物理化学学报 >> 2022, Vol. 38 >> Issue (11): 2207024.doi: 10.3866/PKU.WHXB202207024
所属专题: 新锐科学家专刊
综述 上一篇
陈宇新1, 王丽君1, 姚志波1, 郝磊端1, 谭心怡2,*(), Masa Justus3, Robertson Alex W.4, 孙振宇1,*
收稿日期:
2022-07-12
录用日期:
2022-07-29
发布日期:
2022-08-03
通讯作者:
谭心怡,孙振宇
E-mail:monica950521@126.com
基金资助:
Yuxin Chen1, Lijun Wang1, Zhibo Yao1, Leiduan Hao1, Xinyi Tan2,*(), Justus Masa3, Alex W. Robertson4, Zhenyu Sun1,*
Received:
2022-07-12
Accepted:
2022-07-29
Published:
2022-08-03
Contact:
Xinyi Tan,Zhenyu Sun
E-mail:monica950521@126.com
About author:
Email: sunzy@mail.buct.edu.cn (Z.S.). Tel.: +86-13301308339 (Z.S.)Supported by:
摘要:
电催化二氧化碳还原(ECR) 制备高值化学品被认为是在碳中和背景下实现可再生能源存储及降低CO2浓度的一种有效策略。为了实现此目标,催化剂的开发与设计是ECR研究的关键。单原子催化剂(SACs) 因其独特的电子结构、明确的配位环境和极高的原子利用率,近年来在ECR领域引起了广泛关注。通过调节SACs的中心金属元素种类和局部配位结构,可有效调节SACs对CO2和其还原中间体的吸附强度和催化活性。本文总结了SACs在ECR领域所取得的最新研究进展,重点讨论了SACs的配位结构及其与载体之间的相互作用对催化活性的影响以及相关调控策略,最后,提出了SACs应用于ECR所面临的机遇与挑战。
陈宇新, 王丽君, 姚志波, 郝磊端, 谭心怡, Masa Justus, Robertson Alex W., 孙振宇. 单原子配位结构及与载体相互作用的调控用于二氧化碳电催化还原[J]. 物理化学学报, 2022, 38(11), 2207024. doi: 10.3866/PKU.WHXB202207024
Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction[J]. Acta Phys. -Chim. Sin. 2022, 38(11), 2207024. doi: 10.3866/PKU.WHXB202207024
Table 1
Different ECR reactions with corresponding standard reduction potentials."
Reduction product | Standard reduction potential (vs. SHE, pH = 7) |
CO2 + e? → CO2?? | E0 = ?1.90 V |
CO2 + 2H+ + 2e? → CO + H2O | E0 = ?0.53 V |
CO2 + 2H+ + 2e? → HCOOH | E0 = ?0.61 V |
CO2 + 4H+ + 4e? → HCHO + H2O | E0 = ?0.48 V |
CO2 + 6H+ + 6e? → CH3OH + H2O | E0 = ?0.38 V |
CO2 + 8H+ + 8e? → CH4 + H2O | E0 = ?0.24 V |
Fig 5
(a) Cu-N-C-800 and (b) Cu-N-C-900 and their ECR catalytic trends. (c) Operando EXAFS spectra of Cu0.5NC under no potential applied (blue line), during electrolysis at ?1.2 V (vs. RHE) (red line), after electrolysis under no potential applied (green line) and after electrolysis at ?1.2 V (vs. RHE) then sample exposed to air for 10 h (orange line). (d) FE and the product distribution at different polarization potentials. (a, b) Adapted with permission from Ref. 125, Copyright 2020 American Chemical Society. (c, d) Adapted with permission from Ref. 126, Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim."
Fig 6
(a) XPS spectrum of N 1s for NiSA-N2-C. (b) Normalized Ni K-edge XANES spectra and (c) FT-EXAFS spectra of NiSA-Nx-C and Ni foil. (d) EXAFS fitting and optimized model for NiSA-N2-C. (e) Schematic illustration of Co-N5/HNPCSs. (f) Free energy profiles of Co(II)CPY/graphene and Co-porphine/graphene. (g) Bader charge of Co and N atoms. (a–d) Adapted with permission from Ref. 135, Copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (e) Adapted with permission from Ref. 138, Copyright 2018 American Chemical Society. (f, g) Adapted with permission from Ref. 139, Copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim."
