1 |
Li M. ; Mu B. Y. Appl. Energy 2019, 242, 695.
doi: 10.1016/j.apenergy.2019.03.085
|
2 |
Gao H. Y. ; Wang J. J. ; Chen X. ; Wang G. ; Huang X. B. ; Li A. ; Dong W. J. Nano Energy 2018, 53, 769.
doi: 10.1016/j.nanoen.2018.09.007
|
3 |
Chen X. ; Tang Z. D. ; Gao H. Y. ; Chen S. Y. ; Wang G. iScience 2020, 23 (6), 101208.
doi: 10.1016/j.isci.2020.101208
|
4 |
Aftab W. ; Mahmood A. ; Guo W. H. ; Yousaf M. ; Tabassum H. ; Huang X. Y. ; Liang Z. B. ; Cao A. Y. ; Zou R. Q. Energy Storage Mater. 2019, 20, 401.
doi: 10.1016/j.ensm.2018.10.014
|
5 |
Liao H. H. ; Chen W. H. ; Liu Y. ; Wang Q. Compos. Sci. Technol. 2020, 189, 108010.
doi: 10.1016/j.compscitech.2020.108010
|
6 |
Sheng N. ; Zhu R. J. ; Nomura T. ; Rao Z. H. ; Zhu C. Y. ; Aoki Y. ; Habazaki H. ; Akiyama T. Sol. Energy Mater. Sol. Cells 2020, 206, 110280.
doi: 10.1016/j.solmat.2019.110280
|
7 |
Feng Y. J. ; Wang J. P. ; Liu L. L. ; Wang X. D. Acta Phys.-Chim. Sin. 2019, 35 (6), 644.
|
|
冯英杰; 王进平; 刘丽丽; 王习东; 物理化学学报, 2019, 35 (6), 644.
doi: 10.3866/pku.Whxb201805068
|
8 |
Nan G. H. ; Wang J. P. ; Wang Y. ; Wang H. ; Li W. ; Zhang X. X. Acta Phys.-Chim. Sin. 2014, 30 (2), 338.
|
|
南光花; 王建平; 王艳; 王赫; 李伟; 张兴祥; 物理化学学报, 2014, 30 (2), 338.
doi: 10.3866/pku.Whxb201312231
|
9 |
Cheng G. ; Wang X. Z. ; He Y. R. Appl. Therm. Eng. 2020, 178, 115560.
doi: 10.1016/j.applthermaleng.2020.115560
|
10 |
Cao Y. F. ; Fan D. L. ; Lin S. H. ; Mu L. Y. ; Ng F. T. T. ; Pan Q. M. Chem. Eng. J. 2020, 389, 124318.
doi: 10.1016/j.cej.2020.124318
|
11 |
Qi G. Q. ; Yang J. ; Bao R. Y. ; Xia D. Y. ; Cao M. ; Yang W. ; Yang M. B. ; Wei D. C. Nano Res. 2017, 10 (3), 802.
doi: 10.1007/s12274-016-1333-1
|
12 |
Khadiran T. ; Hussein M. Z. ; Zainal Z. ; Rusli R. Energy 2015, 82, 468.
doi: 10.1016/j.energy.2015.01.057
|
13 |
Sobolciak P. ; Mrlík M. ; AlMaadeed M. A. ; Krupa I. Thermochim. Acta 2015, 617, 111.
doi: 10.1016/j.tca.2015.08.026
|
14 |
Xiao X. ; Zhang P. ; Li M. Appl. Energy 2013, 112, 1357.
doi: 10.1016/j.apenergy.2013.04.050
|
15 |
Zhang P. ; Meng Z. N. ; Zhu H. ; Wang Y. L. ; Peng S. P. Appl. Energy 2017, 185, 1971.
doi: 10.1016/j.apenergy.2015.10.075
|
16 |
Karthik M. ; Faik A. ; D'Aguanno B. Sol. Energy Mater. Sol. Cells 2017, 172, 324.
doi: 10.1016/j.solmat.2017.08.004
|
17 |
Li G. Y. ; Hong G. ; Dong D. P. ; Song W. H. ; Zhang X. T. Adv. Mater. 2018, 30 (30), 1801754.
doi: 10.1002/adma.201801754
|
18 |
Gao Z. Q. ; Wang C. Y. ; Li J. J. ; Zhu Y. T. ; Zhang Z. C. ; Hu W. P. Acta Phys.-Chim. Sin. 2021, 37 (7), 2010025.
|
|
高增强; 王聪勇; 李俊俊; 朱亚廷; 张志成; 胡文平; 物理化学学报, 2021, 37 (7), 2010025.
