物理化学学报 >> 2021, Vol. 37 >> Issue (7): 2009043.doi: 10.3866/PKU.WHXB202009043
所属专题: 电催化
许桐1, 马奔原1, 梁杰1, 岳鲁超1, 刘倩1, 李廷帅1, 赵海涛1, 罗永岚1, 卢思宇2, 孙旭平1,*()
收稿日期:
2020-09-11
录用日期:
2020-11-18
发布日期:
2020-11-24
通讯作者:
孙旭平
E-mail:xpsun@uestc.edu.cn
作者简介:
Xuping Sun received his Ph.D. degree in Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences in 2006. During 2006–2009, he carried out postdoctoral researches at Konstanz University, University of Toronto, and Purdue University. In 2010, he started his independent research career as a full Professor at CIAC and then moved to Sichuan University in 2015. In 2018, he joined University of Electronic Science and Technology of China where he found the Research Center of Nanocatalysis & Sensing. He was recognized as a highly cited researcher (2018 & 2019) in both areas of chemistry and materials science by Clarivate Analytics. He published over 470 papers with total citations over 40000 and an h-index of 106. His research mainly focuses on rational design of functional nanostructures toward applications in electrochemistry for energy conversion and storage, sensing, and environment
Tong Xu1, Benyuan Ma1, Jie Liang1, Luchao Yue1, Qian Liu1, Tingshuai Li1, Haitao Zhao1, Yonglan Luo1, Siyu Lu2, Xuping Sun1,*()
Received:
2020-09-11
Accepted:
2020-11-18
Published:
2020-11-24
Contact:
Xuping Sun
E-mail:xpsun@uestc.edu.cn
About author:
Xuping Sun, Email: xpsun@uestc.edu.cn摘要:
在现代社会中氨是一种重要的工业原料,广泛应用于化工业、塑料制造,炸药以及染料等行业。由于氨气中不含碳,氢容量大、能量密度高且易于运输,已经被视为一种绿色能源替代品。Haber-Bosch方法在全球合成氨中起着主导作用,但其过程在高温高压条件下进行,且伴随着高能耗和CO2排放的问题。电催化氮还原反应(NRR)有望成为常规条件下低成本且环境无害的替代方法,且具有太阳能、风能和其他可再生能源相同的应用潜力。然而,由于惰性的N≡N键,它需要有效的电催化剂来驱动氮气-氨气的转化。迄今为止,人们一直在努力探索高性能催化剂,以实现高效率和选择性。通常,贵金属催化剂具有较高的NRR效率,但是稀缺性和高成本限制了它们的大规模应用。因此,人们将注意力集中在丰富的过渡金属(TM)催化剂上,该催化剂可以通过空的轨道接受氮气分子的孤对电子,同时提供丰富的d-轨道电子进入氮气的反键轨道。然而,这些催化剂可能释放金属离子,导致环境污染,并且大多数金属电催化剂也可能促进金属与氢成键,从而在电催化反应过程中促进了析氢反应(HER)。近年来,非金属催化剂已经成为一个研究热点。非金属催化剂主要包括碳基催化剂(CBC)以及一些硼基和磷基催化剂。通常,碳基催化剂具有多孔结构和较大的表面积,这有利于暴露更多的活性位点,并为质子和电子的传递提供了丰富的通道。本文总结了近期非金属电催化剂(MFCs)在电化学NRR中的设计和发展状况,包括碳基、硼基和磷基催化剂。此外,大多数非金属化合物的路易斯酸位也可以接受氮气的孤对电子并通过形成非金属和氮成键来吸附氮气分子,从而进一步扩大了它们在电催化NRR中的潜力。与金属基催化剂相比,非金属催化剂的占据轨道只能形成共价键或共轭π键,从而阻碍了电子从催化剂到氮气分子的转移以及分子的活化。我们重点讨论了掺杂型催化剂(N,O,S,B,P,F掺杂以及共掺杂)、有机聚合物、氮化碳及缺陷和表面修饰催化剂。最后,我们还讨论了提高NRR性能的方法,展望了非金属电催化剂的发展前景。
许桐, 马奔原, 梁杰, 岳鲁超, 刘倩, 李廷帅, 赵海涛, 罗永岚, 卢思宇, 孙旭平. 非金属电催化剂环境条件下氮还原反应的研究进展[J]. 物理化学学报, 2021, 37(7), 2009043. doi: 10.3866/PKU.WHXB202009043
Tong Xu, Benyuan Ma, Jie Liang, Luchao Yue, Qian Liu, Tingshuai Li, Haitao Zhao, Yonglan Luo, Siyu Lu, Xuping Sun. Recent Progress in Metal-Free Electrocatalysts toward Ambient N2 Reduction Reaction[J]. Acta Phys. -Chim. Sin. 2021, 37(7), 2009043. doi: 10.3866/PKU.WHXB202009043
Fig 1
(a) Schematic of NPC preparation. (b) Contents of pyridinic, pyrrolic and graphitic N in NPCs. (c) NH3 yields of NPC-850 and NPC-1 at -0.9 V. Reproduced with permission from Ref.47. Copyright 2018 American Chemical Society. (d) NRR reaction pathway on pyridinic N3 moiety site. Reproduced with permission from Ref.48. Copyright 2018 Elsevier."
Fig 2
(a) Schematic of the synthesis process of bamboo shoots-derived NC. (b) HRTEM image of NC-800. Reproduced with permission from Ref.51. Copyright 2019 Multidisciplinary Digital Publishing Institute. (c) SEM image of NCF-900. (d) Schematic of the synthesis process of cicada slough-derived NCF. Reproduced with permission from Ref.54. Copyright 2018 The Royal Society of Chemistry. (e) Schematic of the synthesis process of alfalfa-derived NPC. (f) SEM image of NPC-500. Reproduced with permission from Ref.52. Copyright 2019 American Chemical Society."
Fig 3
(a) TEM image of O-G. Reproduced with permission from Ref.55. Copyright 2019 The Royal Society of Chemistry. (b) TEM image of O-CN. Reproduced with permission from Ref.46. Copyright 2019 Wiley-VCH. (c) TEM image of O-KFCNTs. Reproduced with permission from Ref.39. Copyright 2019 The Royal Society of Chemistry. (d) XPS spectra of O-G in C 1s and O 1s regions. (e) NH3 yields and FEs of O-G at different potentials. (f) Optimized C—O, C=O and O—C=O models and corresponding geometric structures of *NNH. Gray, red, blue and white balls represent the C, O, N and H atoms, respectively. Color online. Reproduced with permission from Ref.55. Copyright 2019 The Royal Society of Chemistry."