Fig 7
Calculated free energy of (a) the ECR and (b) hydrogen adsorption. (c) A proposed reaction mechanism of ECR to CH4 over CoPc@Zn-N-C. (a, b) Adapted with permission from Ref. 141, Copyright 2019 Nature Portfolio. (c) Adapted with permission from Ref. 130, Copyright 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim."
Fig 8
(a) FEs of different products for Cu-CeO2 with different Cu concentrations. (b) Structure models of the Vo-bound and single-atom Cu sites on CeO2 for CO2 adsorption and activation. (c) Schematic of the synthesis of 2Bn―Cu@UiO-67. (a, b) Adapted with permission from Ref. 153, Copyright 2018 American Chemical Society. (c) Adapted with permission from Ref. 164, Copyright 2022 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim."
1 |
JosepG. C.;CorinneL. Q.;MichaelR. R.;ChristopherB. F.;ErikT. B.;PhilippeC.;ThomasJ. C.;NathanP. G.;HoughtonR. A.;GreggM.Proc. Natl. Acad. Sci.2007,104,47.
doi: 10.1073/pnas.0702737104 |
2 |
McgladeC.;EkinsP.Nature2015,517,7533.
doi: 10.1038/nature14016 |
3 |
ShakunJ. D.;ClarkP. U.;HeF.;MarcottS. A.;MixA. C.;LiuZ.;Otto-BliesnerB.;SchmittnerA.;BardE.Nature2012,484,7392.
doi: 10.1038/nature10915 |
4 |
ShiJ.;JiangY.;JiangZ.;WangX.;WangX.;ZhangS.;HanP.;YangC.Chem. Soc. Rev.2015,44,17.
doi: 10.1039/c5cs00182j |
5 |
YuF.;WangC.;MaH.;SongM.;LiD.;LiY.;LiS.;ZhangX.;LiuY.Nanoscale2020,12,13.
doi: 10.1039/c9nr09743k |
6 |
SunZ.;MaT.;TaoH.;FanQ.;HanB.Chem2017,3,4.
doi: 10.1016/j.chempr.2017.09.009 |
7 |
ZhangW.;MaD.;Pérez-RamírezJ.;ChenZ.Adv. Energy Sustain. Res.2021,3,2.
doi: 10.1002/aesr.202100169 |
8 |
GrodkowskiJ.;NetaP.J. Phys. Chem. B2001,105,21.
doi: 10.1021/jp004567d |
9 |
LiM.;WangH.;LuoW.;SherrellP. C.;ChenJ.;YangJ.Adv. Mater.2020,32,34.
doi: 10.1002/adma.202001848 |
10 |
GaoD.;Arán-AisR. M.;JeonH. S.;Roldan CuenyaB.Nat. Catal.2019,2,3.
doi: 10.1038/s41929-019-0235-5 |
11 |
NielsenD. U.;HuX.-M.;DaasbjergK.;SkrydstrupT.Nat. Catal.2018,1,4.
doi: 10.1038/s41929-018-0051-3 |
12 |
WangH.;TzengY. K.;JiY.;LiY.;LiJ.;ZhengX.;YangA.;LiuY.;GongY.;CaiL.;et alNat. Nanotechnol.2020,15,2.
doi: 10.1038/s41565-019-0603-y |
13 |
WangY.;WangZ.;DinhC.-T.;LiJ.;OzdenA.;Golam KibriaM.;SeifitokaldaniA.;TanC.-S.;GabardoC. M.;LuoM.;et alNat. Catal.2019,3,2.
doi: 10.1038/s41929-019-0397-1 |
14 |
ZhangC.;YangS.;WuJ.;LiuM.;YazdiS.;RenM.;ShaJ.;ZhongJ.;NieK.;JalilovA. S.;et alAdv. Energy Mater.2018,8,19.
doi: 10.1002/aenm.201703487 |
15 |
LiX.;HongS.;HaoL.;SunZ.Chin. J. Chem. Eng.2022,43
doi: 10.1016/j.cjche.2021.10.013 |
16 |
ZhangZ.;MaC.;TuY.;SiR.;WeiJ.;ZhangS.;WangZ.;LiJ.-F.;WangY.;DengD.Nano Res.2019,12,9.
