物理化学学报 >> 2021, Vol. 37 >> Issue (4): 2009044.doi: 10.3866/PKU.WHXB202009044
所属专题: 金属卤化物钙钛矿光电材料和器件
收稿日期:
2020-09-14
录用日期:
2020-10-24
发布日期:
2020-11-02
通讯作者:
周欢萍
E-mail:happy_zhou@pku.edu.cn
作者简介:
Huanping Zhou received her PhD degree in inorganic chemistry from the Peking University in 2010. After that, she joined University of California, Los Angeles, as a post-doctoral researcher from 2010 to 2015. From July 2015, she joined Peking University as an assistant professor in Department of Materials Science and Engineering, College of Engineering. She is a materials chemist with expertise in the fields of nanoscience, thin film optoelectronics, and the development of related devices, such as photovoltaic cells, LEDs, etc. Currently, her research lab is focused on thin film optoelectronics, e.g., perovskite materials and solar cells
基金资助:
Wentao Zhou, Yihua Chen, Huanping Zhou()
Received:
2020-09-14
Accepted:
2020-10-24
Published:
2020-11-02
Contact:
Huanping Zhou
E-mail:happy_zhou@pku.edu.cn
About author:
Huanping Zhou, Email: happy_zhou@pku.edu.cnSupported by:
摘要:
近年来,基于有机无机金属卤化物钙钛矿的叠层太阳能电池引起了巨大的研究热潮。但是,不稳定性限制了其商业化。适用于顶部子电池的宽带隙钙钛矿存在相不稳定性,而适用于底部子电池的窄带隙钙钛矿存在空气不稳定性。首先,我们总结了提升基于钙钛矿的叠层太阳能电池稳定性的最新进展。然后,我们系统地分析了导致宽带隙钙钛矿的相不稳定性和窄带隙钙钛矿的空气不稳定性的原因,并为解决这些不稳定性问题总结了合理的策略。我们也简短地总结了中间层带来的不稳定性以及相应的解决措施。最后,我们回顾了钙钛矿材料固有的本征不稳定性和相应的改进方法,这对于将来发展更稳定的叠层太阳能电池中是必要的。我们认为随着对钙钛矿子电池的理解越来越深入,基于钙钛矿的叠层电池特别是钙钛矿/硅叠层电池将会迅速商业化。
周文韬, 陈怡华, 周欢萍. 提升基于钙钛矿的叠层太阳能电池稳定性的策略[J]. 物理化学学报, 2021, 37(4), 2009044. doi: 10.3866/PKU.WHXB202009044
Wentao Zhou, Yihua Chen, Huanping Zhou. Strategies to Improve the Stability of Perovskite-based Tandem Solar Cells[J]. Acta Phys. -Chim. Sin. 2021, 37(4), 2009044. doi: 10.3866/PKU.WHXB202009044
Fig 2
(a) A schematic illustration of wide bandgap perovskite single-junctional semitransparent solar cell. (b) Efficiency (black), current density (JMPP, red) and voltage (VMPP, blue) of perovskite single-junction device with no encapsulation during 1000 h of continuous MPP tracking. (c) Efficiency (black), JMPP (red) and VMPP (blue) of encapsulated with EVA, glass, and a butyl rubber edge seal during damp heat testing. (d) A schematic illustration of top-illuminated semitransparent perovskite device. (e) Normalized PCE during MPP tracking under accelerated conditions (0.77-sun illumination and 60 ℃) of 1-cm2 semitransparent (red, tested in N2, averaged from two devices in the same batch) and opaque devices (blue, tested in air with relative humidity of ~30%). (f) A schematic illustration of solution-processed perovskite/textured silicon tandem device. a-Si:H(n), n-doped hydrogenated amorphous silicon; a-Si:H(i), intrinsic hydrogenated amorphous silicon; a-Si:H(p), p-doped hydrogenated amorphous silicon. (g) J-V curves of tandem device without encapsulation at the beginning and the end of the MPP tracking test. (h) J-V parameters measured over >400 h of MPP tracking at 40 ℃. (a, b, c) Adapted from reference 22, Copyright 2017, Macmillan Publishers Limited. (d, e) Reproduced with permission 21, Copyright 2020, American Association for the Advancement of Science. (f, g, h) Reproduced with permission 25, Copyright 2020, American Association for the Advancement of Science."
Fig 3
(a) MPP tracking of wide bandgap top perovskite sub-cell, the filtered bottom sub-cell, and 4T tandem device under simulated AM 1.5G one-sun illumination. (b) SPO efficiency and MPP tracking (inset) of the 2T tandem cell under one-sun illumination. (c) A schematic illustration of monolithic 2T all-perovskite device. (d) MPP tracking of 2T tandem device under full AM 1.5G illumination. (e) A schematic illustration of tandem devices based on typical structured ICLs of C60/SnO2?x/ITO/PEDOT:PSS and simplified ICLs of C60/SnO2?x (BCP, bathocuproine; PTAA, poly[bis(4-phenyl)(2, 4, 6-trimethylphenyl)amine]). (f) Long-term photostability of tandem device based on C60/SnO1.76 ICLs measured under continuous simulated AM1.5G illumination for 1000 h at room temperature. (a, b) Reproduced with permission from reference 27, Copyright 2019, American Association for the Advancement of Science. (c, d) Adapted from reference 29, Copyright 2019, Macmillan Publishers Limited. (e, f) Adapted from reference 31, Copyright 2020, Macmillan Publishers Limited."
Fig 4
(a) PL spectra of an MAPb(BrxI1?x)3, x=0.4 perovskite ?lm over 45 s in 5 s increments under 457 nm, 15 mW·cm?2 light at 300 K. Inset: temperature dependence of initial PL growth rate. (b) Normalized PL spectra of MAPb(BrxI1?x)3 perovskite ?lms after illuminating for 5-10 min with 10-100 mW?cm?2, 457 nm light. (c) PL spectra of x = 0.6 perovskite ?lm after sequential cycles of illumination for 2 min (457 nm, 15 mW?cm?2) followed by 5 min in the dark. (d, e) Duty cycle for CL image series for perovskite film. The scale bars are 2 μm. (a, b, c) Reproduced with permission from reference 38, Copyright 2015, Royal Society of Chemistry. (d, e) Reproduced with permission from reference 41, Copyright 2017, American Chemical Society."
