物理化学学报 >> 2022, Vol. 38 >> Issue (6): 2106003.doi: 10.3866/PKU.WHXB202106003

所属专题: 面向电化学储能与转化的表界面工程

综述 上一篇    下一篇

基于微生物作为智能模板的电催化剂制备与应用研究进展

马明军1, 冯志超1, 张小委1, 孙超越1, 王海青1,*(), 周伟家1, 刘宏1,2,*()   

  1. 1 济南大学前沿交叉科学研究院,山东省生物诊疗技术与装备协同创新中心,济南 250022
    2 山东大学晶体材料国家重点实验室,济南 250100
  • 收稿日期:2021-06-02 录用日期:2021-07-15 发布日期:2021-07-23
  • 通讯作者: 王海青,刘宏 E-mail:ifc_wanghq@ujn.edu.cn;ifc_liuh@ujn.edu.cn
  • 作者简介:王海青,1986年生。南京工业大学博士,清华大学化学系博士后。现工作于济南大学前沿交叉科学研究院,硕士生导师。研究方向为电催化剂微纳结构的可控制备以及催化析氢、二氧化碳还原等的性能研究。
    刘宏,1964年1月生,2001年毕业于山东大学,获得博士学位。山东大学晶体材料国家重点实验室任教授,国家杰出青年基金获得者(2009)。研究方向为干细胞分化以及能源催化。
  • 基金资助:
    国家重点研究发展计划(2017YFB0405400);山东省自然科学基金(ZR2019BB025);济南市“高校20条”项目(2018GXRC031)

Progress in the Preparation and Application of Electrocatalysts Based on Microorganisms as Intelligent Templates

Mingjun Ma1, Zhichao Feng1, Xiaowei Zhang1, Chaoyue Sun1, Haiqing Wang1,*(), Weijia Zhou1, Hong Liu1,2,*()   

  1. 1 Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Ji'nan 250022, China
    2 State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China
  • Received:2021-06-02 Accepted:2021-07-15 Published:2021-07-23
  • Contact: Haiqing Wang,Hong Liu E-mail:ifc_wanghq@ujn.edu.cn;ifc_liuh@ujn.edu.cn
  • About author:Hong Liu, Email: ifc_liuh@ujn.edu.cn (H.L.)
    Haiqing Wang, Email: ifc_wanghq@ujn.edu.cn (H.W.)
  • Supported by:
    the National Key Research and Development Program of China(2017YFB0405400);the Shandong Provincial Natural Science Foundation, China(ZR2019BB025);the Project of "20 items of University" of Jinan, China(2018GXRC031)

摘要:

通过电催化实现可再生能源的存储与转化对于改善能源结构、保护生态环境、实现碳达峰和碳中和的国家战略具有重大意义。而开发低成本、高效的电催化剂成为全世界科学家共同面对的挑战。微生物在自然界中广泛存在,具有结构、组成和代谢丰富的特点,可以成为电催化剂的模板以及碳、磷、硫等非金属元素以及金属元素的来源,而且具有无毒、生产可重复性好、易于规模化等优点,已成为电催化剂制备的新趋势。对此,本文综述了微生物“智能”引导制备电催化剂的发展及在电催化析氢(HER)、电催化析氧(OER)、氧还原反应(ORR)、二氧化碳还原(CO2RR)、锂电池(LBs)等领域的应用现状。希望有助于推动微生物代谢与催化剂微纳结构关系以及与催化反应的构效关系的深入理解,最后针对这类材料的问题挑战及其未来发展方向进行了探讨与展望。

关键词: 微生物, 电催化, 构效关系, 能量转换, 能量存储

Abstract:

The storage and conversion of renewable energy through electrocatalysis is of considerable significance for improving the energy structure, protecting the ecological environment, and achieving the national strategy of carbon peaking and carbon neutrality. The development of low-cost and high-efficiency electrocatalysts has become a major scientific challenge worldwide. Microorganisms are widely found in nature and are characterized by their rich structure, composition and metabolism. These properties facilitate their use as intelligent templates for electrocatalyst structures and as sources of non-metallic elements such as carbon, phosphorus, sulfur, as well as metallic elements. The use of microorganisms in electrocatalyst production has become a new trend owing to the advantages of non-toxicity, reproducible production, and ease of scaling up. Thus, this paper reviews the development of microbial "intelligence" guided preparation of electrocatalysts and their current applications in the fields of hydrogen evolution reactions, oxygen evolution reactions, oxygen reduction reactions, carbon dioxide reductions and lithium batteries. In order to achieve the function of "intelligent" guidance of microorganisms, four aspects need to be addressed: (1) the selection of suitable microbial species and the culture and activation conditions, which significantly helps in tailoring the microbial properties for specific applications; (2) the exploration of microbial species that can accumulate metal species from their living environment and thus produce metal nanoparticles, which will help obtain nanocomposites with desired properties; (3) the selection of compounds with good catalytic properties, high stability, and compatibility with microbial substrates; and (4) the development of highly controllable nanocatalysts through modern molecular biology and genetic engineering to regulate microbial life processes such as metabolic proliferation and apoptosis. With the resolution of these issues, we believe that the application of microbial intelligent templates guided electrocatalysts can be further extended to other electrocatalytic reactions such as ethanol oxidation reactions (EOR), nitrogen reduction reactions (NRR), and to other applications in fields such as electronics, sensing, imaging, and biomedicine. The goal of this review is to promote a deeper understanding of the correlations among microbial metabolism, catalyst micro-nano structures and structure-activity relationships. Furthermore, the challenges associated with such materials and the prospects for future development are discussed herein.

Key words: Microorganism, Electrocatalysis, Structure-activity relationship, Energy conversion, Energy storage