物理化学学报 >> 2021, Vol. 37 >> Issue (9): 2009103.doi: 10.3866/PKU.WHXB202009103
所属专题: 燃料电池
薛延荣1, 王兴栋1, 张向前1, 方锦杰1,2, 许志远1,2, 张宇烽1, 刘雪瑞1,2, 刘梦园1, 朱威1, 庄仲滨1,2,3,*()
收稿日期:
2020-09-30
录用日期:
2020-11-02
发布日期:
2020-11-12
通讯作者:
庄仲滨
E-mail:zhuangzb@mail.buct.edu.cn
作者简介:
Zhongbin Zhuang, born in August 1983, received his Ph.D. degrees from Tsinghua University 2010. He joined Beijing University of Chemical Technology as a professor in 2015. His current research interests include electrocatalysts for fuel cell and electrolyzers, interfacial electrochemistry and methodology for nanocrystal synthesis
基金资助:
Yanrong Xue1, Xingdong Wang1, Xiangqian Zhang1, Jinjie Fang1,2, Zhiyuan Xu1,2, Yufeng Zhang1, Xuerui Liu1,2, Mengyuan Liu1, Wei Zhu1, Zhongbin Zhuang1,2,3,*()
Received:
2020-09-30
Accepted:
2020-11-02
Published:
2020-11-12
Contact:
Zhongbin Zhuang
E-mail:zhuangzb@mail.buct.edu.cn
About author:
Zhongbin Zhuang, Email: zhuangzb@mail.buct.edu.cn. Tel.: +86-10-64434780Supported by:
摘要:
燃料电池是一种清洁高效的能量转换装置,可将储存在燃料中的化学能直接转化为电能。在过去的几十年中,燃料电池的开发取得了重大进展。聚合物电解质燃料电池,尤其是以质子交换膜燃料电池(PEMFC)为代表,可以实现高效率、高功率密度、快速启动,因而受到了广泛的关注。然而,PEMFC因使用昂贵的Pt基催化剂而导致成本较高,阻碍了其大规模的应用。近年来发展的碱性膜燃料电池(HEMFC)与PEMFC结构相似,但使用可传导氢氧根离子的聚合物电解质,并提供碱性工作环境。HEMFC由于具有使用非Pt电催化剂和较便宜双极板的可能性而备受关注。然而,HEMFC的一个巨大的挑战是阳极氢氧化反应(HOR)相对缓慢的动力学,这使得其需要较高载量的阳极催化剂才能实现较高的电池性能。因此,对于HEMFC而言,阳极催化剂的成本也很高,亟需开发在碱性条件下低成本、高活性和高稳定性的HOR催化剂。在本综述中,我们总结了HOR催化剂的最新研究进展,涉及文献中提出的各种HOR机理和催化剂,并分析了基于阳极催化剂成本的HEMFC性能。我们发现,最新报道的非Pt HOR催化剂可以降低阳极催化剂的成本,到达与PEMFC接近的成本水平。最后,我们对HOR的进一步研究进行了展望。
薛延荣, 王兴栋, 张向前, 方锦杰, 许志远, 张宇烽, 刘雪瑞, 刘梦园, 朱威, 庄仲滨. 具有经济性的碱性膜燃料电池氢气氧化反应催化剂[J]. 物理化学学报, 2021, 37(9), 2009103. doi: 10.3866/PKU.WHXB202009103
Yanrong Xue, Xingdong Wang, Xiangqian Zhang, Jinjie Fang, Zhiyuan Xu, Yufeng Zhang, Xuerui Liu, Mengyuan Liu, Wei Zhu, Zhongbin Zhuang. Cost-Effective Hydrogen Oxidation Reaction Catalysts for Hydroxide Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin. 2021, 37(9), 2009103. doi: 10.3866/PKU.WHXB202009103
Fig 3
Left: the H2/O2 HEMFC performances by using Pd0.33Ir0.67/N-C or commercial Pt/C as anode catalyst (0.2 mg·cm-2) and Pt/C as cathode catalyst (0.3 mg·cm-2). The cell temperatures are 65 or 79 ℃ as marked. Right: the comparison of the PPD of the HEMFCs by using different anode catalysts 67. Reprinted with permission from Ref 67. Copyright (2019) the Royal Society of Chemistry."
Fig 4
The H2/O2 HEMFC performances by using Pd-CeO2/C as anode catalyst (0.25 mg·cm–2) and Pt/C cathode (0.4 mg·cm–2). The cell temperature is 80 ℃ 88. The black and red curves represent the anode Pd–CeO2/C catalysts synthesized by different methods. Reprinted with permission from Ref 88. Copyright (2019) American Chemical Society."