Fig 5
(a) PL spectral measured after 0, 5, 15, 30 and 60 min of light exposure of MAPb(I0.6Br0.4) and FA0.83Cs0.17Pb(I0.6Br0.4). (b) PL spectra of 1.68 eV bandgap perovskite (25Cs/20Br) and 1.75 eV bandgap perovskite (40Cs/30Br) after excitation. The yellow line: initial PL; the blue line: 0.1 sun for 10 min; the green line: 1 sun for 10 min; the red line: 10 sun for 10 min. (c) The shift of the PL spectral centroids of triple-halide perovskites (I-, Br- and Cl-) over time under 1-sun, 10-sun and 100-sun. (a) Reproduced with permission from reference 43, Copyright 2016, American Association for the Advancement of Science. (b) Reproduced with permission from reference 45, Copyright 2018, American Chemical Society. (c) Reproduced with permission from reference 21, Copyright 2020, American Association for the Advancement of Science."
Fig 6
(a) A photograph of Sn-Pb precursor with and without Sn powders as additives when exposed in air. The color change from bright-yellow to orange indicates the oxidation of Sn2+ to Sn4+. (b) A schematic illustration of the mechanism of reduced Sn vacancies introducing Sn powders. (c) The normalized d.c. conductance of FA0.75Cs0.25Sn0.4Pb0.6I3 films of different film compactness and size over time heated at 85 ℃ in air. The initial values of the conductance are denoted as σ0 in the legend. Cross-sectional SEM images of small-grained (d) and large-grained (e) perovskite devices (on bare ITO without hole transport layer) after ageing in air at 85 ℃ for 500 h. (a, b) Adapted from reference 29, Copyright 2019, Macmillan Publishers Limited. (c, d, e) Adapted from reference 85, Copyright 2019, Macmillan Publishers Limited."
Fig 7
(a) Carrier lifetime measured by TRPL of perovskite films without and with GuaSCN. (b) The XPS spectra of Sn 3d of pristine and surface passivated perovskite film. (c) The TRPL decay of perovskite films probed from top side of samples. (a) Reproduced with permission from reference 27, Copyright 2019, American Association for the Advancement of Science. (b, c) Reproduced with permission from reference 30, Copyright 2020, Wiley-VCH."
Fig 8
(a) A schematic illustration of the structure of MA and thermally more stable Rb, Cs and FA. (b) A schematic illustration of hydrogen bond between halogen and MA/FA, and ionic bond between halogen and lead. (c) A proposed mechanism diagram of continuous elimination of Pb0 and I0 and regeneration of Eu3+-Eu2+ ion pair. (a) Reproduced with permission from reference 90, Copyright 2018, American Association for the Advancement of Science. (b) Adapted from reference 103, Copyright 2019, Macmillan Publishers Limited. (c) Reproduced with permission from reference 104, Copyright 2019, American Association for the Advancement of Science."
1 |
Branker K. ; Pathak M. J. M. ; Pearce J. M. Renew. Sust. Energ. Rev. 2011, 15, 4470.
doi: 10.1016/j.rser.2011.07.104 |
2 |
Shockley W. ; Queisser H. J. J. Appl. Phys. 1961, 32, 510.
doi: 10.1063/1.1736034 |
3 |
Vos A. D. J. Phys. D: Appl. Phys. 1980, 13, 839.
doi: 10.1088/0022-3727/13/5/018 |
4 |
Filipič M. ; Löper P. ; Niesen B. ; De Wolf S. ; Krč J. ; Ballif C. ; Topič M. Opt. Express 2015, 23, A263.
doi: 10.1364/OE.23.00A263 |
5 |
Albrecht S. ; Saliba M. ; Correa-Baena J. P. ; Jäger K. ; Korte L. ; Hagfeldt A. ; Grätzel M. ; Rech B. J. Opt. 2016, 18, 064012.
doi: 10.1088/2040-8978/18/6/064012 |
6 |
Eperon G. E. ; Leijtens T. ; Bush K. A. ; Prasanna R. ; Green T. ; Wang J. T. W. ; McMeekin D. P. ; Volonakis G. ; Milot R. L. ; May R. ; et al Science 2016, 354, 861.
doi: 10.1126/science.aaf9717 |
7 |
Jaysankar M. ; Filipič M. ; Zielinski B. ; Schmager R. ; Song W. ; Qiu W. ; Paetzold U. W. ; Aernouts T. ; Debucquoy M. ; Gehlhaar R. ; et al Energy Environ. Sci. 2018, 11, 1489.
doi: 10.1039/C8EE00237A |
8 | https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf (accessed Dar April 2020) |
9 |
Ogomi Y. ; Morita A. ; Tsukamoto S. ; Saitho T. ; Fujikawa N. ; Shen Q. ; Toyoda T. ; Yoshino K. ; Pandey S. S. ; Ma T. ; et al J. Phys. Chem. Lett. 2014, 5, 1004.
doi: 10.1021/jz5002117 |
10 |
Zhou Z. ; Cui Y. ; Deng H. X. ; Huang L. ; Wei Z. ; Li J. Appl. Phys. Lett. 2017, 110, 113901.
doi: 10.1063/1.4978598 |
11 |
Filip M. R. ; Eperon G. E. ; Snaith H. J. ; Giustino F. Nat. Commun. 2014, 5, 5757.
doi: 10.1038/ncomms6757 |
12 |
Eperon G. E. ; Stranks S. D. ; Menelaou C. ; Johnston M. B. ; Herz L. M. ; Snaith H. J. Energy Environ. Sci. 2014, 7, 982.