doi: 10.3866/PKU.WHXB202010025
|
19 |
Xue F. ; Lu Y. ; Qi X. D. ; Yang J. H. ; Wang Y. Chem. Eng. J. 2019, 365, 20.
doi: 10.1016/j.cej.2019.02.023
|
20 |
Wu W. H. ; Huang X. Y. ; Yao R. M. ; Chen R. J. ; Li K. ; Zou R. Q. Acta Phys.-Chim. Sin. 2017, 33 (1), 255.
|
|
吴文昊; 黄心宇; 姚锐敏; 陈人杰; 李凯; 邹如强; 物理化学学报, 2017, 33 (1), 255.
doi: 10.3866/pku.Whxb201610181
|
21 |
Li B. L. ; Guo J. G. ; Xu Bing ; Xu H. T. ; Dong Z. j. ; Li X. K. New Carbon Mater. 2020, 35 (5), 567.
doi: 10.1016/S1872-5805(20)60510-8
|
22 |
Liu X. ; Deng H. L. ; Zheng J. H. ; Sun M. ; Cui H. ; Zhang X. H. ; Song G. S. New Carbon Mater. 2020, 35 (5), 576.
doi: 10.1016/S1872-5805(20)60511-X
|
23 |
Yang J. ; Tang L. S. ; Bao R. Y. ; Bai L. ; Liu Z. Y. ; Yang W. ; Xie B. H. ; Yang M. B. J. Mater. Chem. A 2016, 4 (48), 18841.
doi: 10.1039/c6ta08454k
|
24 |
Huang J. H. ; Zhang B. N. ; He M. ; Huang X. ; Wu G. J. ; Yin G. Q. ; Cui Y. D. J. Mater. Sci. 2020, 55 (17), 7337.
doi: 10.1007/s10853-020-04514-9
|
25 |
Yang G. Q. ; Zhao L. Y. ; Shen C. F. ; Mao Z. P. ; Xu H. ; Feng X. L. ; Wang B. J. ; Sui X. F. Sol. Energy Mater. Sol. Cells 2020, 209, 110441.
doi: 10.1016/j.solmat.2020.110441
|
26 |
Mu B. Y. ; Li M. Sol. Energy Mater. Sol. Cells 2019, 191, 466.
doi: 10.1016/j.solmat.2018.11.025
|
27 |
Jiang L. L. ; Fan Z. J. Nanoscale 2014, 6 (4), 1922.
doi: 10.1039/c3nr04555b
|
28 |
Wang P. ; Chong H. D. ; Zhang J. J. ; Lu H. B. ACS Appl. Mater. Interfaces 2017, 9 (26), 22006.
doi: 10.1021/acsami.7b07328
|
29 |
Woltornist S. J. ; Varghese D. ; Massucci D. ; Cao Z. ; Dobrynin A. V. ; Adamson D. H. Adv. Mater. 2017, 1604947.
doi: 10.1002/adma.201604947
|
30 |
Zhong Y. J. ; Zhou M. ; Huang F. Q. ; Lin T. Q. ; Wan D. Y. Sol. Energy Mater. Sol. Cells 2013, 113, 195.
doi: 10.1016/j.solmat.2013.01.046
|
31 |
Yang J. ; Zhang E. W. ; Li X. F. ; Zhang Y. T. ; Qu J. ; Yu Z. Z. Carbon 2016, 98, 50.
doi: 10.1016/j.carbon.2015.10.082
|
32 |
Zhou Y. ; Li C. H. ; Wu H. ; Guo S. Y. Colloids Surf. A 2020, 597, 124780.
doi: 10.1016/j.colsurfa.2020.124780
|
33 |
Zhu X. Y. ; Yang C. ; Wu P. W. ; Ma Z. Q. ; Shang Y. Y. ; Bai G. Z. ; Liu X. Y. ; Chang G. ; Li N. ; Dai J. J. ; et al Nanoscale 2020, 12 (8), 4882.
doi: 10.1039/c9nr07861d
|
34 |
Qiu L. ; Liu J. Z. ; Chang S. L. ; Wu Y. Z. ; Li D. Nat. Commun. 2012, 3, 1241.
doi: 10.1038/ncomms2251
|
35 |
Kashyap S. ; Kabra S. ; Kandasubramanian B. J. Mater. Sci. 2020, 55 (10), 4127.
doi: 10.1007/s10853-019-04325-7
|
36 |
Yan F. ; Liu L. ; Li M. ; Zhang M. J. ; Shang L. ; Xiao L. H. ; Ao Y. H. Compos. Part A 2019, 125, 105530.