Fig 6
The H2/O2 HEMFC performance by using NiCu/KB as anode catalyst (4 mg·cm-2) and Pd/C as cathode catalyst (0.2 mg·cm-2). The cell temperatures are 60, 70, 80 ℃, respectively 109. Modifying the Ni based catalysts by non-metallic elements, especially N, also shows the benefits. The modification can be done either on the support or Ni itself. Yan et al. 110 using nitrogen-doped carbon nanotubes (N-CNT) as the support and the mass activity and exchange current density of Ni/N-CNT increases by a factor of 33 and 21, respectively. The DFT calculations indicate that N-CNT stabilizes Ni nanoparticle and locally activated for the HOR because of nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of Ni. Yang et al. 111 found that the HOR activity of Ni nanoparticles supported on N-doped carbon nanosheets exhibits a volcano dependence on the N-doping level, and the 8.7% (atomic fraction) N content of catalyst exhibits an optimal HOR activity. Directly doping N into Ni nanoparticles can also enhance its HOR activity. Sun et al. 112 reported a unique Ni3N/Ni electrocatalyst that exhibits exceptional HER/HOR activities in base, and the active sites are located at the interface between Ni3N and Ni. Hu et al. 113 using the ultraviolet photoemission spectroscopy (UPS) technique analyzed the downshift of the Ni d-band and interfacial charge transfer from Ni3N to the carbon which lead to the weak HBE in Ni3N/C. The HBE has the order of Ni > Ni3N > Ni3N/C, so the Ni3N/C has the highest HOR activity. In addition, the weak oxygen species adsorption energy of Ni3N/C is not conducive to the oxidation of Ni and therefore has a higher break-down potential. Furthermore, the doping with other non-metal elements than N has also been reported as efficient ways to improve the HOR activities of Ni. For example, Luo et al. 114 reported the HOR activity of Ni which supported on heteroatom (S, N, or B) doped carbon, and the trend following the sequence of Ni/S-C > Ni/N-C > Ni/B-C."
1 |
Seh Z. W. ; Kibsgaard J. ; Dickens C. F. ; Chorkendorff I. ; Norskov J. K. ; Jaramillo T. F. Science 2017, 355, 4998.
doi: 10.1126/science.aad4998 |
2 |
Gasteiger H. A. ; Markovic N. M. Science 2009, 324, 48.
doi: 10.1126/science.1172083 |
3 |
Setzler B. P. ; Zhuang Z. ; Wittkopf J. A. ; Yan Y. Nat. Nanotech. 2016, 11, 1020.
doi: 10.1038/nnano.2016.265 |
4 |
Koper M. T. Nat. Chem. 2013, 5, 255.
doi: 10.1038/nchem.1600 |
5 |
Bockris J. O. M. Int. J. Hydrogen Energy 2013, 38, 2579.
doi: 10.1016/j.ijhydene.2012.12.026 |
6 |
Bockris J. O. M. Int. J. Hydrogen Energy 1999, 24, 1.
doi: 10.1016/S0360-3199(98)00115-3 |
7 |
Sun Y. ; Lu J. ; Zhuang L. Electrochim. Acta 2010, 55, 844.
doi: 10.1016/j.electacta.2009.09.047 |
8 |
Kenney M. J. ; Huang J. E. ; Zhu Y. ; Meng Y. ; Xu M. ; Zhu G. ; Hung W. ; Kuang Y. ; Lin M. ; Sun X. ; et al Nano Res. 2019, 12, 1431.
doi: 10.1007/s12274-019-2379-7 |
9 |
Furukawa S. ; Suzuki R. ; Ochi K. ; Yashima T. ; Komatsu T. ChemSusChem 2015, 8, 2028.
doi: 10.1002/cssc.201500112 |
10 |
Strong A. ; Thornberry C. J. Fuel. Cell. Sci. Tech. 2015, 12, 064001.
doi: 10.1115/1.4031961 |
11 |
Shao Y. ; Liu J. ; Wang Y. ; Lin Y. J. Mater. Chem. 2009, 19, 46.
doi: 10.1039/b808370c |
12 |
Kongkanand A. ; Mathias M. F. J. Phys. Chem. Lett. 2016, 7, 1127.
doi: 10.1021/acs.jpclett.6b00216 |
13 |
Wang Y. ; Leung D. Y. C. ; Xuan J. ; Wang H. Renew. Sust. Energ. Rev. 2016, 65, 961.
doi: 10.1016/j.rser.2016.07.046 |
14 |
Banham D. ; Ye S. ACS Energy Lett. 2017, 2, 629.
doi: 10.1021/acsenergylett.6b00644 |
15 |
Majlan E. H. ; Rohendi D. ; Daud W. R. W. ; Husaini T. ; Haque M. A. Renew. Sust. Energ. Rev. 2018, 89, 117.
doi: 10.1016/j.rser.2018.03.007 |
16 |
Deng Y. ; Chi B. ; Li J. ; Wang G. ; Zheng L. ; Shi X. ; Cui Z. ; Du Li. ; Liao S. ; Zang K. ; et al Adv. Energy Mater. 2019, 9, 1802856.
doi: 10.1002/aenm.201802856 |
17 |
Wang J. ; Zhao Y. ; Setzler B. ; Rojas-Carbonell S. ; Ben Y. C. ; Amel A. ; Page M. ; Wang L. ; Hu K. ; et al Nat. Energy 2019, 4, 392.
doi: 10.1038/s41560-019-0372-8 |
18 |
Pan J. ; Chen C. ; Zhuang L. ; Lu J. Acc. Chem. Res. 2012, 45, 473.
doi: 10.1021/ar200201x |
19 |
Wang Y. J. ; Qiao J. ; Baker R. ; Zhang J. Chem. Soc. Rev. 2013, 42, 5768.