doi: 10.1039/C3EE43822H |
13 |
Eperon G. E. ; Paternò G. M. ; Sutton R. J. ; Zampetti A. ; Haghighirad A. A. ; Cacialli F. ; Snaith H. J. J. Mater. Chem. A 2015, 3, 19688.
doi: 10.1039/C5TA06398A |
14 |
Chen B. ; Yu Z. J. ; Manzoor S. ; Wang S. ; Weigand W. ; Yu Z. ; Yang G. ; Ni Z. ; Dai X. ; Holman Z. C. ; et al Joule 2020, 4, 850.
doi: 10.1016/j.joule.2020.01.008 |
15 |
Shen H. ; Duong T. ; Peng J. ; Jacobs D. ; Wu N. ; Gong J. ; Wu Y. ; Karuturi S. K. ; Fu X. ; Weber K. ; et al Energy Environ. Sci. 2018, 11, 394.
doi: 10.1039/C7EE02627G |
16 |
Liu Y. ; Renna L. A. ; Bag M. ; Page Z. A. ; Kim P. ; Choi J. ; Emrick T. ; Venkataraman D. ; Russell T. P. ACS Appl. Mater. Interfaces 2016, 8, 7070.
doi: 10.1021/acsami.5b12740 |
17 |
Gao K. ; Zhu Z. ; Xu B. ; Jo S. B. ; Kan Y. ; Peng X. ; Jen A. K. Y. Adv. Mater. 2017, 29, 1703980.
doi: 10.1002/adma.201703980 |
18 |
Li C. ; Wang Y. ; Choy W. C. H. Small Methods 2020, 4, 2000093.
doi: 10.1002/smtd.202000093 |
19 |
Bailie C. D. ; Christoforo M. G. ; Mailoa J. P. ; Bowring A. R. ; Unger E. L. ; Nguyen W. H. ; Burschka J. ; Pellet N. ; Lee J. Z. ; Grätzel M. ; et al Energy Environ. Sci. 2015, 8, 956.
doi: 10.1039/C4EE03322A |
20 | https://www.oxfordpv.com/news/oxford-pv-perovskite-solar-cell-achieves-28-efficiency. (accessed Dar April 2020) |
21 |
Xu J. ; Boyd C. C. ; Yu Z. J. ; Palmstrom A. F. ; Witter D. J. ; Larson B. W. ; France R. M. ; Werner J. ; Harvey S. P. ; Wolf E. J. ; et al Science 2020, 367, 1097.
doi: 10.1126/science.aaz5074 |
22 |
Bush K. A. ; Palmstrom A. F. ; Yu Z. J. ; Boccard M. ; Cheacharoen R. ; Mailoa J. P. ; McMeekin D. P. ; Hoye R. L. Z. ; Bailie C. D. ; Leijtens T. ; et al Nat. Energy 2017, 2, 17009.
doi: 10.1038/nenergy.2017.9 |
23 |
Sahli F. ; Werner J. ; Kamino B. A. ; Bräuninger M. ; Monnard R. ; Paviet-Salomon B. ; Barraud L. ; Ding L. ; Diaz Leon J. J. ; Sacchetto D. ; et al Nat. Mater. 2018, 17, 820.
doi: 10.1038/s41563-018-0115-4 |
24 |
Kim D. ; Jung H. J. ; Park I. J. ; Larson B. W. ; Dunfield S. P. ; Xiao C. ; Kim J. ; Tong J. ; Boonmongkolras P. ; Ji S. G. ; et al Science 2020, 368, 155.
doi: 10.1126/science.aba3433 |
25 |
Hou Y. ; Aydin E. ; De Bastiani M. ; Xiao C. ; Isikgor F. H. ; Xue D. J. ; Chen B. ; Chen H. ; Bahrami B. ; Chowdhury A. H. ; et al Science 2020, 367, 1135.
doi: 10.1126/science.aaz3691 |
26 |
Zhao D. ; Chen C. ; Wang C. ; Junda M. M. ; Song Z. ; Grice C. R. ; Yu Y. ; Li C. ; Subedi B. ; Podraza N. J. ; et al Nat. Energy 2018, 3, 1093.
doi: 10.1038/s41560-018-0278-x |
27 |
Tong J. ; Song Z. ; Kim D. H. ; Chen X. ; Chen C. ; Palmstrom A. F. ; Ndione P. F. ; Reese M. O. ; Dunfield S. P. ; Reid O. G. ; et al Science 2019, 364, 475.
doi: 10.1126/science.aav7911 |
28 |
Yang Z. ; Yu Z. ; Wei H. ; Xiao X. ; Ni Z. ; Chen B. ; Deng Y. ; Habisreutinger S. N. ; Chen X. ; Wang K. ; et al Nat. Commun. 2019, 10, 4498.
doi: 10.1038/s41467-019-12513-x |
29 |
Lin R. ; Xiao K. ; Qin Z. ; Han Q. ; Zhang C. ; Wei M. ; Saidaminov M. I. ; Gao Y. ; Xu J. ; Xiao M. ; et al Nat. Energy 2019, 4, 864.
doi: 10.1038/s41560-019-0466-3 |
30 |
Wei M. ; Xiao K. ; Walters G. ; Lin R. ; Zhao Y. ; Saidaminov M. I. ; Todorović P. ; Johnston A. ; Huang Z. ; Chen H. ; et al Adv. Mater. 2020, 32, 1907058.
doi: 10.1002/adma.201907058 |
31 |
Yu Z. ; Yang Z. ; Ni Z. ; Shao Y. ; Chen B. ; Lin Y. ; Wei H. ; Yu Z. J. ; Holman Z. ; Huang J. Nat. Energy 2020, 5, 657.
doi: 10.1038/s41560-020-0657-y |
32 |
Han Q. ; Hsieh Y. T. ; Meng L. ; Wu J. L. ; Sun P. ; Yao E. P. ; Chang S. Y. ; Bae S. H. ; Kato T. ; Bermudez V. ; et al Science 2018, 361, 904.