Fig 4
(a) TEM image of S-CNS. Reproduced with permission from Ref.57. Copyright 2018 Wiley-VCH. (b) TEM image of sulfur dots-graphene. Reproduced with permission from Ref.60. Copyright 2019 The Royal Society of Chemistry. (c) TEM image of sulfur-doped 3D-graphene. Reproduced with permission from Ref.59. Copyright 2020 The Royal Society of Chemistry. (d) N2-TPD curves of S-CNS and CNS. Raman spectra of (e) S-CNS and (f) CNS. Reproduced with permission from Ref.57. Copyright 2018 Wiley-VCH. Free energy profiles for NRR on sulfur-doped graphene based on (g) model 1 and (h) model 2. Gray and yellow spheres denote C and S atoms, respectively. Related charge density differences of adsorption configurations are also shown. Yellow and blue denote the charge accumulation and depletion, respectively. Reproduced with permission from Ref.58. Copyright 2019 The Royal Society of Chemistry. Color online."
Fig 5
(a) TEM image of BG-1. Reproduced with permission from Ref.64. Copyright 2018 Elsevier. (b) Schematic of the sp3 orbitals of BC3 for binding N2 (left). LUMO (blue) and HOMO (red) of undoped G (G) and BG (right). The position of a single doped boron atom was labeled (right). Reproduced with permission from Ref.45. Copyright 2019 American Chemical Society. (c) Raman spectra, (d) N2-TPD curves, (e) NH3 yields and (f) FEs of BG-1, BOG, BG-2 and G. Reproduced with permission from Ref.45. Copyright 2018 Elsevier."
Fig 6
(a) TEM image of PG. (b) Density of states of P atom in PG and C atom in graphene. (c) NH3 yields and FEs of PG/CP. Reproduced with permission from Ref.66. Copyright 2020 The Royal Society of Chemistry. (d) HRTEM image of d-FG. (e) Top view of d-FG. (f) NH3 yields and FEs of d-PG/CP with different fluorination time at -0.7 V. Reproduced with permission from Ref.69. Copyright 2019 The Royal Society of Chemistry."
Fig 7
(a) NH3 yields, FEs and (b) HER performances of G, BG, NG, BNG-S, BNG-B and BCN. Reproduced with permission from Ref.73. Copyright 2019 Wiley-VCH. (c) NH3 yields of B/N-CNF, B-CNF and N-CNF. (d) FESEM and (e) HRTEM images of B/N-CNF. Reproduced with permission from Ref.74. Copyright 2019 The Royal Society of Chemistry."
Fig 8
(a) TEM image of PTCA-rGO. (b) NH3 yields of different electrodes. Reproduced with permission from Ref.81. Copyright 2019 The Royal Society of Chemistry. (c) SEM image of PEBCD. (d) HER Tafel plots of PEBCD/C in 0.5 mol-L-1 Li2SO4 and 0.5 mol-L-1 H2SO4. (e) Schematic of Li+ association with O sites of PEBCD. Reproduced with permission from Ref.84. Copyright 2017 American Chemical Society."
Fig 9
(a) TEM image of PCN-NV4. (b) EPR spectra of PCN and PCN-NV4. Reproduced with permission from Ref.42. Copyright 2018 Wiley-VCH. (c) B decorated C2N monolayer. (d) Free energy profiles for NRR on B decorated C2N monolayer along enzymatic pathway. Reproduced with permission from Ref.85. Copyright 2019 The Royal Society of Chemistry. (e) B-C9N4 monolayer. (f) Charge density difference of B-C9N4 monolayer with adsorbed N2 via end-on pattern. Red and green denote the electrons accumulation and depletion, respectively. Reproduced with permission from Ref.87. Copyright 2020 The Royal Society of Chemistry. Color online."
Fig 10
(a) TEM images of pristine CC and CC-450. (b) NH3 yields and FEs of different electrodes. Reproduced with permission from Ref.88. Copyright 2018 The Royal Society of Chemistry. (c) Schematic of the synthesis process of layered defective graphene. (d) Raman spectra of PG, DG-700, DG-800 and DG-900. (e) N2 adsorption energies of different catalysts with side-on configuration. (f) TEM image of DG-800. Reproduced with permission from Ref.89. Copyright 2020 The Royal Society of Chemistry. TEM images of (g) CNT and (h) O-CNT. Reproduced with permission from Ref.90. Copyright 2019 The Royal Society of Chemistry."
Fig 11
Photos of (a) rGO and (b) TA-rGO in water. (c) TEM image of TA-rGO. C 1s XPS spectra of (d) TA-rGO and (e) rGO. (f) NH3 yields and FEs of TA-rGO at -0.75 V in N2/Ar-saturated electrolyte. (g) Chronoamperometry curve of TA-rGO/CP at -0.75 V. Reproduced with permission from Ref.91. Copyright 2019 American Chemical Society."
Fig 12
(a) TEM image of BNS. (b) NH3 yields and FEs of BNS/CP. Optimal structures and charge density differences of N2 adsorption on (c) 3B site, (d) 3B(H) site and (e) oxidized B (104) surface. Pink, blue, red and white balls represent the B, N, O and H atoms, respectively. Reproduced with permission from Ref.97. Copyright 2019 American Chemical Society. Color online."
Fig 13
(a) Free energy profiles of NRR on B4C (110) surface. Reproduced with permission from Ref.6. Copyright 2018 Springer Nature. (b) Free energy profiles of NRR on the zigzag edge of h-BNNS. (c) Nyquist plots of h-BNNS/CP and bulk h-BN/CP. Reproduced with permission from Ref.104. Copyright 2019 Springer. (d–g) Structural configurations of N2 bonding to end-on B@ZZBN, side-on B@ZZBN, end-on B@ACBN and side-on B@ACBN. Pink, blue, gray and white balls represent the B, N, C and H atoms, respectively. Reproduced with permission from Ref.106. Copyright 2019 The Royal Society of Chemistry."
Fig 14
(a) TEM image of BP nanoparticles. (b) NH3 yields and FEs of BP/CP at each potential. Densities of active sites on (c) elementary B and (d) BP. Reproduced with permission from Ref.115. Copyright 2019 The Royal Society of Chemistry. (e) Free energy profiles of NRR on BP (111) surface. Green and purple balls represent the B and P atoms, respectively. Reproduced with permission from Ref.113. Copyright 2019 The Royal Society of Chemistry. Color online."
Table 1
NRR performances of Metal-free electrocatalysts."