doi: 10.1039/c3cs60053j |
20 |
Maurya S. ; Noh S. ; Matanovic I. ; Park E. ; Villarrubia C. N. ; Martinez U. ; Han J. ; Bae C. ; Kim Y. S. Energy Environ. Sci. 2018, 11, 3283.
doi: 10.1039/c8ee02192a |
21 |
Zhu L. ; Pan J. ; Wang Y. ; Han J. ; Zhuang L. ; Hickner M. A. Macromolecules 2016, 49, 815.
doi: 10.1021/acs.macromol.5b02671 |
22 |
Lee W. H. ; Kim Y. S. ; Bae C. ACS Macro Lett. 2015, 4, 814.
doi: 10.1021/acsmacrolett.5b00375 |
23 |
Wang L. ; Magliocca E. ; Cunningham E. L. ; Mustain Wi. E. ; Poynton S. D. ; Escudero-Cid R. ; Nasef M. M. ; Ponce-González J. ; Bance-Souahli R. ; Slade R. C. T. ; et al Green Chem. 2017, 19, 831.
doi: 10.1039/c6gc02526a |
24 |
Huang G. ; Mandal M. ; Peng X. ; Yang-Neyerlin A. C. ; Pivovar B. S. ; Mustain W. E. ; Kohl P. A. J. Electrochem. Soc. 2019, 166, F637.
doi: 10.1149/2.1301910jes |
25 |
Varcoe J. R. ; Slade R. C. T. Fuel Cells 2004, 2, 187.
doi: 10.1002/fuce.200400045 |
26 |
Lu S. ; Pan J. ; Huang A. ; Zhuang L. ; Lu J. Proc. Natl. Acad. Sci. USA 2008, 105, 20611.
doi: 10.1073/pnas.0810041106 |
27 |
Wang L. ; Bellini M. ; Miller H. A. ; Varcoe J. R. J. Mater. Chem. A 2018, 6, 15404.
doi: 10.1039/c8ta04783a |
28 |
Wang L. ; Peng X. ; Mustain W. E. ; Varcoe J. R. Energy Environ. Sci. 2019, 12, 1575.
doi: 10.1039/c9ee00331b |
29 |
Wang Y. ; Yang Y. ; Jia S. ; Wang X. ; Lyu K. ; Peng Y. ; Zheng H. ; Wei X. ; Ren H. ; Xiao L. ; et al Nat. Commun. 2019, 10, 1506.
doi: 10.1038/s41467-019-09503-4 |
30 |
Woo J. ; Yang S. Y. ; Sa Y. J. ; Choi W. Y. ; Lee M. H. ; Lee H. W. ; Shin T. J. ; Kim T. Y. ; Joo S. H. Chem. Mater. 2018, 30, 6684.
doi: 10.1021/acs.chemmater.8b02117 |
31 |
Ren H. ; Wang Y. ; Yang Y. ; Tang X. ; Peng Y. ; Peng H. ; Xiao L. ; Lu J. ; Abruña H. D. ; Zhuang L. ; et al ACS Catal. 2017, 7, 6485.
doi: 10.1021/acscatal.7b02340 |
32 |
Brouzgoua A. ; Song S. Q. Appl. Catal. B-Environ. 2012, 127, 371.
doi: 10.1016/j.apcatb.2012.08.031 |
33 |
Lu S. ; Zhuang Z. Sci. China Mater. 2016, 59, 217.
doi: 10.1007/s40843-016-0127-9 |
34 |
Sheng W. ; Zhuang Z. ; Gao M. ; Zheng J. ; Chen J. G. ; Yan Y. Nat. Commun. 2015, 6, 5848.
doi: 10.1038/ncomms6848 |
35 |
Sheng W. ; Gasteiger H. A. ; Shao-Horn Y. J. Electrochem. Soc. 2010, 157, B1529.
doi: 10.1149/1.3483106 |
36 |
Lu S. ; Zhuang Z. J. Am. Chem. Soc. 2017, 139, 5156.
doi: 10.1021/jacs.7b00765 |
37 |
Wang Y. ; Qiu W. ; Song E. ; Gu F. ; Zheng Z. ; Zhao X. ; Zhao Y. ; Liu J. ; Zhang W. Natl. Sci. Rev. 2018, 5, 327.
doi: 10.1093/nsr/nwx119 |
38 |
Trasatti S. J. Electroanal. Chem. 1972, 39, 163.
doi: 10.1016/S0022-0728(72)80485-6 |
39 |
Nørskov J. K. ; Bligaard T. ; Logadottir A. ; Kitchin J. R. ; Chen J. G. ; Pandelov S. ; Stimming U. J. Electrochem. Soc. 2005, 152, J23.
doi: 10.1149/1.1856988 |
40 |
Sheng W. ; Myint M. ; Chen J. G. ; Yan Y. Energy Environ. Sci. 2013, 6, 1509.
doi: 10.1039/c3ee00045a |
41 |
Strmcnik D. ; Uchimura M. ; Wang C. ; Subbaraman R. ; Danilovic N. ; van der Vliet D. ; Paulikas A. P. ; Stamenkovic V. R. ; Markovic N. M. Nat. Chem. 2013, 5, 300.