doi: 10.1126/science.aat5055 |
33 |
Al-Ashouri A. ; Magomedov A. ; Roß M. ; Jošt M. ; Talaikis M. ; Chistiakova G. ; Bertram T. ; Márquez J. A. ; Köhnen E. ; Kasparavičius E. ; et al Energy Environ. Sci. 2019, 12, 3356.
doi: 10.1039/C9EE02268F |
34 |
Leijtens T. ; Bush K. A. ; Prasanna R. ; McGehee M. D. Nat. Energy 2018, 3, 828.
doi: 10.1038/s41560-018-0190-4 |
35 |
Eperon G. E. ; Hörantner M. T. ; Snaith H. J. Nat. Rev. Chem. 2017, 1, 0095.
doi: 10.1038/s41570-017-0095 |
36 |
Noh J. H. ; Im S. H. ; Heo J. H. ; Mandal T. N. ; Seok S. I. Nano Lett. 2013, 13, 1764.
doi: 10.1021/nl400349b |
37 |
Kulkarni S. A. ; Baikie T. ; Boix P. P. ; Yantara N. ; Mathews N. ; Mhaisalkar S. J. Mater. Chem. A 2014, 2, 9221.
doi: 10.1039/C4TA00435C |
38 |
Hoke E. T. ; Slotcavage D. J. ; Dohner E. R. ; Bowring A. R. ; Karunadasa H. I. ; McGehee M. D. Chem. Sci. 2015, 6, 613.
doi: 10.1039/C4SC03141E |
39 |
Tang X. ; van den Berg M. ; Gu E. ; Horneber A. ; Matt G. J. ; Osvet A. ; Meixner A. J. ; Zhang D. ; Brabec C. J. Nano Lett. 2018, 18, 2172.
doi: 10.1021/acs.nanolett.8b00505 |
40 |
Brivio F. ; Caetano C. ; Walsh A. J. Phys. Chem. Lett. 2016, 7, 1083.
doi: 10.1021/acs.jpclett.6b00226 |
41 |
Bischak C. G. ; Hetherington C. L. ; Wu H. ; Aloni S. ; Ogletree D. F. ; Limmer D. T. ; Ginsberg N. S. Nano Lett. 2017, 17, 1028.
doi: 10.1021/acs.nanolett.6b04453 |
42 |
Barker A. J. ; Sadhanala A. ; Deschler F. ; Gandini M. ; Senanayak S. P. ; Pearce P. M. ; Mosconi E. ; Pearson A. J. ; Wu Y. ; Srimath Kandada A. R. ; et al ACS Energy Lett. 2017, 2, 1416.
doi: 10.1021/acsenergylett.7b00282 |
43 |
McMeekin D. P. ; Sadoughi G. ; Rehman W. ; Eperon G. E. ; Saliba M. ; Hörantner M. T. ; Haghighirad A. ; Sakai N. ; Korte L. ; Rech B. ; et al Science 2016, 351, 151.
doi: 10.1126/science.aad5845 |
44 |
Duong T. ; Wu Y. ; Shen H. ; Peng J. ; Fu X. ; Jacobs D. ; Wang E. C. ; Kho T. C. ; Fong K. C. ; Stocks M. ; et al Adv. Energy Mater. 2017, 7, 1700228.
doi: 10.1002/aenm.201700228 |
45 |
Bush K. A. ; Frohna K. ; Prasanna R. ; Beal R. E. ; Leijtens T. ; Swifter S. A. ; McGehee M. D. ACS Energy Lett. 2018, 3, 428.
doi: 10.1021/acsenergylett.7b01255 |
46 |
Kim M. ; Kim G. H. ; Lee T. K. ; Choi I. W. ; Choi H. W. ; Jo Y. ; Yoon Y. J. ; Kim J. W. ; Lee J. ; Huh D. ; et al Joule 2019, 3, 2179.
doi: 10.1016/j.joule.2019.06.014 |
47 |
Chen Q. ; Zhou H. ; Fang Y. ; Stieg A. Z. ; Song T. B. ; Wang H. H. ; Xu X. ; Liu Y. ; Lu S. ; You J. ; et al Nat. Commun. 2015, 6, 7269.
doi: 10.1038/ncomms8269 |
48 |
Palmstrom A. F. ; Eperon G. E. ; Leijtens T. ; Prasanna R. ; Habisreutinger S. N. ; Nemeth W. ; Gaulding E. A. ; Dunfield S. P. ; Reese M. ; Nanayakkara S. ; et al Joule 2019, 3, 2193.
doi: 10.1016/j.joule.2019.05.009 |
49 |
Hu M. ; Bi C. ; Yuan Y. ; Bai Y. ; Huang J. Adv. Science 2016, 3, 1500301.
doi: 10.1002/advs.201500301 |
50 |
Li W. ; Rothmann M. U. ; Liu A. ; Wang Z. ; Zhang Y. ; Pascoe A. R. ; Lu J. ; Jiang L. ; Chen Y. ; Huang F. ; et al Adv. Energy Mater. 2017, 7, 1700946.
doi: 10.1002/aenm.201700946 |
51 |
Braly I. L. ; Stoddard R. J. ; Rajagopal A. ; Uhl A. R. ; Katahara J. K. ; Jen A. K. Y. ; Hillhouse H. W. ACS Energy Lett. 2017, 2, 1841.
doi: 10.1021/acsenergylett.7b00525 |
52 |
Kulbak M. ; Gupta S. ; Kedem N. ; Levine I. ; Bendikov T. ; Hodes G. ; Cahen D. J. Phys. Chem. Lett. 2016, 7, 167.
doi: 10.1021/acs.jpclett.5b02597 |
53 |
Chen C. Y. ; Lin H. Y. ; Chiang K. M. ; Tsai W. L. ; Huang Y. C. ; Tsao C. S. ; Lin H. W. Adv. Mater. 2017, 29, 1605290.