Catalyst | Electrolyte | Potential (V vs. RHE) | NH3 yield | FE (%) | Reference |
NPC-750 | 0.05 mol·L−1 H2SO4 | −0.9 | 1.4 mmol·h−1·g−1 | 1.42 | |
C-ZIF | 0.1 mol·L−1 KOH | −0.3 | 3.4 × 10−6 mol·cm−2·h−1 | 10.2 | |
N-doped carbon nanospikes | 0.25 mol·L−1 LiClO4 | −1.19 | 97.18 μg·h−1·cm−2 | 11.56 | |
NCM | 0.1 mol·L−1 HCl | −0.3 | 0.08 g·m−2·h−1 | 5.2 | |
NC from bamboo shoots | 0.1 mol·L−1 HCl | −0.35 | 16.3 μg·h−1·mg−1 | 27.5 | |
NCF from cicada | 0.1 mol·L−1 HCl | −0.2 | 15.7 μg·h−1·mg−1 | 1.45 | |
NPGC from alfalfa | 0.005 mol·L−1 H2SO4 | −0.4 | 1.31 mmol·h−1·g−1 | 9.98 | |
O-doped graphene | 0.1 mol·L−1 HCl | −0.55 | 21.3 μg·h−1·mg−1 | 12.6 | |
O-KFCNTs from kapok fibers | 0.1 mol·L−1 HCl | −0.85 | 25.12 μg·h−1·mg−1 | 9.1 | |
O-CNs from tannin | 0.1 mol·L−1 HCl | −0.6 | 20.15 μg·h−1·mg−1 | 4.97 | |
O-doped porous carbon | 0.1 mol·L−1 HCl | −0.55 | 18.03 μg·h−1·mg−1 | 10.3 | |
S-doped carbon nanosphere | 0.1 mol·L−1 Na2SO4 | −0.7 | 19.07 μg·h−1·mg−1 | 7.47 | |
Sulfur dots-graphene | 0.5 mol·L−1 LiClO4 | −0.85 | 28.56 μg·h−1·mg−1 | 7.07 | |
S-doped 3D-graphene | 0.05 mol·L−1 H2SO4 | −0.6 | 38.81 μg·h−1·mg−1 | 7.72 | |
S-doped graphene | 0.1 mol·L−1 HCl | −0.6 | 27.3 μg·h−1·mg−1 | 11.5 | |
B-doped graphene | 0.05 mol·L−1 H2SO4 | −0.5 | 9.8 μg·h−1·cm−2 | 10.8 | |
P-doped graphene | 0.5 mol·L−1 LiClO4 | −0.65 | 32.33 μg·h−1·mg−1 | 20.82 | |
Fluorographene nanosheet | 0.1 mol·L−1 Na2SO4 | −0.7 | 9.3 μg·h−1·mg−1 | 4.2 | |
F-doped 3D porous carbon framework | 0.05 mol·L−1 H2SO4 | −0.2 | 197.7 μg·h−1·mg−1 | 54.8 | |
B, N co-doped graphene | 0.1 mol·L−1 HCl | −0.3 | 7.75 μg·h−1·mg−1 | 13.79 | |
B, N co-doped porous carbon nanofiber | 0.1 mol·L−1 KOH | −0.7 | 32.5 μg·h−1·mg−1 | 13.2 | |
N, P co-doped porous carbon | 0.1 mol·L−1 HCl | −0.2 | 0.97 μg·h−1·mg−1 | 4.2 | |
N, S co-doped graphene | 0.1 mol·L−1 HCl | −0.6 | 7.7 μg·h−1·mg−1 | 5.8 | |
PANI/CP | 0.1 mol·L−1 HCl | −0.7 | 5.45 × 10−11 mol·s−1·cm−2 | 3.76 | |
PTCA-rGO | 0.1 mol·L−1 HCl | −0.5 | 24.7 μg·h−1·mg−1 | 6.9 | |
PEBCD/C | 0.5 mol·L−1 Li2SO4 | −0.5 | 1.58 μg·h−1·cm−2 | 2.85 | |
PCN-NV4 | 0.1 mol·L−1 HCl | −0.2 | 8.09 μg·h−1·mg−1 | 11.59 | |
CC-450 | 0.1 mol·L−1 Na2SO4 | −0.3 | 2.59 × 10−10 mol·cm−2·s−1 | 6.92 | |
DG-800 | 0.01 mol·L−1 H2SO4 | −0.4 | 4.31 μg·h−1·mg−1 | 8.51 | |
O-CNT | 0.1 mol·L−1 LiClO4 | −0.4 | 32.33 μg·h−1·mg−1 | 12.5 | |
TA-rGO | 0.5 mol·L−1 LiClO4 | −0.75 | 17.02 μg·h−1·mg−1 | 4.83 | |
2D boron nanosheets | 0.1 mol·L−1 Na2SO4 | −0.8 | 13.22 μg·h−1·mg−1 | 4.04 | |
B4C nanosheets | 0.1 mol·L−1 HCl | −0.75 | 26.57μg·h−1·mg−1 | 15.95 | |
h-BNNS | 0.1 mol·L−1 HCl | −0.75 | 22.4 μg·h−1·mg−1 | 4.7 | |
FL-BP NSs | 0.01 mol·L−1 HCl | −0.7 | 33.37 μg·h−1·mg−1 | 5.07 | |
BP nanoparticles | 0.1 mol·L−1 HCl | −0.6 | 26.42 μg·h−1·mg−1 | 12.7 |
1 |
Rosca V. ; Duca M. ; de Groot M. T. ; Koper M. T. M. Chem. Rev. 2009, 109, 2209.
doi: 10.1021/cr8003696 |
2 |
Schlögl R. Angew. Chem. Int. Ed. 2003, 42, 2004.
doi: 10.1002/anie.200301553 |
3 |
Klerke A. ; Christensen C. H. ; Nørskov J. K. ; Vegge T. J. Mater. Chem. 2008, 18, 2304.
doi: 10.1039/b720020j |
4 | Dybkjaer, I. Ammonia Production Processes.In Ammonia, Catalysis and Manufacture; Nielsen, A., Ed.; Springer Publishing: Heidelberg, Germany, 1995; pp. 199−327. |
5 |
Shipman M. A. ; Symes M. D. Catal. Today 2017, 286, 57.
doi: 10.1016/j.cattod.2016.05.008 |
6 |
Qiu W. B. ; Xie X. Y. ; Qiu J. D. ; Fang W. H. ; Liang R. P. ; Ren X. ; Ji X. Q. ; Cui G. W. ; Asiri A. M. ; Cui G. L. ; et al Nat. Commun. 2018, 9, 3485.
doi: 10.1038/s41467-018-05758-5 |
7 |
Zhu X. J. ; Mou S. Y. ; Peng Q. L. ; Liu Q. ; Luo Y. L. ; Chen G. ; Gao S. Y. ; Sun X. P. J. Mater. Chem. A. 2020, 8, 1545.