doi: 10.1038/nchem.1574 |
42 |
Wang Y. ; Wang G. ; Li G. ; Huang B. ; Pan J. ; Liu Q. ; Han J. ; Xiao L. ; Lu J. ; Zhuang L. Energy Environ. Sci. 2015, 8, 177.
doi: 10.1039/c4ee02564d |
43 |
Davydova E. S. ; Mukerjee S. ; Jaouen F. ; Dekel D. R. ACS Catal. 2018, 8, 6665.
doi: 10.1021/acscatal.8b00689 |
44 |
Zheng J. ; Zhuang Z. ; Xu B. ; Yan Y. ACS Catal. 2015, 5, 4449.
doi: 10.1021/acscatal.5b00247 |
45 |
Zheng J. ; Sheng W. ; Zhuang Z. ; Xu B. ; Yan Y. Sci. Adv. 2016, 2, e1501602.
doi: 10.1126/sciadv.1501602 |
46 |
Zheng J. ; Nash J. ; Xu B. ; Yan Y. J. Electrochem. Soc. 2018, 165, H27.
doi: 10.1149/2.0881802jes |
47 |
Cheng T. ; Wang L. ; Merinov B. V. ; Goddard W. A. J. Am. Chem. Soc. 2018, 140, 7787.
doi: 10.1021/jacs.8b04006 |
48 |
Zhu S. ; Qin X. ; Yao Y. ; Shao M. J. Am. Chem. Soc. 2020, 142, 8748.
doi: 10.1021/jacs.0c01104 |
49 |
Ledezma-Yanez I. ; Wallace W. D. Z. ; Sebastián-Pascual P. ; Climent V. ; Feliu J. M. ; Koper M. T. M. Nat. Energy 2017, 2, 17031.
doi: 10.1038/nenergy.2017.31 |
50 |
Rheinlander P. J. ; Herranz J. ; Durst J. ; Gasteiger H. A. J. Electrochem. Soc. 2014, 161, F1448.
doi: 10.1149/2.0501414jes |
51 |
Nash J. ; Zheng J. ; Wang Y. ; Xu B. ; Yan Y. J. Electrochem. Soc. 2018, 165, J3378.
doi: 10.1149/2.051181jes |
52 |
Li Q. H. ; Peng H. ; Wang Y. ; Li X. ; Lu J. ; Zhuang L. Angew. Chem. Int. Ed. 2018, 58, 1442.
doi: 10.1002/anie.201812662 |
53 |
Wang T. ; Shi L. ; Wang J. ; Zhao Y. ; Setzler B. P. ; Santiago R. C. ; Yan Y. J. Electrochem. Soc. 2019, 166, F3305.
doi: 10.1149/2.0361907jes |
54 |
Okubo K. ; Ohyama J. ; Satsuma A. Chem. Commum. 2019, 55, 3101.
doi: 10.1039/c9cc00582j |
55 |
Scofield M. E. ; Zhou Y. ; Yue S. ; Wang L. ; Su D. ; Tong X. ; Vukmirovic M. B. ; Adzic R. R. ; Wong S. S. ACS Catal. 2016, 6, 3895.
doi: 10.1021/acscatal.6b00350 |
56 |
Markovic N. M. ; Sarraf S. T. J. Chem. Soc. Faraday Trans 1996, 92 (20), 3719.
doi: 10.1039/ft9969203719 |
57 |
Jin Y. ; Chen F. ; Wang J. ; Guo L. ; Jin T. ; Liu H. J. Power Sources 2019, 435, 226798.
doi: 10.1016/j.jpowsour.2019.226798 |
58 |
Alia S. M. ; Pivovar B. S. ; Yan Y. J. Am. Chem. Soc. 2013, 135, 13473.
doi: 10.1021/ja405598a |
59 |
Xiao W. ; Lei W. ; Wang J. ; Gao G. ; Zhao T. ; Cordeiro M. A. L. ; Lin R. ; Gong M. ; Guo X. ; Stavitski E. J. Mater. Chem. A 2018, 6, 11346.
doi: 10.1039/c8ta03250e |
60 |
Ramaswamy N. ; Mukerjee S. Chem. Rev. 2019, 119, 11945.
doi: 10.1021/acs.chemrev.9b00157 |
61 |
Wang T. ; Shi L. ; Wang J. ; Zhao Y. ; Setzler B. P. ; Rojas-Carbonell S. ; Yan Y. J. Electrochem. Soc. 2019, 166, F3305.
doi: 10.1149/2.0361907jes |
62 |
Li J. ; Ghoshal S. ; Bates M. K. ; Miller T. E. ; Davies V. ; Stavitski E. ; Attenkofer K. ; Mukerjee S. ; Ma Z. F. ; Jia Q. Angew. Chem. Int. Ed. 2017, 56, 15594.
doi: 10.1002/anie.201708484 |
63 |
Durst J. ; Siebel A. ; Simon C. ; Hasché F. ; Herranz J. ; Gasteiger H. A. Energy Environ. Sci. 2014, 7, 2255.
doi: 10.1039/c4ee00440j |
64 |
Montero M. A. ; de Chialvo M. R. G. ; Chialvo A. C. J. Electroanal. Chem. 2016, 767, 153.
doi: 10.1016/j.jelechem.2016.02.024 |
65 |
Yang F. ; Fu L. ; Cheng G. ; Chen S. ; Luo W. J. Mater. Chem. A 2017, 5, 22959.