doi: 10.1007/s12274-019-2316-9 |
17 |
LiF.;GuG. H.;ChoiC.;KollaP.;HongS.;WuT.-S.;SooY.-L.;MasaJ.;MukerjeeS.;JungY.;et alAppl. Catal. B: Environ.2020,277,119241.
doi: 10.1016/j.apcatb.2020.119241 |
18 |
WangA.;LiJ.;ZhangT.Nat. Rev. Chem.2018,2,6.
doi: 10.1038/s41570-018-0010-1 |
19 |
SunT.;LiY.;CuiT.;XuL.;WangY. G.;ChenW.;ZhangP.;ZhengT.;FuX.;ZhangS.;et alNano Lett.2020,20,8.
doi: 10.1021/acs.nanolett.0c02677 |
20 |
JiangY.;ChoiC.;HongS.;ChuS.;WuT.-S.;SooY.-L.;HaoL.;JungY.;SunZ.Cell Rep. Phys. Sci.2021,2,3.
doi: 10.1016/j.xcrp.2021.100356 |
21 |
LiX.;RongH.;ZhangJ.;WangD.;LiY.Nano Res.2020,13,7.
doi: 10.1007/s12274-020-2755-3 |
22 |
LinR.;MaX.;CheongW. -C.;ZhangC.;ZhuW.;PeiJ.;ZhangK.;WangB.;LiangS.;LiuY.;et alNano Res.2019,12,11.
doi: 10.1007/s12274-019-2526-1 |
23 | HaoL.;SunZ.Acta Phys. -Chim. Sin.2021,37,2009033. |
郝磊端;孙振宇;物理化学学报,2021,37,2009033.
doi: 10.3866/PKU.WHXB202009033 |
|
24 |
FanQ.;HouP.;ChoiC.;WuT. S.;HongS.;LiF.;SooY. L.;KangP.;JungY.;SunZ.Adv. Energy Mater.2019,10,5.
doi: 10.1002/aenm.201903068 |
25 |
JiaM.;HongS.;WuT. S.;LiX.;SooY. L.;SunZ.Chem. Commun.2019,55,80.
doi: 10.1039/c9cc06178a |
26 | CuiX.;ShiF.Acta Phys. -Chim. Sin.2021,37,2006080. |
崔新江;石峰;物理化学学报,2021,37,2006080.
doi: 10.3866/PKU.WHXB202006080 |
|
27 |
WangY.;LiuY.;LiuW.;WuJ.;LiQ.;FengQ.;ChenZ.;XiongX.;WangD.;LeiY.Energy Environ. Sci.2020,13,12.
doi: 10.1039/d0ee02833a |
28 |
BackS.;LimJ.;KimN. Y.;KimY. H.;JungY.Chem. Sci.2017,8,2.
doi: 10.1039/c6sc03911a |
29 |
BaggerA.;JuW.;VarelaA. S.;StrasserP.;RossmeislJ.Catal. Today2017,288,74.
doi: 10.1016/j.cattod.2017.02.028 |
30 |
JiangK.;SiahrostamiS.;ZhengT.;HuY.;HwangS.;StavitskiE.;PengY.;DynesJ.;GangisettyM.;SuD.;et alEnergy Environ. Sci.2018,11,4.
doi: 10.1039/c7ee03245e |
31 |
ShengT.;SunS.-G. Chem. Phys. Lett2017,688,37.
doi: 10.1016/j.cplett.2017.09.052 |
32 |
HanL.;SongS.;LiuM.;YaoS.;LiangZ.;ChengH.;RenZ.;LiuW.;LinR.;QiG.;et alJ. Am. Chem. Soc.2020,142,29.
doi: 10.1021/jacs.9b12111 |
33 |
ShangH.;WangT.;PeiJ.;JiangZ.;ZhouD.;WangY.;LiH.;DongJ.;ZhuangZ.;ChenW.;et alAngew. Chem. Int. Ed.2020,59,50.
doi: 10.1002/anie.202010903 |
34 |
LiuL.;CormaA.Chem. Rev.2018,118,10.
doi: 10.1021/acs.chemrev.7b00776 |
35 |
HanS.;MaD.;ZhuQ.Small Methods2021,5,8.