doi: 10.1039/c9ta13044f |
8 |
Lv X. ; Wang F. Y. ; Du J. ; Liu Q. ; Luo Y. S. ; Lu S. Y. ; Chen G. ; Gao S. Y. ; Zheng B. Z. ; Sun X. P. Sustain. Energy Fuels 2020, 4, 4469.
doi: 10.1039/d0se00828a |
9 |
Zhao R. B. ; Liu C. W. ; Zhang X. X. ; Zhu X. J. ; Wei P. P. ; Ji L. ; Guo Y. B. ; Gao S. Y. ; Luo Y. S. ; Wang Z. M. ; et al J. Mater. Chem. A 2020, 8, 77.
doi: 10.1039/c9ta10346e |
10 |
Bao D. ; Zhang Q. ; Meng F. L. ; Zhong H. X. ; Shi M. M. ; Zhang Y. ; Yan J. M. ; Jiang Q. ; Zhang X. B. Adv. Mater. 2017, 29, 1604799.
doi: 10.1002/adma.201604799 |
11 |
Deng G. R. ; Wang T. ; Alshehri A. A. ; Alzahrani K. A. ; Wang Y. ; Ye H. J. ; Luo Y. L. ; Sun X. P. J. Mater. Chem. A 2019, 7, 21674.
doi: 10.1039/c9ta06523g |
12 |
Liu H. M. ; Han S. H. ; Zhao Y. ; Zhu Y. Y. ; Tian X. L. ; Zeng J. H. ; Jiang J. X. ; Xia B. Y. ; Chen Y. J. Mater. Chem. A 2018, 6, 3211.
doi: 10.1039/c7ta10866d |
13 |
Wang J. ; Liu Y. P. ; Zhang H. ; Huang D. J. ; Chu K. Catal. Sci. Technol. 2019, 9, 4248.
doi: 10.1039/c9cy00907h |
14 |
Yu J. L. ; Li C. B. ; Li B. Y. ; Zhu X. J. ; Zhang R. ; Ji L. ; Tang D. P. ; Asiri A. M. ; Sun X. P. ; Li Q. ; et al Chem. Commun. 2019, 55, 6401.
doi: 10.1039/c9cc02310k |
15 |
Li C. B. ; Ma D. W. ; Mou S. Y. ; Luo Y. S. ; Ma B. Y. ; Lu S. Y. ; Cui G. W. ; Li Q. ; Liu Q. ; Sun X. P. J. Energy Chem. 2020, 50, 402.
doi: 10.1016/j.jechem.2020.03.044 |
16 |
Gao J. J. ; Lv X. ; Wang F. Y. ; Luo Y. S. ; Lu S. Y. ; Chen G. ; Gao S. Y. ; Zhong B. H. ; Guo X. D. ; Sun X. P. J. Mater. Chem. A 2020, 8, 17956.
doi: 10.1039/d0ta07720h |
17 |
Liu Q. ; Zhang X. X. ; Zhang B. ; Luo Y. L. ; Cui G. W. ; Xie F. Y. ; Sun X. P. Nanoscale 2018, 10, 14386.
doi: 10.1039/c8nr04524k |
18 |
Ren X. ; Zhao J. X. ; Wei Q. ; Ma Y. J. ; Guo H. R. ; Liu Q. ; Wang Y. ; Cui G. W. ; Asiri A. M. ; Li B. H. ; et al ACS Cent. Sci. 2019, 5, 116.
doi: 10.1021/acscentsci.8b00734 |
19 |
Wang Y. ; Jia K. ; Pan Q. ; Xu Y. D. ; Liu Q. ; Cui G. W. ; Guo X. D. ; Sun X. P. ACS Sustain. Chem. Eng. 2019, 7, 117.
doi: 10.1021/acssuschemeng.8b05332 |
20 |
Wei P. P. ; Xie H. T. ; Zhu X. J. ; Zhao R. B. ; Ji L. ; Tong X. ; Luo Y. S. ; Cui G. W. ; Wang Z. M. ; Sun X. P. ACS Sustain. Chem. Eng. 2020, 8, 29.
doi: 10.1021/acssuschemeng.9b06272 |
21 |
Zhu X. J. ; Liu Z. C. ; Wang H. B. ; Zhao R. B. ; Chen H. Y. ; Wang T. ; Wang F. X. ; Luo Y. L. ; Wu Y. P. ; Sun X. P. Chem. Commun. 2019, 55, 3987.
doi: 10.1039/c9cc00647h |
22 |
Xiong W. ; Cheng X. ; Wang T. ; Luo Y. S. ; Feng J. ; Lu S. Y. ; Asiri A. M. ; Li W. ; Jiang Z. J. ; Sun X. P. Nano Res. 2020, 13, 1008.
doi: 10.1007/s12274-020-2733-9 |
23 |
Liu Y. P. ; Li Y. B. ; Huang D. J. ; Zhang H. ; Chu K. Chem. Eur. J. 2019, 25, 11933.
doi: 10.1002/chem.201902156 |
24 |
Cheng X. ; Wang J. W. ; Xiong W. ; Wang T. ; Wu T. W. ; Lu S. Y. ; Chen G. ; Gao S. Y. ; Shi X. F. ; Jiang Z J. ; et al ChemNanoMat 2020, 6, 1315.
doi: 10.1002/cnma.202000110 |
25 |
Xu T. ; Ma D. W. ; Li C. B. ; Liu Q. ; Lu S. Y. ; Asiri A. M. ; Yang C. ; Sun X. P. Chem. Commun. 2020, 56, 3673.
doi: 10.1039/c9cc10087c |
26 |
Wu T. W. ; Zhao H. T. ; Zhu X. J. ; Xing Z. ; Liu Q. ; Liu T. ; Gao S. Y. ; Lu S. Y. ; Chen G. ; Asiri A M. ; et al Adv. Mater. 2020, 32, 2000299.
doi: 10.1002/adma.202000299 |
27 |
Xia L. ; Li B. H. ; Zhang Y. ; Zhang R. ; Ji L. ; Chen H. Y. ; Cui G. W. ; Zheng H. G. ; Sun X. P. ; Xie F. Y. ; Liu Q. Inorg. Chem. 2019, 58, 2257.
doi: 10.1021/acs.inorgchem.8b03143 |
28 |
Qin Q. ; Zhao Y. ; Schmallegger M. ; Heil T. ; Schmidt J. ; Walczak R. ; Gescheidt D. G. ; Jiao H. J. ; Oschatz M. Angew. Chem. Int. Ed. 2019, 58, 13101.
doi: 10.1002/anie.201906056 |
29 |
Wu T. W. ; Kong W. H. ; Zhang Y. ; Xing Z. ; Zhao J. X. ; Wang T. ; Shi X. F. ; Luo Y. L. ; Sun X. P. Small Methods 2019, 3, 1900356.