doi: 10.1039/c7ta07635e |
66 |
Jervis R. ; Mansor N. ; Gibbs C. ; Murray C. A. ; Tang Chiu C. ; Shearing P. R. ; Brett D. J. L. J. Electrochem. Soc. 2014, 161, F458.
doi: 10.1149/2.037404jes |
67 |
Cong Y. ; McCrum I. T. ; Gao X. ; Lv Y. ; Miao S. ; Shao Z. ; Yi B. ; Yu H. ; Janik M. J. ; Song Y. J. Mater. Chem. A 2019, 7, 3161.
doi: 10.1039/c8ta11019k |
68 |
Ohyama J. ; Kumada D. ; Satsuma A. J. Mater. Chem. A 2016, 4, 15980.
doi: 10.1039/c6ta05517f |
69 |
Qin B. ; Yu H. ; Gao X. ; Yao D. ; Sun X. ; Song W. ; Yi B. ; Shao Z. J. Mater. Chem. A 2018, 6, 20374.
doi: 10.1039/c8ta07414c |
70 |
Wang H. ; Abruña H. D. J. Am. Chem. Soc. 2017, 139, 6807.
doi: 10.1021/jacs.7b02434 |
71 |
Tatus-Portnoy Z. ; Kitayev A. ; Vineesh T. V. ; Tal-Gutelmacherb E. ; Pageb M. ; Zitoun D. Chem. Commun. 2020, 10, 36467.
doi: 10.1039/D0CC00008F |
72 |
Qin B. ; Yu H. ; Jia J. ; Jun C. ; Gao X. ; Yao D. ; Sun X. ; Song W. ; Yi B. ; Shao Z. Nanoscale 2018, 10, 4872.
doi: 10.1039/c7nr09452c |
73 |
Liu D. ; Lu S. ; Xue Y. ; Guan Z. ; Fang J. ; Zhu W. ; Zhuang Z. Nano Energy 2019, 59, 26.
doi: 10.1016/j.nanoen.2019.01.070 |
74 |
Qin B. ; Yu H. ; Chi J. ; Jia J. ; Gao X. ; Yao D. ; Yi B. ; Shao Z. RSC Adv. 2017, 7, 31574.
doi: 10.1039/c7ra03675b |
75 |
Markovic N. M. ; Lucas C.A. ; Climent V. ; Stamenkovic V. ; Ross P. N. Surf. Sci. 2000, 465, 103.
doi: 10.1016/S0039-6028(00)00674-9 |
76 |
Rau M. S. ; Quaino P. M. ; Gennero D. ; Chialvo M. R. ; Chialvo A. C. Electrochem. Commun. 2008, 10, 208.
doi: 10.1016/j.elecom.2007.11.031 |
77 |
Gabrielli C. ; Grand P. P. ; Lasia A. ; Perrot H. J. Electrochem. Soc. 2004, 151, A1937.
doi: 10.1149/1.1797035 |
78 |
Zheng J. ; Zhou S. ; Gu S. ; Xu B. ; Yan Y. J. Electrochem. Soc. 2016, 163, F499.
doi: 10.1149/2.0661606jes |
79 |
Greeley J. ; Norskov J. K. ; Kibler L. A. ; El-Aziz A. M. ; Kolb D. M. Chemphyschem 2006, 7, 1032.
doi: 10.1002/cphc.200500663 |
80 |
Alia S. M. ; Yan Y. J. Electrochem. Soc. 2015, 162, F849.
doi: 10.1149/2.0211508jes |
81 |
Shviro M. ; Polani S. ; Dunin-Borkowski R. E. ; Zitoun D. Adv. Mater. Interfaces 2018, 1701666
doi: 10.1002/admi.201701666 |
82 |
Bakos I. ; Paszternák A. ; Zitoun D. Electrochim. Acta 2015, 176, 1074.
doi: 10.1016/j.electacta.2015.07.109 |
83 |
Ghosh A. ; Chandran P. ; Ramaprabhu S. Appl. Energ. 2017, 208, 37.
doi: 10.1016/j.apenergy.2017.10.022 |
84 |
Alesker M. ; Page M. ; Shviro M. ; Paska Y. ; Gershinsky G. ; Dekel D. R. ; Zitoun D. J. Power Sources 2016, 304, 332.
doi: 10.1016/j.jpowsour.2015.11.026 |
85 |
Feng Z. A. ; El Gabaly F. ; El Gabaly F. ; Ye X. ; Shen Z. X. ; Chueh W. C. Nat. Commun. 2014, 5, 4374.
doi: 10.1038/ncomms5374 |
86 |
Hamish A. ; Miller A. L. ; Vizza F. ; Marelli M. ; Di Benedetto F. ; D'Acapito F. ; Paska Y. ; Page M. ; DekelD R. Angew. Chem. Int. Ed. 2016, 55, 6004.
doi: 10.1002/ange.201600647 |
87 |
Omasta T. J. ; Peng X. ; Miller H. A. ; Vizza F. ; Wang L. ; Varcoe J. R. ; Dekel D. R. ; Mustain W. E. J. Electrochem. Soc. 2018, 165, J3039.