doi: 10.1002/adma.201605290 |
54 |
Lau C. F. J. ; Deng X. ; Ma Q. ; Zheng J. ; Yun J. S. ; Green M. A. ; Huang S. ; Ho-Baillie A. W. Y. ACS Energy Lett. 2016, 1, 573.
doi: 10.1021/acsenergylett.6b00341 |
55 |
Liang J. ; Wang C. ; Wang Y. ; Xu Z. ; Lu Z. ; Ma Y. ; Zhu H. ; Hu Y. ; Xiao C. ; Yi X. ; et al J. Am. Chem. Soc. 2016, 138, 15829.
doi: 10.1021/jacs.6b10227 |
56 |
Wang Y. ; Dar M. I. ; Ono L. K. ; Zhang T. ; Kan M. ; Li Y. ; Zhang L. ; Wang X. ; Yang Y. ; Gao X. ; et al Science 2019, 365, 591.
doi: 10.1126/science.aav8680 |
57 |
Wang Y. ; Liu X. ; Zhang T. ; Wang X. ; Kan M. ; Shi J. ; Zhao Y. Angew. Chem. Int. Ed. 2019, 58, 16691.
doi: 10.1002/anie.201910800 |
58 |
Wang P. ; Zhang X. ; Zhou Y. ; Jiang Q. ; Ye Q. ; Chu Z. ; Li X. ; Yang X. ; Yin Z. ; You J. Nat. Commun. 2018, 9, 2225.
doi: 10.1038/s41467-018-04636-4 |
59 |
Stoumpos C. C. ; Kanatzidis M. G. Acc. Chem. Res. 2015, 48, 2791.
doi: 10.1021/acs.accounts.5b00229 |
60 |
Goldschmidt V. M. Naturwissenschaften 1926, 14, 477.
doi: 10.1007/BF01507527 |
61 |
Sutton R. J. ; Eperon G. E. ; Miranda L. ; Parrott E. S. ; Kamino B. A. ; Patel J. B. ; Hörantner M. T. ; Johnston M. B. ; Haghighirad A. A. ; Moore D. T. ; et al Adv. Energy Mater. 2016, 6, 1502458.
doi: 10.1002/aenm.201502458 |
62 |
Chen W. ; Chen H. ; Xu G. ; Xue R. ; Wang S. ; Li Y. ; Li Y. Joule 2019, 3, 191.
doi: 10.1016/j.joule.2018.10.011 |
63 |
Liu C. ; Li W. ; Zhang C. ; Ma Y. ; Fan J. ; Mai Y. J. Am. Chem. Soc. 2018, 140, 3825.
doi: 10.1021/jacs.7b13229 |
64 |
Tian J. ; Xue Q. ; Tang X. ; Chen Y. ; Li N. ; Hu Z. ; Shi T. ; Wang X. ; Huang F. ; Brabec C. J. ; et al Adv. Mater. 2019, 31, 1901152.
doi: 10.1002/adma.201901152 |
65 |
Xiang S. ; Fu Z. ; Li W. ; Wei Y. ; Liu J. ; Liu H. ; Zhu L. ; Zhang R. ; Chen H. ACS Energy Lett. 2018, 3, 1824.
doi: 10.1021/acsenergylett.8b00820 |
66 |
Zhao B. ; Jin S. F. ; Huang S. ; Liu N. ; Ma J. Y. ; Xue D. J. ; Han Q. ; Ding J. ; Ge Q. Q. ; Feng Y. ; et al J. Am. Chem. Soc. 2018, 140, 11716.
doi: 10.1021/jacs.8b06050 |
67 |
Ke W. ; Spanopoulos I. ; Stoumpos C. C. ; Kanatzidis M. G. Nat. Commun. 2018, 9, 4785.
doi: 10.1038/s41467-018-07204-y |
68 |
Swarnkar A. ; Marshall A. R. ; Sanehira E. M. ; Chernomordik B. D. ; Moore D. T. ; Christians J. A. ; Chakrabarti T. ; Luther J. M. Science 2016, 354, 92.
doi: 10.1126/science.aag2700 |
69 | Ding L. M. ; Cheng Y. B. ; Tang J. Acta Phys. -Chim. Sin. 2018, 34, 449. |
丁黎明; 程一兵; 唐江. 物理化学学报, 2018, 34, 449.
doi: 10.3866/PKU.WHXB201710121 |
|
70 |
Slavney A. H. ; Hu T. ; Lindenberg A. M. ; Karunadasa H. I. J. Am. Chem. Soc. 2016, 138, 2138.
doi: 10.1021/jacs.5b13294 |
71 |
Saparov B. ; Hong F. ; Sun J. P. ; Duan H. S. ; Meng W. ; Cameron S. ; Hill I. G. ; Yan Y. ; Mitzi D. B. Chem. Mater. 2015, 27, 5622.
doi: 10.1021/acs.chemmater.5b01989 |
72 |
Wu C. ; Zhang Q. ; Liu Y. ; Luo W. ; Guo X. ; Huang Z. ; Ting H. ; Sun W. ; Zhong X. ; Wei S. ; et al Adv. Sci. 2018, 5, 1700759.
doi: 10.1002/advs.201700759 |
73 |
Zhao D. ; Yu Y. ; Wang C. ; Liao W. ; Shrestha N. ; Grice C. R. ; Cimaroli A. J. ; Guan L. ; Ellingson R. J. ; Zhu K. ; et al Nat. Energy 2017, 2, 17018.
doi: 10.1038/nenergy.2017.18 |
74 |
Li Z. ; Zhao Y. ; Wang X. ; Sun Y. ; Zhao Z. ; Li Y. ; Zhou H. ; Chen Q. Joule 2018, 2, 1559.
doi: 10.1016/j.joule.2018.05.001 |
75 |
Stoumpos C. C. ; Malliakas C. D. ; Kanatzidis M. G. Inorg. Chem. 2013, 52, 9019.