doi: 10.1002/smtd.201900356 |
30 |
Zhang X. X. ; Liu Q. ; Shi X. F. ; Asiri A. M. ; Luo Y. L. ; Sun X. P. ; Li T. S. J. Mater. Chem. A. 2018, 6, 17303.
doi: 10.1039/c8ta05627g |
31 |
Han J. R. ; Liu Z. C. ; Ma Y. J. ; Cui G. W. ; Xie F. Y. ; Wang F. X. ; Wu Y. P. ; Gao S. Y. ; Xu Y. H. ; Sun X. P. Nano Energy 2018, 52, 264.
doi: 10.1016/j.nanoen.2018.07.045 |
32 |
Zhang Y. ; Qiu W. B. ; Ma Y. J. ; Luo Y. L. ; Tian Z. Q. ; Cui G. W. ; Xie F. Y. ; Chen L. ; Li T. S. ; Sun X. P. ACS Catal. 2018, 8, 8540.
doi: 10.1021/acscatal.8b02311 |
33 |
Zhu X. J. ; Liu Z. C. ; Liu Q. ; Luo Y. L. ; Shi X. F. ; Asiri A. M. ; Wu Y. P. ; Sun X. P. Chem. Commun. 2018, 54, 11332.
doi: 10.1039/c8cc06366d |
34 |
Li Y. F. ; Li T. S. ; Zhu X. J. ; Alshehri A. A. ; Alzahrani K. A. ; Lu S. Y. ; Sun X. P. Chem. Asian J. 2020, 15, 487.
doi: 10.1002/asia.201901624 |
35 |
Zhu X. J. ; Wu T. W. ; Ji L. ; Liu Q. ; Luo Y. L. ; Cui G. W. ; Xiang Y. M. ; Zhang Y. N. ; Zheng B. Z. ; Sun X. P. Chem. Commun. 2020, 56, 731.
doi: 10.1039/c9cc08352a |
36 |
Chen J. Y. ; Huang H. ; Xia L. ; Xie H. T. ; Ji L. ; Wei P. P. ; Zhao R. B. ; Chen H. Y. ; Asiri A. M. ; Sun X. P. ChemistrySelect 2019, 4, 3547.
doi: 10.1002/slct.201900253 |
37 |
Wu T. T. ; Li P. P. ; Wang H. B. ; Zhao R. B. ; Li H. ; Kong W. H. ; Liu M. L. ; Zhang Y. Y. ; Sun X. P. ; Gong F. Chem. Commun. 2019, 55, 2684.
doi: 10.1039/c8cc09867k |
38 |
Zhao S. L. ; Lu X. Y. ; Wang L. Z. ; Gale J. ; Amal R. Adv. Mater. 2019, 31, 1805367.
doi: 10.1002/adma.201805367 |
39 |
Zhang L. L. ; Chen G. F. ; Ding L. X. ; Wang H. H. Chem. Eur. J. 2019, 25, 12464.
doi: 10.1002/chem.201901668 |
40 |
Lv C. D. ; Qian Y. M. ; Yan C. S. ; Ding Y. ; Liu Y. Y. ; Chen G. ; Yu G. H. Angew. Chem. Int. Ed. 2018, 57, 10246.
doi: 10.1002/anie.201806386 |
41 |
Wan Y. C. ; Xu J. C. ; Lv R. T. Mater. Today 2019, 27, 69.
doi: 10.1016/j.mattod.2019.03.002 |
42 |
Kitano M. ; Kanbara S. ; Inoue Y. ; Kuganathan N. ; Sushko P. V. ; Yokoyama T. ; Hara M. ; Hosono H. Nat. Commun. 2015, 6, 6731.
doi: 10.1038/ncomms7731 |
43 |
Huang C. S. ; Li Y. J. ; Wang N. ; Xue Y. R. ; Zuo Z. C. ; Liu H. B. ; Li Y. L. Chem. Rev. 2018, 118, 7744.
doi: 10.1021/acs.chemrev.8b00288 |
44 |
Liu Q. L. ; Wang S. N. ; Chen G. L. ; Liu Q. C. ; Kong X. K. Inorg. Chem. 2019, 58, 11843.
doi: 10.1021/acs.inorgchem.9b02280 |
45 |
Huang H. ; Xia L. ; Cao R. R. ; Niu Z. G. ; Chen H. Y. ; Liu Q. ; Li T. S. ; Shi X. F. ; Asiri A. M. ; Sun X. P. Chem. Eur. J. 2019, 25, 1914.
doi: 10.1002/chem.201805523 |
46 |
Ling C. Y. ; Bai X. W. ; Ouyang Y. X. ; Du A. J. ; Wang J. L. J. Phys. Chem. C 2018, 122, 16842.
doi: 10.1021/acs.jpcc.8b05257 |
47 |
Liu Y. M. ; Su Y. ; Quan X. ; Fan X. F. ; Chen S. ; Yu H. T. ; Zhao H. M. ; Zhang Y. B. ; Zhao J. J. ACS Catal. 2018, 8, 1186.
doi: 10.1021/acscatal.7b02165 |
48 |
Mukherjee S. ; Cullen D. A. ; Karakalos S. ; Liu K. X. ; Zhang H. ; Zhao S. ; Xu H. ; More K. L. ; Wang G. F. ; Wu G. Nano Energy 2018, 48, 217.
doi: 10.1016/j.nanoen.2018.03.059 |
49 |
Song Y. ; Johnson D. ; Peng R. ; Hensley D. K. ; Bonnesen P. V. ; Liang L. B. ; Huang J. S. ; Yang F C. ; Zhang F. ; Qiao R. ; et al Sci. Adv. 2018, 4, e1700336.
doi: 10.1126/sciadv.1700336 |
50 |
Wang H. ; Wang L. ; Wang Q. ; Ye S. Y. ; Sun W. ; Shao Y. ; Jiang Z. P. ; Qiao Q. ; Zhu Y. M. ; Song P F. ; et al Angew. Chem. Int. Ed. 2018, 57, 12360.
doi: 10.1002/anie.201805514 |
51 |
Li Q. L. ; Chen X. F. ; Yang Y. Catalysts 2020, 10, 353.
doi: 10.3390/catal10030353 |
52 |
Zhao C. J. ; Zhang S. B. ; Han M. M. ; Zhang X. ; Liu Y. Y. ; Li W. Y. ; Chen C. ; Wang G. Z. ; Zhang H. M. ; Zhao H. J. ACS Energy Lett. 2019, 4, 377.