doi: 10.1149/2.0071815jes |
88 |
Bellini M. ; Pagliaro M. V. ; Lenarda A. ; Fornasiero P. ; Marelli M. ; Evangelisti C. ; Innocenti M. ; Jia Q. ; Mukerjee S. ; Jankovic J. ACS Appl. Energy Mater. 2019, 2, 4999.
doi: 10.1021/acsaem.9b00657 |
89 |
Bhowmik T. ; Kundu M. K. ; Barman S. ACS Catal. 2016, 6, 1929.
doi: 10.1021/acscatal.5b02485 |
90 |
Kucernak A. R. J. ; Fahy K. F. ; Sundaram V. Catal. Today 2016, 262, 48.
doi: 10.1016/j.cattod.2015.09.031 |
91 |
Jang J. H. ; Kim J. ; Lee Y. H. ; Pak C. ; Kwon Y. U. Electrochim. Acta 2009, 55, 485.
doi: 10.1016/j.electacta.2009.08.061 |
92 |
St. John S. ; Atkinson R. W. ; Unocic R. R. ; Zawodzinski T. A. ; Papandrew A. B. J. Phys Chem. C 2015, 119, 13481.
doi: 10.1021/acs.jpcc.5b03284 |
93 |
Inoue H. ; Wang J. X. ; Sasaki K. ; Adzic R. R. J. Electroanal. Chem. 2003, 554, 77.
doi: 10.1016/s0022-0728(03)00077-9 |
94 |
Mercer M. P. ; Hoster H. E. Electrocatalysis 2017, 8, 518.
doi: 10.1007/s12678-017-0381-y |
95 |
Rau M. S. ; de Chialvo M. R. G. ; Chialvo A. C. Electrochim. Acta 2010, 55, 5014.
doi: 10.1016/j.electacta.2010.04.007 |
96 |
Liu Y. ; Zhang L. ; Qin Y. ; Chu F. ; Kong Y. ; Tao Y. ; Li Y. ; Bu Y. ; Ding D. ; Liu M. ACS Catal. 2018, 8, 5714.
doi: 10.1021/acscatal.8b01609 |
97 |
Ohyama J. ; Sato T. ; Yamamoto Y. ; Arai S. ; Satsuma. J. Am. Chem. Soc. 2013, 135, 8016.
doi: 10.1021/ja4021638 |
98 |
Ohyama J. ; Sato T. ; Satsuma A. J. Power Sources 2013, 225, 311.
doi: 10.1016/j.jpowsour.2012.10.051 |
99 |
Zeng L. ; Peng H. ; Liu W. ; Yin J. ; Xiao L. ; Lu J. ; Zhuang L. J. Power Sources 2020, 461, 228147.
doi: 10.1016/j.jpowsour.2020.228147 |
100 |
Xue Y. ; Shi L. ; Liu X. ; Fang J. ; Wang X. ; Setzler B. P. ; Zhu W. ; Yan Y. ; Zhuang Z. Nat. Commun. 2020, 11, 5651.
doi: 10.1038/s41467-020-19413-5 |
101 |
Floner D. ; Lamy C. ; Leger J. M. Surf. Sci. 1990, 234, 87.
doi: 10.1016/0039-6028(90)90668-X |
102 |
Shim J. ; Li H. K. Mater. Chem. Phys. 2001, 69, 72.
doi: 10.1016/S0254-0584(00)00349-7 |
103 |
Jenseit W. ; Khalil A. ; Wendt H. J. Appl. Electrochem. 1990, 20, 893.
doi: 10.1007/BF01019562 |
104 |
Kiros Y. ; Majari M. ; Nissinen T. A. J. Alloys Compd. 2003, 360, 279.
doi: 10.1016/s0925-8388(03)00346-3 |
105 |
Gu S. ; Sheng W. ; Cai R. ; Alia S. M. ; Song S. ; Jensen K. O. ; Yan Y. Chem. Commun. 2013, 49, 131.
doi: 10.1039/c2cc34862d |
106 |
Davydova E. ; Zaffran J. ; Dhaka K. ; Toroker M. ; Dekel D. Catalysts 2018, 8, 454.
doi: 10.3390/catal8100454 |
107 |
Hu Q. ; Li G. ; Pan J. ; Tan L. ; Lu J. ; Zhuang L. Int. J. Hydrogen Energy 2013, 38, 16264.
doi: 10.1016/j.ijhydene.2013.09.125 |
108 |
Kabir S. ; Lemire K. ; Artyushkova K. ; Roy A. ; Odgaard M. ; Schlueter D. ; Oshchepkov A. ; Bonnefont A. ; Savinova E. ; Sabarirajan D. C. ; et al J. Mater. Chem. A 2017, 5, 24433.
doi: 10.1039/c7ta08718g |
109 |
Roy A. ; Talarposhti M. R. ; Normile S. J. ; Zenyuk I. V. ; De Andrade V. ; Artyushkova K. ; Serov A. ; Atanassov P. Sustain. Energy Fuels. 2018, 2, 2268.
doi: 10.1039/c8se00261d |
110 |
Zhuang Z. ; Giles S. A. ; Zheng J. ; Jenness G. R. ; Caratzoulas S. ; Vlachos D. G. ; Yan Y. Nat. Commun. 2016, 7, 10141.