doi: 10.1002/smtd.202100102 |
36 |
JiaM.;FanQ.;LiuS.;QiuJ.;SunZ.Curr. Opin. Green Sustain. Chem.2019,16,1.
doi: 10.1016/j.cogsc.2018.11.002 |
37 |
SaéEantJ.-M. Chem. Rev.2008,108,7.
doi: 10.1021/cr8004026 |
38 |
SunL.;RedduV.;FisherA. C.;WangX.Energy Environ. Sci.2020,13,374.
doi: 10.1039/c9ee03660a |
39 |
HoriY.;KikuchiK.;SuzukiS.Chem. Lett.1985,14,1695.
doi: 10.1246/cl.1985.1695 |
40 |
JuW.;BaggerA.;HaoG. P.;VarelaA. S.;SinevI.;BonV.;Roldan CuenyaB.;KaskelS.;RossmeislJ.;StrasserP.Nat. Commun.2017,8,1.
doi: 10.1038/s41467-017-01035-z |
41 |
NguyenT. N.;SalehiM.;LeQ. V.;SeifitokaldaniA.;DinhC. T.ACS Catal.2020,10,17.
doi: 10.1021/acscatal.0c02643 |
42 |
ChengY.;YangS.;JiangS. P.;WangS.Small Methods2019,3,9.
doi: 10.1002/smtd.201800440 |
43 |
ZhangN.;ZhangX.;TaoL.;JiangP.;YeC.;LinR.;HuangZ.;LiA.;PangD.;YanH.;et alAngew. Chem. Int. Ed.2021,60,11.
doi: 10.1002/anie.202014718 |
44 |
WangY.;CaoL.;LibrettoN.J.;LiX.;LiC.;WanY.;HeC.;LeeJ.;GreggJ.;ZongH.;et alJ. Am. Chem. Soc.2019,141,42.
doi: 10.1021/jacs.9b05766 |
45 |
BabucciM.;Sarac OztunaF. E.;DebefveL. M.;BoubnovA.;BareS. R.;GatesB. C.;UnalU.;UzunA.ACS Catal.2019,9,11.
doi: 10.1021/acscatal.9b02231 |
46 |
HeX.;HeQ.;DengY.;PengM.;ChenH.;ZhangY.;YaoS.;ZhangM.;XiaoD.;MaD.;et alNat. Commun.2019,10,1.
doi: 10.1038/s41467-019-11619-6 |
47 |
HuangK.;ZhangL.;XuT.;WeiH.;ZhangR.;ZhangX.;GeB.;LeiM.;MaJ. Y.;LiuL. M.;et alNat. Commun.2019,10,1.
doi: 10.1038/s41467-019-08484-8 |
48 |
LangR.;XiW.;LiuJ. C.;CuiY. T.;LiT.;LeeA. F.;ChenF.;ChenY.;LiL.;LiL.;et alNat. Commun.2019,10,1.
doi: 10.1038/s41467-018-08136-3 |
49 |
FengS.;SongX.;LiuY.;LinX.;YanL.;LiuS.;DongW.;YangX.;JiangZ.;DingY.Nat. Commun.2019,10,1.
doi: 10.1038/s41467-019-12965-1 |
50 |
PengP.;ShiL.;HuoF.;MiC.;WuX.;ZhangS.;XiangZ.Sci. Adv.2019,5,2322.
doi: 10.1126/sciadv.aaw2322 |
51 |
WangQ.;CaiC.;DaiM.;FuJ.;ZhangX.;LiH.;ZhangH.;ChenK.;LinY.;LiH.;et alSmall Sci.2020,1,2.
doi: 10.1002/smsc.202000028 |
52 |
GaoD.;LiuT.;WangG.;BaoX.ACS Energy Lett.2021,6,2.
doi: 10.1021/acsenergylett.0c02665 |
53 |
WengZ.;JiangJ.;WuY.;WuZ.;GuoX.;MaternaK. L.;LiuW.;BatistaV. S.;BrudvigG. W.;WangH.J. Am. Chem. Soc.2016,138,26.
doi: 10.1021/jacs.6b04746 |
54 |
HanN.;WangY.;MaL.;WenJ.;LiJ.;ZhengH.;NieK.;WangX.;ZhaoF.;LiY.;et alChem2017,3,4.