doi: 10.1021/ic401215x |
76 |
Hao F. ; Stoumpos C. C. ; Chang R. P. H. ; Kanatzidis M. G. J. Am. Chem. Soc. 2014, 136, 8094.
doi: 10.1021/ja5033259 |
77 |
Liao W. ; Zhao D. ; Yu Y. ; Shrestha N. ; Ghimire K. ; Grice C. R. ; Wang C. ; Xiao Y. ; Cimaroli A. J. ; Ellingson R. J. ; et al J. Am. Chem. Soc. 2016, 138, 12360.
doi: 10.1021/jacs.6b08337 |
78 |
Klug M. T. ; Milot R. L. ; Patel J. B. ; Green T. ; Sansom H. C. ; Farrar M. D. ; Ramadan A. J. ; Martani S. ; Wang Z. ; Wenger B. ; et al Energy Environ. Sci. 2020, 13, 1776.
doi: 10.1039/D0EE00132E |
79 |
Chung I. ; Song J. H. ; Im J. ; Androulakis J. ; Malliakas C. D. ; Li H. ; Freeman A. J. ; Kenney J. T. ; Kanatzidis M. G. J. Am. Chem. Soc. 2012, 134, 8579.
doi: 10.1021/ja301539s |
80 |
Kumar M. H. ; Dharani S. ; Leong W. L. ; Boix P. P. ; Prabhakar R. R. ; Baikie T. ; Shi C. ; Ding H. ; Ramesh R. ; Asta M. ; et al Adv. Mater. 2014, 26, 7122.
doi: 10.1002/adma.201401991 |
81 |
Jiang T. ; Chen Z. ; Chen X. ; Liu T. ; Chen X. ; Sha W. E. I. ; Zhu H. ; Yang Y. Sol. RRL 2019, 4, 1900467.
doi: 10.1002/solr.201900467 |
82 |
Xu X. ; Chueh C. C. ; Yang Z. ; Rajagopal A. ; Xu J. ; Jo S. B. ; Jen A. K. Y. Nano Energy 2017, 34, 392.
doi: 10.1016/j.nanoen.2017.02.040 |
83 |
Tai Q. ; Guo X. ; Tang G. ; You P. ; Ng T. W. ; Shen D. ; Cao J. ; Liu C. K. ; Wang N. ; Zhu Y. ; et al Angew. Chem. Int. Ed. 2019, 58, 806.
doi: 10.1002/anie.201811539 |
84 |
He X. ; Wu T. ; Liu X. ; Wang Y. ; Meng X. ; Wu J. ; Noda T. ; Yang X. ; Moritomo Y. ; Segawa H. ; et al J. Mater. Chem. A 2020, 8, 2760.
doi: 10.1039/C9TA13159K |
85 |
Prasanna R. ; Leijtens T. ; Dunfield S. P. ; Raiford J. A. ; Wolf E. J. ; Swifter S. A. ; Werner J. ; Eperon G. E. ; de Paula C. ; Palmstrom A. F. ; et al Nat. Energy 2019, 4, 939.
doi: 10.1038/s41560-019-0471-6 |
86 |
Liao Y. ; Liu H. ; Zhou W. ; Yang D. ; Shang Y. ; Shi Z. ; Li B. ; Jiang X. ; Zhang L. ; Quan L. N. ; et al J. Am. Chem. Soc. 2017, 139, 6693.
doi: 10.1021/jacs.7b01815 |
87 |
Meng L. ; You J. ; Yang Y. Nat. Commun. 2018, 9, 5265.
doi: 10.1038/s41467-018-07255-1 |
88 |
Christians J. A. ; Miranda Herrera P. A. ; Kamat P. V. J. Am. Chem. Soc. 2015, 137, 1530.
doi: 10.1021/ja511132a |
89 |
Niu G. ; Guo X. ; Wang L. J. Mater. Chem. A 2015, 3, 8970.
doi: 10.1039/C4TA04994B |
90 |
Juarez-Perez E. J. ; Hawash Z. ; Raga S. R. ; Ono L. K. ; Qi Y. Energy Environ. Sci. 2016, 9, 3406.
doi: 10.1039/C6EE02016J |
91 |
Conings B. ; Drijkoningen J. ; Gauquelin N. ; Babayigit A. ; D'Haen J. ; D'Olieslaeger L. ; Ethirajan A. ; Verbeeck J. ; Manca J. ; Mosconi E. ; et al Adv. Energy Mater. 2015, 5, 1500477.
doi: 10.1002/aenm.201500477 |
92 |
Misra R. K. ; Aharon S. ; Li B. ; Mogilyansky D. ; Visoly-Fisher I. ; Etgar L. ; Katz E. A. J. Phys. Chem. Lett. 2015, 6, 326.
doi: 10.1021/jz502642b |
93 |
Turren-Cruz S.-H. ; Hagfeldt A. ; Saliba M. Science 2018, 362, 449.
doi: 10.1126/science.aat3583 |
94 | Bi F. ; Zheng X. ; Yam Z. Acta Phys. -Chim. Sin. 2019, 35, 69. |
毕富珍; 郑晓; 任志勇. 物理化学学报, 2019, 35, 69.
doi: 10.3866/PKU.WHXB201801082 |
|
95 |
Lee J. W. ; Kim D. H. ; Kim H. S. ; Seo S. W. ; Cho S. M. ; Park N. G. Adv. Energy Mater. 2015, 5, 1501310.
doi: 10.1002/aenm.201501310 |
96 |
Buin A. ; Pietsch P. ; Xu J. ; Voznyy O. ; Ip A. H. ; Comin R. ; Sargent E. H. Nano Lett. 2014, 14, 6281.
doi: 10.1021/nl502612m |
97 |
Yin W. J. ; Shi T. ; Yan Y. Adv. Mater. 2014, 26, 4653.