doi: 10.1038/ncomms10141 |
111 |
Jiang S. ; Cheng Q. ; Zou L. ; Zou Z. ; Li Y. ; Zhang Q. ; Gao Y. ; Yang H. Chem. Phys. Lett. 2019, 728, 19.
doi: 10.1016/j.cplett.2019.04.072 |
112 |
Song F. ; Li W. ; Yang J. ; Han G. ; Liao P. ; Sun Y. Nat. Commun. 2018, 9, 4531.
doi: 10.1038/s41467-018-06728-7 |
113 |
Ni W. ; Krammer A. ; Hsu C. S. ; Chen H. M. ; Schuler A. ; Hu X. Angew. Chem. Int. Ed. 2019, 58, 7445.
doi: 10.1002/anie.201902751 |
114 |
Yang F. ; Bao X. ; Zhao Y. ; Wang X. ; Cheng G. ; Luo W. J. Mater. Chem. A 2019, 7, 10936.
doi: 10.1039/c9ta01916b |
115 |
Davydova E. S. ; Speck F. D. ; Paul M. T. Y. ; Dekel D. R. ; Cherevko S. ACS Catal. 2019, 9, 6837.
doi: 10.1021/acscatal.9b01582 |
116 |
Sandoval R. ; Schrebler R. ; Gomez H. J. Electroanal. Chem. 1986, 210, 287.
doi: 10.1016/0022-0728(86)80581-2 |
117 |
Gao L. ; Wang Y. ; Li H. ; Li Q. ; Ta N. ; Zhuang L. ; Fu Q. ; Bao X. Chem. Sci. 2017, 8, 5728.
doi: 10.1039/c7sc01615h |
118 |
Gao Y. ; Peng H. ; Wang Y. ; Wang G. ; Xiao L. ; Lu J. ; Zhuang L. ACS Appl. Mater. Interfaces 2020, 12, 31575.
doi: 10.1021/acsami.0c10784 |
119 |
Oshchepkov A. G. ; Bonnefont A. ; Saveleva V. A. ; Papaefthimiou V. ; Zafeiratos S. ; Pronkin S. N. ; Parmon V. N. ; Savinova E. R. Top. Catal. 2016, 59, 1319.
doi: 10.1007/s11244-016-0657-0 |
120 |
Pan Y. ; Hu G. ; Lu J. ; Xiao L. ; Zhuang L. J. Energy Chem. 2019, 29, 111.
doi: 10.1016/j.jechem.2018.02.011 |
121 |
Yang Y. ; Sun X. ; Han G. ; Liu X. ; Zhang X. ; Sun Y. ; Zhang M. ; Cao Z. ; Sun Y. Angew. Chem. In.t Ed. 2019, 58, 10644.
doi: 10.1002/anie.201905430 |
122 |
Deng S. ; Liu X. ; Huang T. ; Zhao T. ; Lu Y. ; Cheng J. ; Shen T. ; Liang J. ; Wang D. Electrochim. Acta 2019, 324, 134892.
doi: 10.1016/j.electacta.2019.134892 |
123 |
Wang H. ; Abruña H. D. ACS Catal. 2019, 9, 5057.
doi: 10.1021/acscatal.9b00906 |
124 |
Yang F. ; Zhao Y. ; Du Y. ; Chen Y. ; Cheng G. ; Chen S. ; Luo W. Adv. Energy Mater. 2018, 8, 1703489.
doi: 10.1002/aenm.201703489 |
125 |
Yang F. ; Bao X. ; Gong D. ; Su L. ; Cheng G. ; Chen S. ; Luo W. ChemElectroChem 2019, 6, 1990.
doi: 10.1002/celc.201900129 |
126 |
Kelly T. G. ; Chen J. G. Chem. Soc. Rev. 2012, 41, 8021.
doi: 10.1039/c2cs35165j |
127 |
Kimmel Y. C. ; Xu X. ; Yu W. ; Yang X. ; Chen J. G. ACS Catal. 2014, 4, 1558.
doi: 10.1021/cs500182h |
128 |
Vasić D. D. ; Pašti I. A. Int. J. Hydrogen Energy 2013, 38, 5009.
doi: 10.1016/j.ijhydene.2013.02.020 |
129 |
Esposito D. V. ; Hunt S. T. ; Kimmel Y. C. ; Chen J. G. J. Am. Chem. Soc. 2012, 134, 3025.
doi: 10.1021/ja208656v |
130 |
Wang L. ; Mahoney E. G. ; Zhao S. ; Yang B. ; Chen J. G. Chem. Commun. 2016, 52, 3697.
doi: 10.1039/c5cc10439d |
131 |
Omasta T. J. ; Wang L. ; Peng X. ; Lewis C. A. ; Varcoe J. R. ; Mustain W. E. J. Power Sources 2018, 375, 205.
doi: 10.1016/j.jpowsour.2017.05.006 |
132 |
Piana M. ; Boccia M. ; Filpi A. ; Flammia E. ; Miller H. A. ; Orsini M. ; Salusti F. ; Santiccioli S. ; Ciardelli F. ; Pucci A. J. Power Sources 2010, 195, 5875.
doi: 10.1016/j.jpowsour.2009.12.085 |
133 | https://quote.cngold.org/gjs/jgs_ttpt.html |
134 |
Li T. ; Yuan H. Geochimica 2011, 4, 1.
