响。因此,调控电催化剂内部自旋状态能够有效提升催化剂整体性能。本综述首先介绍了电子自旋以及自旋调控的影响因素,随后从热力学和动力学两方面阐述了自旋效应在电催化中的作用机理。进一步,我们综述了自旋效应在氧还原反应(ORR)、析氧反应(OER)、氮还原反应(NRR)、二氧化碳还原反应(CO2RR)中的最新研究进展,详细介绍了自旋调控在上述四种反应中的催化机理。同时本文总结了电子自旋的先进表征方法和自旋催化的第一性原理计算方法。最后,我们展望了自旋效应在电催化领域的发展趋势。因此,认识并了解电子自旋效应有助于加深对电催化反应过程的机制理解,指导设计高效催化剂,具有巨大的研究价值。

关键词: 自旋催化, 电子自旋, 电催化剂, 氧还原反应, 析氧反应, 氮还原反应, 二氧化碳还原反应

Abstract:

With the continuous consumption of non-renewable energy and increasing exacerbation in associated environmental problems, there is a growing demand for clean renewable energy. This demand has led to the development of many energy conversion technologies to alleviate the energy crisis and related environmental problems. The development of high-efficiency electrocatalysts is crucial for the progress of renewable energy conversion and storage technologies. Over the past decade, researchers have gradually understood the intrinsic reaction mechanism and structure-performance relationships in electrocatalysis, and made significant progress in synthesizing high-performance electrocatalysts. Detailed analysis of the relationship between the intrinsic activity and electronic structure of active sites, including the deeper levels of electronic spin distribution of catalyst active sites, has been the focus of electrocatalysis research. Spin is an inherent property of particles and can have a unique impact on chemical reactions. Therefore, using electron spin to further study the electronic structure of active sites is expected to bring new development opportunities to catalyst design theory. Spin control in electrocatalysts is undoubtedly an effective method to improve catalytic performance. This review article introduces the progress status of electron spin in electrocatalysis, summarizes the common strategies for controlling electron spin at the active sites in electrocatalysis, and expound the mechanism of spin effect in electrocatalysis from both thermodynamic and kinetic aspects. Further, the article reviews the latest research progress concerning the spin effect on several reactions such as oxygen reduction reaction (ORR), oxygen evolution reaction (OER), nitrogen reduction reaction (NRR) and carbon dioxide reduction reaction (CO2RR). It explains the important role of spin in catalyst activity and catalyst promotion of the aforementioned reactions, and then discusses the spin stability of the catalyst active sites in ORR. In addition, the article reviews the advanced methods widely used for characterizing electron spin in electrocatalysis, such as vibrating sample magnetometry, electron paramagnetic resonance spectroscopy, Mossbauer spectroscopy, and X-ray spectroscopy, and discusses the first-principle calculation methods employed in spin catalysis. Finally, the article summarizes the current development of spin electronics in electrocatalysis and proposes future development directions regarding the spin effect in electrocatalysis. In summary, understanding the role of spin effect is instrumental for improving the understanding of the mechanism of electrocatalytic reaction, and can guide the design of high-efficiency catalysts, which has broad research prospects. This review presents for the first time a comprehensive summary of the latest research progress on the spin effect in the field of electrocatalysis, which provides theoretical guidance for the design of spin-regulated high-efficiency electrocatalysts.

Key words: Spin catalysis, Electron spin, Electrocatalyst, Oxygen reduction reaction, Oxygen evolution reaction, Nitrogen reduction reaction, Carbon dioxide reduction reaction