doi: 10.1002/adma.201306281 |
98 |
Wetzelaer G. J. A. H. ; Scheepers M. ; Sempere A. M. ; Momblona C. ; Ávila J. ; Bolink H. J. Adv. Mater. 2015, 27, 1837.
doi: 10.1002/adma.201405372 |
99 |
Fan R. ; Zhou W. ; Huang Z. ; Zhou H. EnergyChem 2020, 2, 100032.
doi: 10.1016/j.enchem.2020.100032 |
100 |
Chen Y. ; Li N. ; Wang L. ; Li L. ; Xu Z. ; Jiao H. ; Liu P. ; Zhu C. ; Zai H. ; Sun M. ; et al Nat. Commun. 2019, 10, 1112.
doi: 10.1038/s41467-019-09093-1 |
101 |
Wang F. ; Geng W. ; Zhou Y. ; Fang H. H. ; Tong C. J. ; Loi M. A. ; Liu L. M. ; Zhao N. Adv. Mater. 2016, 28, 9986.
doi: 10.1002/adma.201603062 |
102 |
Calado P. ; Telford A. M. ; Bryant D. ; Li X. ; Nelson J. ; O'Regan B. C. ; Barnes P. R. F. Nat. Commun. 2016, 7, 13831.
doi: 10.1038/ncomms13831 |
103 |
Shao Y. ; Fang Y. ; Li T. ; Wang Q. ; Dong Q. ; Deng Y. ; Yuan Y. ; Wei H. ; Wang M. ; Gruverman A. ; et al Energy Environ. Sci. 2016, 9, 1752.
doi: 10.1039/C6EE00413J |
104 |
Yuan Y. ; Huang J. Acc. Chem. Res. 2016, 49, 286.
doi: 10.1021/acs.accounts.5b00420 |
105 |
Domanski K. ; Roose B. ; Matsui T. ; Saliba M. ; Turren-Cruz S. H. ; Correa-Baena J. P. ; Carmona C. R. ; Richardson G. ; Foster J. M. ; De Angelis F. ; et al Energy Environ. Sci. 2017, 10, 604.
doi: 10.1039/C6EE03352K |
106 |
Abdi-Jalebi M. ; Andaji-Garmaroudi Z. ; Cacovich S. ; Stavrakas C. ; Philippe B. ; Richter J. M. ; Alsari M. ; Booker E. P. ; Hutter E. M. ; Pearson A. J. ; et al Nature 2018, 555, 497.
doi: 10.1038/nature25989 |
107 |
Li N. ; Tao S. ; Chen Y. ; Niu X. ; Onwudinanti C. K. ; Hu C. ; Qiu Z. ; Xu Z. ; Zheng G. ; Wang L. ; et al Nat. Energy 2019, 4, 408.
doi: 10.1038/s41560-019-0382-6 |
108 |
Wang L. ; Zhou H. ; Hu J. ; Huang B. ; Sun M. ; Dong B. ; Zheng G. ; Huang Y. ; Chen Y. ; Li L. ; et al Science 2019, 363, 265.
doi: 10.1126/science.aau5701 |
109 |
Lin Y. ; Bai Y. ; Fang Y. ; Wang Q. ; Deng Y. ; Huang J. ACS Energy Lett. 2017, 2, 1571.
doi: 10.1021/acsenergylett.7b00442 |
110 |
Lee J. W. ; Dai Z. ; Han T. H. ; Choi C. ; Chang S. Y. ; Lee S. J. ; De Marco N. ; Zhao H. ; Sun P. ; Huang Y. ; et al Nat. Commun. 2018, 9, 3021.
doi: 10.1038/s41467-018-05454-4 |
111 |
Liu Y. ; Yang Z. ; Cui D. ; Ren X. ; Sun J. ; Liu X. ; Zhang J. ; Wei Q. ; Fan H. ; Yu F. ; et al Adv. Mater. 2015, 27, 5176.
doi: 10.1002/adma.201502597 |
112 |
Xie F. ; Chen C. C. ; Wu Y. ; Li X. ; Cai M. ; Liu X. ; Yang X. ; Han L. Energy Environ. Sci. 2017, 10, 1942.
doi: 10.1039/C7EE01675A |
113 |
Yu H. ; Wang F. ; Xie F. ; Li W. ; Chen J. ; Zhao N. Adv. Funct. Mater. 2014, 24, 7102.
doi: 10.1002/adfm.201401872 |
114 |
Liu J. ; Gao C. ; He X. ; Ye Q. ; Ouyang L. ; Zhuang D. ; Liao C. ; Mei J. ; Lau W. ACS Appl. Mater. Interfaces 2015, 7, 24008.
doi: 10.1021/acsami.5b06780 |
115 |
Zhou H. ; Chen Q. ; Li G. ; Luo S. ; Song T. B. ; Duan H. S. ; Hong Z. ; You J. ; Liu Y. ; Yang Y. Science 2014, 345, 542.
doi: 10.1126/science.1254050 |
116 |
Xiao Z. ; Dong Q. ; Bi C. ; Shao Y. ; Yuan Y. ; Huang J. Adv. Mater. 2014, 26, 6503.
doi: 10.1002/adma.201401685 |
117 |
Jain S. M. ; Qiu Z. ; Häggman L. ; Mirmohades M. ; Johansson M. B. ; Edvinsson T. ; Boschloo G. Energy Environ. Sci. 2016, 9, 3770.
doi: 10.1039/C6EE02544G |
118 |
Xiao S. ; Bai Y. ; Meng X. ; Zhang T. ; Chen H. ; Zheng X. ; Hu C. ; Qu Y. ; Yang S. Adv. Funct. Mater. 2017, 27, 1604944.
doi: 10.1002/adfm.201604944 |
119 |
Bush K. A. ; Bailie C. D. ; Chen Y. ; Bowring A. R. ; Wang W. ; Ma W. ; Leijtens T. ; Moghadam F. ; McGehee M. D. Adv. Mater. 2016, 28, 3937.