doi: 10.19700/j.0379-1726.2011.01.001 |
135 | Chen W. H. ; Chen S. L. Acta Phys. -Chim Sin. 2019, 35, 517. |
陈雯慧; 陈胜利; 物理化学学报, 2019, 35, 517.
doi: 10.3866/PKU.WHXB201806011 |
|
136 |
Yang C. ; Han N. ; Wang Y. ; Yuan X. ; Xu J. ; Huang H. ; Fan J. ; Li H. ; Wang H. ACS Sustain. Chem. Eng. 2020, 8, 9803.
doi: 10.1021/acssuschemeng.0c02386 |
137 |
Xiong L. ; Manthiram A. Electrochim. Acta 2005, 50, 3200.
doi: 10.1016/j.electacta.2004.11.049 |
138 |
Thompson S. T. ; James B. D. ; Huya-Kouadio J. M. ; Houchins C. ; DeSantis D. A. ; Ahluwalia R. ; Wilson A. R. ; Kleen G. ; Papageorgopoulos D. J. Power Sources 2018, 399, 304.
doi: 10.1016/j.jpowsour.2018.07.100 |
139 |
Liu R. ; Zhou W. ; Wan L. ; Zhang P. ; Li S. ; Gao Y. ; Xu D. ; Zheng C. ; Shang M. Curr. Appl. Phys. 2020, 20, 11.
doi: 10.1016/j.cap.2019.09.016 |
140 |
Peng X. ; Zhao S. ; Omasta T. J. ; Roller J. M. ; Mustain W. E. Appl. Catal. B-Environ. 2017, 203, 927.
doi: 10.1016/j.apcatb.2016.10.081 |
[1] | 于彦会, 饶鹏, 封苏阳, 陈民, 邓培林, 李静, 苗政培, 康振烨, 沈义俊, 田新龙. 钴原子团簇用于高效氧还原反应[J]. 物理化学学报, 2023, 39(8): 2210039 -0 . |
[2] | 胡洋, 刘斌, 徐路遥, 董自强, 仵亚婷, 刘杰, 钟澄, 胡文彬. 基于微流控技术平台的Pt基三元电催化剂高通量合成和筛选[J]. 物理化学学报, 2023, 39(3): 2209004 -0 . |
[3] | 李景学, 于跃, 徐斯然, 闫文付, 木士春, 张佳楠. 电子自旋效应在电催化剂中的作用[J]. 物理化学学报, 2023, 39(12): 2302049 - . |
[4] | 孙轲, 赵永青, 殷杰, 靳晶, 刘翰文, 席聘贤. 有机配体表面改性NiCo2O4纳米线用于水全分解[J]. 物理化学学报, 2022, 38(6): 2107005 - . |
[5] | 刘苗苗, 杨茅茂, 舒欣欣, 张进涛. 燃料电池碳基氧还原催化剂的设计与应用[J]. 物理化学学报, 2021, 37(9): 2007072 - . |
[6] | 包玉菲, 冯立纲. PdNi/石墨烯气凝胶电催化甲酸氧化[J]. 物理化学学报, 2021, 37(9): 2008031 - . |
[7] | 黄磊, Zaman Shahid, 王志同, 牛慧婷, 游波, 夏宝玉. 铂基空心纳米框架的合成及其在直接醇燃料电池中的应用[J]. 物理化学学报, 2021, 37(9): 2009035 - . |
[8] | 郝磊端, 孙振宇. 基于金属氧化物材料的二氧化碳电催化还原[J]. 物理化学学报, 2021, 37(7): 2009033 - . |
[9] | 闫大强, 张林, 陈祖鹏, 肖卫平, 杨小飞. 镍基金属有机框架衍生的双功能电催化剂用于析氢和析氧反应[J]. 物理化学学报, 2021, 37(7): 2009054 - . |
[10] | 郑堂飞, 蒋金霞, 王健, 胡素芳, 丁炜, 魏子栋. 基于限域特性的电催化剂调控[J]. 物理化学学报, 2021, 37(11): 2011027 - . |
[11] | 方波, 冯立纲. Pt纳米颗粒结合ZIF-67衍生的PtCo-NC催化剂用于醇类燃料电氧化[J]. 物理化学学报, 2020, 36(7): 1905023 -0 . |
[12] | 王倩倩, 刘大军, 何兴权. 基于金属有机框架衍生的Fe-N-C纳米复合材料作为高效的氧还原催化剂[J]. 物理化学学报, 2019, 35(7): 740 -748 . |
[13] | 陈瑞,王维,卜童乐,库治良,钟杰,彭勇,肖生强,尤为,黄福志,程一兵,傅正义. 低成本富勒烯衍生物电子传输层在钙钛矿太阳能电池的应用[J]. 物理化学学报, 2019, 35(4): 401 -407 . |
[14] | 吕洋,宋玉江,刘会园,李焕巧. 内核含Pd的Pt基核壳结构电催化剂[J]. 物理化学学报, 2017, 33(2): 283 -294 . |
[15] | 白晓芳,陈为,王白银,冯光辉,魏伟,焦正,孙予罕. 二氧化碳电化学还原的研究进展[J]. 物理化学学报, 2017, 33(12): 2388 -2403 . |
|