doi: 10.1021/acsenergylett.8b02138 |
53 |
Chen X. R. ; Guo Y. T. ; Du X. C. ; Zeng Y. S. ; Chu J. W. ; Gong C. H. ; Huang J. W. ; Fan C. ; Wang X. F. ; Xiong J. Adv. Energy Mater. 2020, 10, 1903172.
doi: 10.1002/aenm.201903172 |
54 |
Yang X. X. ; Li K. ; Cheng D. M. ; Pang W. L. ; Lv J. Q. ; Chen X. Y. ; Zang H. Y. ; Wu X. L. ; Tan H. Q. ; Wang Y.H. ; et al J. Mater. Chem. A. 2018, 6, 7762.
doi: 10.1039/c8ta01078a |
55 |
Wang T. ; Xia L. ; Yang J. J. ; Wang H. B. ; Fang W. H. ; Chen H. Y. ; Tang D. P. ; Asiri A. M. ; Luo Y. L. ; Cui G L. ; et al Chem. Commun. 2019, 55, 7502.
doi: 10.1039/c9cc01999e |
56 |
Hoffman B. M. ; Lukoyanov D. ; Yang Z. Y. ; Dean D. R. ; Seefeldt L. C. Chem. Rev. 2014, 114, 4041.
doi: 10.1021/cr400641x |
57 |
Xia L. ; Wu X. F. ; Wang Y. ; Niu Z. G. ; Liu Q. ; Li T. S. ; Shi X. F. ; Asiri A. M. ; Sun X. P. Small Methods 2018, 3, 1800251.
doi: 10.1002/smtd.201800251 |
58 |
Xia L. ; Yang J. J. ; Wang H. B. ; Zhao R. B. ; Chen H. Y. ; Fang W. H. ; Asiri A. M. ; Xie F. Y. ; Cui G. L. ; Sun X. P. Chem. Commun. 2019, 55, 3371.
doi: 10.1039/c9cc00602h |
59 |
Wang J. ; Wang S. ; Li J. P. Dalton Trans. 2020, 49, 2258.
doi: 10.1039/c9dt04827h |
60 |
Chen H. Y. ; Zhu X. J. ; Huang H. ; Wang H. B. ; Wang T. ; Zhao R. B. ; Zheng H. G. ; Asiri A. M. ; Luo Y. L. ; Sun X. P. Chem. Commun. 2019, 55, 3152.
doi: 10.1039/c9cc00461k |
61 |
Légaré M. A. ; Bélanger-Chabot G. ; Dewhurst R. D. ; Welz E. ; Krummenacher I. ; Engels B. ; Braunschweig H. Science 2018, 359, 896.
doi: 10.1126/science.aaq1684 |
62 |
Hering-Junghans C. Angew. Chem. Int. Ed. 2018, 57, 6738.
doi: 10.1002/anie.201802675 |
63 |
Liu C. W. ; Li Q. Y. ; Wu C. Z. ; Zhang J. ; Jin Y. G. ; MacFarlane D. R. ; Sun C. H. J. Am. Chem. Soc. 2019, 141, 2884.
doi: 10.1021/jacs.8b13165 |
64 |
Yu X. M. ; Han P. ; Wei Z. X. ; Huang L. S. ; Gu Z. X. ; Peng S. J. ; Ma J. M. ; Zheng G. F. Joule 2018, 2, 1610.
doi: 10.1016/j.joule.2018.06.007 |
65 |
Ling C. Y. ; Niu X. H. ; Li Q. ; Du A. J. ; Wang J. L. J. Am. Chem. Soc. 2018, 140, 14161.
doi: 10.1021/jacs.8b07472 |
66 |
Wu T. W. ; Li X. Y. ; Zhu X. J. ; Mou S. Y. ; Luo Y. L. ; Shi X. F. ; Asiri A. M. ; Zhang Y. N. ; Zheng B. Z. ; Zhao H T. ; et al Chem. Commun. 2020, 56, 1831.
doi: 10.1039/c9cc09179c |
67 |
Inagaki M. ; Kang F. Y. J. Mater. Chem. A. 2014, 2, 13193.
doi: 10.1039/c4ta01183j |
68 |
Paupitz R. ; Autreto P. A. S. ; Legoas S. B. ; Srinivasan S. G. ; van Duin A. C. T. ; Galvão D. S. Nanotechnology 2012, 24, 035706.
doi: 10.1088/0957-4484/24/3/035706 |
69 |
Zhao J. X. ; Yang J. J; Ji. ; L . ; Wang H. B. ; Chen H. Y. ; Niu Z. G. ; Liu Q. ; Li T. S. ; Cui G. W. ; Sun X. P. Chem. Commun. 2019, 55, 4266.
doi: 10.1039/c9cc01920k |
70 |
Liu Y. ; Li Q. Y. ; Guo X. ; Kong X. D. ; Ke J. W. ; Chi M. F. ; Li Q. X. ; Geng Z. G. ; Zeng J. Adv. Mater. 2020, 32, 1907690.
doi: 10.1002/adma.201907690 |
71 |
Montoya J. H. ; Tsai C. ; Vojvodic A. ; Nørskov J. K. ChemSusChem 2015, 8, 2180.
doi: 10.1002/cssc.201500322 |
72 |
Ling C. Y. ; Ouyang Y. X. ; Li Q. ; Bai X. W. ; Mao X. ; Du A. J. ; Wang J. L. Small Methods 2018, 1800376.
doi: 10.1002/smtd.201800376 |
73 |
Chen C. ; Yan D. F. ; Wang Y. ; Zhou Y. Y. ; Zou Y. Q. ; Li Y. F. ; Wang S. Y. Small 2019, 15, 1805029.
doi: 10.1002/smll.201805029 |
74 |
Kong Y. ; Li Y. ; Yang B. ; Li Z. J. ; Yao Y. ; Lu J. G. ; Lei L. C. ; Wen Z. H. ; Shao M. H. ; Hou Y. J. Mater. Chem. A 2019, 7, 26272.
doi: 10.1039/c9ta06076f |
75 |
Song P. F. ; Wang H. ; Kang L. ; Ran B. C. ; Song H. H. ; Wang R. M. Chem. Commun. 2019, 55, 687.
doi: 10.1039/c8cc09256g |
76 |
Tian Y. ; Xu D. Z. ; Chu K. ; Wei Z. ; Liu W. M. J. Mater. Sci. 2019, 54, 9088.
doi: 10.1007/s10853-019-03538-0 |
77 |
Köleli F. ; Röpke T. Appl. Catal. B: Environ. 2006, 62, 306.
doi: 10.1016/j.apcatb.2005.08.006 |
78 |
Köleli F. ; Kayan D. B. J. Electroanal. Chem. 2010, 638, 119.