doi: 10.1016/j.compositesa.2019.105530
|
37 |
Lu L. ; Shen Y. F. ; Chen X. H. ; Qian L. H. ; Lu K. Science 2004, 304 (5669), 422.
doi: 10.1126/science.1092905
|
38 |
Chen C. M. ; Zhang Q. ; Yang M. G. ; Huang C. H. ; Yang Y. G. ; Wang M. Z. Carbon 2012, 50 (10), 3572.
doi: 10.1016/j.carbon.2012.03.029
|
39 |
Hu H. ; Zhao Z. B. ; Wan W. B. ; Gogotsi Y. ; Qiu J. S. Adv. Mater. 2013, 25 (15), 2219.
doi: 10.1002/adma.201204530
|
40 |
Yang J. ; Qi G. Q. ; Bao R. Y. ; Yi K. Y. ; Li M. L. ; Peng L. ; Cai Z. ; Yang M. B. ; Wei D. C. ; Yang W. Energy Storage Mater. 2018, 13, 88.
doi: 10.1016/j.ensm.2017.12.028
|
41 |
Zhao J. L. ; Luo W. J. ; Kim J. K. ; Yang J. L. ACS Appl. Energy Mater. 2019, 2 (5), 3657.
doi: 10.1021/acsaem.9b00374
|
42 |
Tian B. Q. ; Yang W. B. ; Luo L. J. ; Wang J. ; Zhang K. ; Fan J. H. ; Wu J. Y. ; Xing T. Sol. Energy 2016, 127, 48.
doi: 10.1016/j.solener.2016.01.011
|
43 |
Biener J. ; Stadermann M. ; Suss M. ; Worsley M. A. ; Biener M. M. ; Rose K. A. ; Baumann T. F. Energy Environ. Sci. 2011, 4 (3), 656.
doi: 10.1039/c0ee00627k
|
44 |
Xu Y. ; Fleischer A. S. ; Feng G. Carbon 2017, 114, 334.
doi: 10.1016/j.carbon.2016.11.069
|
45 |
Padmajan Sasikala S. ; Poulin P. ; Aymonier C. Adv. Mater. 2016, 28 (14), 2663.
doi: 10.1002/adma.201504436
|
46 |
Balandin A. A. Nat. Mater. 2011, 10 (8), 569.
doi: 10.1038/nmat3064
|
47 |
Zhang X. ; Wan D. Q. ; Peng K. ; Zhang W. J. Mater. Eng. Perform. 2019, 28 (8), 5165.
doi: 10.1007/s11665-019-04212-x
|
48 |
Gao W. W. ; Zhao N. F. ; Yao W. Q. ; Xu Z. ; Bai H. ; Gao C. RSC Adv. 2017, 7 (53), 33600.
doi: 10.1039/c7ra05557a
|
49 |
Almajali M. ; Lafdi K. ; Prodhomme P. H. ; Ochoa O. Carbon 2010, 48 (5), 1604.
doi: 10.1016/j.carbon.2009.12.060
|
50 |
Cao A. Y. ; Dickrell P. L. ; Sawyer W. G. ; Ghasemi-Nejhad M. N. ; Ajayan P. M. Science 2005, 310 (5752), 1307.
doi: 10.1126/science.1118957
|
51 |
Zhang Q. Q. ; Lin D. ; Deng B. W. ; Xu X. ; Nian Q. ; Jin S. Y. ; Leedy K. D. ; Li H. ; Cheng G. J. Adv. Mater. 2017, 29 (28), 69469.
doi: 10.1002/adma.201605506
|
52 |
Park J. H. ; Lee J. H. ; Soon A. Phys. Chem. Chem. Phys. 2016, 18 (31), 21893.
doi: 10.1039/c6cp03249d
|
53 |
He L. J. ; Mo S. P. ; Lin P. C. ; Jia L. ; Chen Y. ; Cheng Z. D. Appl. Energy 2020, 268, 115020.
doi: 10.1016/j.apenergy.2020.115020
|
54 |
Liang K. ; Shi L. ; Zhang J. Y. ; Cheng J. ; Wang X. D. Thermochim. Acta 2018, 664, 1.
doi: 10.1016/j.tca.2018.04.002
|
55 |
Shen J. ; Zhang P. ; Song L. X. ; Li J. P. ; Ji B. Q. ; Li J. J. ; Chen L. Compos. Part B 2019, 179, 107545.
doi: 10.1016/j.compositesb.2019.107545
|