doi: 10.1002/adma.201505279 |
120 |
Löper P. ; Moon S. J. ; Martín de Nicolas S. ; Niesen B. ; Ledinsky M. ; Nicolay S. ; Bailat J. ; Yum J. H. ; De Wolf S. ; Ballif C. Phys. Chem. Chem. Phys. 2015, 17, 1619.
doi: 10.1039/C4CP03788J |
121 |
Chang C. Y. ; Tsai B. C. ; Hsiao Y. C. ; Lin M. Z. ; Meng H. F. Nano Energy 2019, 55, 354.
doi: 10.1016/j.nanoen.2018.10.014 |
122 |
Jiang F. ; Liu T. ; Luo B. ; Tong J. ; Qin F. ; Xiong S. ; Li Z. ; Zhou Y. J. Mater. Chem. A 2016, 4, 1208.
doi: 10.1039/C5TA08744A |
123 |
Yeo J. S. ; Kang R. ; Lee S. ; Jeon Y. J. ; Myoung N. ; Lee C. L. ; Kim D. Y. ; Yun J. M. ; Seo Y. H. ; Kim S. S. ; et al Nano Energy 2015, 12, 96.
doi: 10.1016/j.nanoen.2014.12.022 |
124 |
Khenkin M. V. ; Katz E. A. ; Abate A. ; Bardizza G. ; Berry J. J. ; Brabec C. ; Brunetti F. ; Bulović V. ; Burlingame Q. ; Di Carlo A. ; et al Nat. Energy 2020, 5, 35.
doi: 10.1038/s41560-019-0529-5 |
[1] | Faizan Muhammad, 赵国琪, 张天旭, 王啸宇, 贺欣, 张立军. 空位有序双钙钛矿A2BX6的弹性和热电性质的第一性原理研究[J]. 物理化学学报, 2024, 40(1): 2303004 - . |
[2] | 胡荣, 韦丽云, 鲜靖林, 房光钰, 吴植傲, 樊淼, 郭家越, 李青翔, 刘凯思, 姜会钰, 徐卫林, 万骏, 姚永刚. 微波热冲快速制备二维多孔La0.2Sr0.8CoO3钙钛矿用于高效电催化析氧反应[J]. 物理化学学报, 2023, 39(9): 2212025 -0 . |
[3] | 兰畅, 楚宇逸, 王烁, 刘长鹏, 葛君杰, 邢巍. 质子交换膜燃料电池阴极非贵金属M-Nx/C型氧还原催化剂研究进展[J]. 物理化学学报, 2023, 39(8): 2210036 -0 . |
[4] | 杨帅, 徐瑜歆, 郝子坤, 秦胜建, 张润鹏, 韩钰, 杜利伟, 朱紫洢, 杜安宁, 陈欣, 吴昊, 乔冰冰, 李坚, 王艺, 孙昺晨, 闫融融, 赵晋津. 高效医学传感钙钛矿材料研究进展[J]. 物理化学学报, 2023, 39(5): 2211025 -0 . |
[5] | 文永涛, 李静, 高晓峰, 田聪聪, 朱昊, 余国木, 张晓俐, Park Hyesung, 黄福志. 控制碘化铅形貌两步连续刮涂法大面积制备甲脒基钙钛矿薄膜[J]. 物理化学学报, 2023, 39(2): 2203048 -0 . |
[6] | 张涛, 龚思敏, 陈平, 陈琪, 陈立桅. 利用多氟丙烯酸酯添加剂提升准二维钙钛矿发光二极管性能[J]. 物理化学学报, 2023, 39(12): 2301024 - . |
[7] | 任书霞, 杨铮, 安帅领, 孟婕, 刘晓敏, 赵晋津. 高效光电调控钙钛矿量子点阻变存储性能[J]. 物理化学学报, 2023, 39(12): 2301033 - . |
[8] | 庄必浩, 靳子骢, 田德华, 朱遂意, 曾琳茜, 范建东, 娄在祝, 李闻哲. 新型(4-HBA)SbX5∙H2O类钙钛矿单晶及其卤素结构对发光特性的调控[J]. 物理化学学报, 2023, 39(1): 2209007 -0 . |
[9] | 卢岳, 葛杨, 隋曼龄. 紫外光辐照下CH3NH3PbI3基钙钛矿太阳能电池失效机制[J]. 物理化学学报, 2022, 38(5): 2007088 - . |
[10] | 林飞宇, 杨英, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益. 湿空气下制备稳定的CsPbI2Br钙钛矿太阳电池[J]. 物理化学学报, 2022, 38(4): 2005007 - . |
[11] | 查吴送, 张连萍, 文龙, 康嘉晨, 骆群, 陈沁, 杨上峰, 马昌期. 溶剂工程调控钙钛矿薄膜中PbI2和PbI2(DMSO)的形成[J]. 物理化学学报, 2022, 38(3): 2003022 - . |
[12] | 陈志洋, 唐雅婷, 吕泽, 孟霄汉, 梁前伟, 冯建国. 香茅油纳米乳剂的构建、表征、抗菌性能和细胞毒性[J]. 物理化学学报, 2022, 38(12): 2205053 - . |
[13] | 田立亮, 张玮琦, 解政, 彭凯, 马强, 徐谦, Pasupathi Sivakumar, 苏华能. 催化层掺杂共价有机框架材料提升高温聚电解质膜燃料电池性能[J]. 物理化学学报, 2021, 37(9): 2009049 - . |
[14] | 梁嘉顺, 刘轩, 李箐. 提升燃料电池铂基催化剂稳定性的原理、策略与方法[J]. 物理化学学报, 2021, 37(9): 2010072 - . |
[15] | 李艳, 胡星盛, 黄静伟, 王磊, 佘厚德, 王其召. 铁基多相助催化剂光电化学水氧化研究进展[J]. 物理化学学报, 2021, 37(8): 2009022 - . |
|