doi: 10.1016/j.jelechem.2009.10.010 |
79 |
Yu J. L. ; Li J. ; Zhu X. J. ; Zhang X. X. ; Jia K. ; Kong W. H. ; Wei P. P. ; Chen H. Y. ; Shi X. F. ; Asiri A. M. ; et al ChemElectroChem 2019, 6, 2215.
doi: 10.1002/celc.201900320 |
80 |
Kumar C. V. S. ; Subramanian V. Phys. Chem. Chem. Phys. 2017, 19, 15377.
doi: 10.1039/c7cp02220d |
81 |
Li P. P. ; Wang J. W. ; Chen H. Y. ; Sun X. P. ; You J. M. ; Liu S. H. ; Zhang Y. Y. ; Liu M. L. ; Niu X. B. ; Luo Y. L. J. Mater. Chem. A 2019, 7, 12446.
doi: 10.1039/c9ta03654g |
82 |
Marcia M. ; Hirsch A. ; Hauke F. FlatChem 2017, 1, 89.
doi: 10.1016/j.flatc.2017.01.001 |
83 |
Yuan Y. L. ; Gou X. X. ; Yuan R. ; Chai Y. Q. ; Zhuo Y. ; Ye X. Y. ; Gan X. X. Biosens. Bioelectron. 2011, 30, 123.
doi: 10.1016/j.bios.2011.08.041 |
84 |
Chen G. F. ; Cao X. R. ; Wu S. Q. ; Zeng X. Y. ; Ding L. X. ; Zhu M. ; Wang H. H. J. Am. Chem. Soc. 2017, 139, 9771.
doi: 10.1021/jacs.7b04393 |
85 |
Ji S. ; Wang Z. X. ; Zhao J. X. J. Mater. Chem. A 2019, 7, 2392.
doi: 10.1039/c8ta10497b |
86 |
Cao Y. Y. ; Deng S. W. ; Fang Q. J. ; Sun X. ; Zhao C. X. ; Zheng J. N. ; Gao Y. J. ; Zhuo H. ; Li Y. J. ; Yao Z H. ; et al Nanotechnol. 2019, 30, 335403.
doi: 10.1088/1361-6528/ab1d01 |
87 |
Zhang J. ; Zhao Y. M. ; Wang Z. ; Yang G. ; Tian J. L. ; Ma D. W. ; Wang Y. X. New J. Chem. 2020, 44, 422.
doi: 10.1039/c9nj04792a |
88 |
Li W. Y. ; Wu T. X. ; Zhang S. B. ; Liu Y. Y. ; Zhao C. J. ; Liu G. Q. ; Wang G. Z. ; Zhang H. M. ; Zhao H. J. Chem. Commun. 2018, 54, 11188.
doi: 10.1039/c8cc06000b |
89 |
Du Y. Q. ; Jiang C. ; Xia W. ; Song L. ; Li P. ; Gao B. ; Wu C. ; Sheng L. ; Ye J H. ; Wang T. ; et al J. Mater. Chem. A 2020, 8, 55.
doi: 10.1039/c9ta10071g |
90 |
Zhao J. X. ; Wang B. ; Zhou Q. ; Wang H. B. ; Li X. H. ; Chen H. Y. ; Wei Q. ; Wu D. ; Luo Y. L. ; You J M. ; et al Chem. Commun. 2019, 55, 4997.
doi: 10.1039/c9cc00726a |
91 |
Song Y. Y. ; Wang T. ; Sun J. W. ; Wang Z. C. ; Luo Y. L. ; Zhang L. X. ; Ye H. J. ; Sun X. P. ACS Sustain. Chem. Eng. 2019, 7, 14368.
doi: 10.1021/acssuschemeng.9b03890 |
92 |
Liu C. W. ; Li Q. Y. ; Zhang J. ; Jin Y. G. ; MacFarlane D. R. ; Sun C. H. J. Phys. Chem. C 2018, 122, 25268.
doi: 10.1021/acs.jpcc.8b10021 |
93 |
Tang H. ; Ismail-Beigi S. Phys. Rev. Lett. 2007, 11, 115501.
doi: 10.1103/physrevlett.99.115501 |
94 |
Szwacki G. N. ; Sadrzadeh A. ; Yakobson B. I. Phys. Rev. Lett. 2007, 16, 166804.
doi: 10.1103/physrevlett.98.166804 |
95 |
Oganov A. R. ; Chen J. H. ; Gatti C. ; Ma Y. Z. ; Ma Y. M. ; Glass C. W. ; Liu Z. X. ; Yu T. ; Kurakevych O. O. ; Solozhenko V. L. Nature 2009, 460, 292.
doi: 10.1038/nature07736 |
96 |
Feng B. J. ; Zhang J. ; Zhong Q. ; Li W. B. ; Li S. ; Li H. ; Cheng P. ; Meng S. ; Chen L. ; Wu K. H. Nat. Chem. 2016, 8, 563.
doi: 10.1038/nchem.2491 |
97 |
Zhang X. X. ; Wu T. W. ; Wang H. B. ; Zhao R. B. ; Chen H. Y. ; Wang T. ; Wei P. P. ; Luo Y. L. ; Zhang Y. N. ; Sun X. P. ACS Catal. 2019, 9, 4609.
doi: 10.1021/acscatal.8b05134 |
98 |
Minakshi M. ; Blackford M. G. Mater. Chem. Phys. 2010, 123, 700.
doi: 10.1016/j.matchemphys.2010.05.041 |
99 |
Lv H. F. ; Peng T. ; Wu P. ; Pan M. ; Mu S. C. J. Mater. Chem. 2012, 22, 9155.
doi: 10.1039/c2jm30538k |
100 |
Mu S. C. ; Chen X. ; Sun R. H. ; Liu X. B. ; Wu H. ; He D. P. ; Cheng K. Carbon 2016, 103, 449.
doi: 10.1016/j.carbon.2016.03.044 |
101 |
Song S. ; Xu W. ; Cao R. G. ; Luo L. L. ; Engelhard M. H. ; Bowden M. E. ; Liu B. ; Estevez L. ; Wang C. M. ; Zhang J. G. Nano Energy 2017, 33, 195.
doi: 10.1016/j.nanoen.2017.01.042 |
102 |
Golberg D. ; Bando Y. ; Huang Y. ; Terao T. ; Mitome M. ; Tang C. C. ; Zhi C. Z. ACS Nano 2010, 4, 2979.
doi: 10.1021/nn1006495 |
103 |
Zeng H. B. ; Zhi C. Y. ; Zhang Z. Z. ; Wei X. L. ; Wang X. B. ; Guo W. L. ; Bando Y. ; Golberg D. Nano Lett. 2010, 10, 5049.
doi: 10.1021/nl103251m |
104 |
Zhang Y. ; Du H. T. ; Ma Y. J. ; Ji L. ; Guo H. R. ; Tian Z. Q. ; Chen H. Y. ; Huang H. ; Cui G. W. ; Asiri A M. ; et al Nano Res. 2019, 12, 919.
doi: 10.1007/s12274-019-2323-x |
105 |
Lee J. ; Kang J. J. Catal. 2019, 375, 68.
doi: 10.1016/j.jcat.2019.05.018 |
106 |
Mao X. ; Zhou S. ; Yan C. ; Zhu Z. H. ; Du A. J. Phys. Chem. Chem. Phys. 2019, 21, 1110.
doi: 10.1039/c8cp07064d |
107 |
Yang B. C. ; Wan B. S. ; Zhou Q. H. ; Wang Y. ; Hu W. T. ; Lv W. M. ; Chen Q. ; Zeng Z. M. ; Wen F. S. ; Xiang J Y. ; et al Adv. Mater. 2016, 28, 9408.
doi: 10.1002/adma.201603723 |
108 |
Kang J. ; Wells S. A. ; Wood J. D. ; Lee J. H. ; Liu X. L. ; Ryder C.R. ; Zhu J. ; Guest J. R. ; Husko C. A. ; Hersam M. C. Proc. Natl. Acad. Sci. USA 2016, 113, 11688.
doi: 10.1073/pnas.1602215113 |
109 |
Yang D. ; Yang G. X. ; Yang P. P. ; Lv R. C. ; Gai S. L. ; Li C. X. ; He F. ; Lin J. Adv. Funct. Mater. 2017, 27, 1700371.
doi: 10.1002/adfm.201700371 |
110 |
Kou L. Z. ; Frauenheim T. ; Chen C. F. J. Phys. Chem. Lett. 2014, 5, 2675.
doi: 10.1021/jz501188k |
111 |
Zhang L. L. ; Ding L. X. ; Chen G. F. ; Yang X. F. ; Wang H. H. Angew. Chem. Int. Ed. 2019, 58, 2612.
doi: 10.1002/anie.201813174 |
112 |
Shi L. ; Li P. ; Zhou W. ; Wang T. ; Chang K. ; Zhang H. B. ; Kako T. ; Liu G. G. ; Ye J. H. Nano Energy 2016, 28, 158.
doi: 10.1016/j.nanoen.2016.08.041 |
113 |
Chen Z. ; Zhao J. X. ; Yin L. C. ; Chen Z. F. J. Mater. Chem. A 2019, 7, 13284.
doi: 10.1039/c9ta01410a |
114 |
Zhou F. L. ; Azofra L. M. ; Ali M. ; Kar M. ; Simonov A. N. ; McDonnell-Worth C. ; Sun C. H. ; Zhang X. Y. ; MacFarlane D. R. Energy Environ. Sci. 2017, 10, 2516.
doi: 10.1039/c7ee02716h |
115 |
Zhu X. J. ; Wu T. W. ; Ji L. ; Li C. B. ; Wang T. ; Wen S. H. ; Gao S. Y. ; Shi X. F. ; Luo Y. L. ; Peng Q. L. ; Sun X. P. J. Mater. Chem. A 2019, 7, 16117.
doi: 10.1039/c9ta05016g |
[1] | 陈帅, 余创, 罗启悦, 魏超超, 李莉萍, 李广社, 程时杰, 谢佳. 卤化物固态电解质研究进展[J]. 物理化学学报, 2023, 39(8): 2210032 -0 . |
[2] | 赵永智, 陈晨阳, 刘文燚, 胡伟飞, 刘金平. 固态锂电池界面优化策略的研究进展[J]. 物理化学学报, 2023, 39(8): 2211017 -0 . |
[3] | 屈卓研, 张笑银, 肖茹, 孙振华, 李峰. 有机硫化合物在锂硫电池中的应用[J]. 物理化学学报, 2023, 39(8): 2301019 -0 . |
[4] | 彭林峰, 余创, 魏超超, 廖聪, 陈帅, 张隆, 程时杰, 谢佳. 锂硫银锗矿固态电解质研究进展[J]. 物理化学学报, 2023, 39(7): 2211034 -0 . |
[5] | 鲁航语, 侯瑞林, 褚世勇, 周豪慎, 郭少华. 高比能锂离子电池层状富锂正极材料改性策略研究进展[J]. 物理化学学报, 2023, 39(7): 2211057 -0 . |
[6] | 许义飞, 杨瀚文, 常晓侠, 徐冰君. 电催化动力学简介[J]. 物理化学学报, 2023, 39(4): 2210025 -0 . |
[7] | 胡洋, 刘斌, 徐路遥, 董自强, 仵亚婷, 刘杰, 钟澄, 胡文彬. 基于微流控技术平台的Pt基三元电催化剂高通量合成和筛选[J]. 物理化学学报, 2023, 39(3): 2209004 -0 . |
[8] | 傅焰鹏, 朱昌宝. 钠离子电池电极材料的设计策略——固态离子学视角[J]. 物理化学学报, 2023, 39(3): 2209002 -0 . |
[9] | 尉瑞芳, 李东峰, 尹恒, 王秀丽, 李灿. 微秒时间分辨的工况电化学紫外可见吸收光谱测量系统[J]. 物理化学学报, 2023, 39(2): 2207035 -0 . |
[10] | 齐亚娥, 夏永姚. 电解液调控策略提升水系锌离子电池正极材料电化学性能[J]. 物理化学学报, 2023, 39(2): 2205045 -0 . |
[11] | 李景学, 于跃, 徐斯然, 闫文付, 木士春, 张佳楠. 电子自旋效应在电催化剂中的作用[J]. 物理化学学报, 2023, 39(12): 2302049 - . |
[12] | 朱迎迎, 王勇, 徐淼, 吴勇民, 汤卫平, 朱地, 何雨石, 马紫峰, 李林森. 追踪锂金属负极的压力与形貌变化[J]. 物理化学学报, 2023, 39(1): 2110040 -0 . |
[13] | 李晓慧, 李晓东, 孙全虎, 何建江, 杨泽, 肖金冲, 黄长水. 石墨炔衍生物的合成与应用[J]. 物理化学学报, 2023, 39(1): 2206029 -0 . |
[14] | 崔同慧, 李航越, 吕泽伟, 王怡戈, 韩敏芳, 孙再洪, 孙凯华. 大尺寸固体氧化物燃料电池的电极过程解析方法[J]. 物理化学学报, 2022, 38(8): 2011009 - . |
[15] | 莫英, 肖逵逵, 吴剑芳, 刘辉, 胡爱平, 高鹏, 刘继磊. 锂离子电池隔膜的功能化改性及表征技术[J]. 物理化学学报, 2022, 38(6): 2107030 - . |
|