doi: 10.1016/j.chempr.2017.08.002 |
55 |
YaoC.;LiJ.;GaoW.;JiangQ.Chem.-Eur. J.2018,24,43.
doi: 10.1002/chem.201800363 |
56 |
DiercksC. S.;LiuY.;CordovaK. E.;YaghiO. M.Nat. Mater.2018,17,4.
doi: 10.1038/s41563-018-0033-5 |
57 |
MaL.;HuW.;MeiB.;LiuH.;YuanB.;ZangJ.;ChenT.;ZouL.;ZouZ.;YangB.;et alACS Catal.2020,10,8.
doi: 10.1021/acscatal.0c00243 |
58 |
CorbinN.;ZengJ.;WilliamsK.;ManthiramK.Nano Res.2019,12,9.
doi: 10.1007/s12274-019-2403-y |
59 |
SunL.;RedduV.;FisherA. C.;WangX.Energy Environ. Sci.2020,13,2.
doi: 10.1039/c9ee03660a |
60 |
LiuS.;YangH. B.;HungS.F.;DingJ.;CaiW.;LiuL.;GaoJ.;LiX.;RenX.;KuangZ.;et alAngew. Chem. Int. Ed.2020,59,2.
doi: 10.1002/anie.201911995 |
61 |
GeJ.;HeD.;ChenW.;JuH.;ZhangH.;ChaoT.;WangX.;YouR.;LinY.;WangY.;et alJ. Am. Chem. Soc.2016,138,42.
doi: 10.1021/jacs.6b09246 |
62 |
WanJ.;ChenW.;JiaC.;ZhengL.;DongJ.;ZhengX.;WangY.;YanW.;ChenC.;PengQ.;et alAdv. Mater.2018,30,11.
doi: 10.1002/adma.201705369 |
63 |
RenW.;TanX.;YangW.;JiaC.;XuS.;WangK.;SmithS. C.;ZhaoC.Angew. Chem. Int. Ed.2019,58,21.
doi: 10.1002/anie.201901575 |
64 |
ZhangE.;WangT.;YuK.;LiuJ.;ChenW.;LiA.;RongH.;LinR.;JiS.;ZhengX.;et alJ. Am. Chem. Soc.2019,141,42.
doi: 10.1021/jacs.9b08259 |
65 |
YinP.;YaoT.;WuY.;ZhengL.;LinY.;LiuW.;JuH.;ZhuJ.;HongX.;DengZ.;et alAngew. Chem. Int. Ed.2016,55,36.
doi: 10.1002/anie.201604802 |
66 |
LiX.;ZhuQ.-L.Energy Chem2020,2,3.
doi: 10.1016/j.enchem.2020.100033 |
67 |
WuY. L.;LiX.;WeiY. S.;FuZ.;WeiW.;WuX. T.;ZhuQ. L.;XuQ.Adv. Mater.2021,33,12.
doi: 10.1002/adma.202006965 |
68 |
WangX.;ChenW.;ZhangL.;YaoT.;LiuW.;LinY.;JuH.;DongJ.;ZhengL.;YanW.;et alJ. Am. Chem. Soc.2017,139,28.
doi: 10.1021/jacs.7b01686 |
69 |
LiQ.;ChenW.;XiaoH.;GongY.;LiZ.;ZhengL.;ZhengX.;YanW.;CheongW.C.;ShenR.;et alAdv. Mater.2018,30,25.
doi: 10.1002/adma.201800588 |
70 |
FeiH.;DongJ.;FengY.;AllenC.S.;WanC.;VolosskiyB.;LiM.;ZhaoZ.;WangY.;SunH.;et alNat. Catal.2018,1,1.
doi: 10.1038/s41929-017-0008-y |
71 |
GuanJ.;DuanZ.;ZhangF.;KellyS. D.;SiR.;DupuisM.;HuangQ.;ChenJ. Q.;TangC.;LiC.Nat. Catal.2018,1,11.
doi: 10.1038/s41929-018-0158-6 |
72 |
HuX.-M.;HvalH. H.;BjerglundE. T.;DalgaardK. J.;MadsenM. R.;PohlM.-M.;WelterE.;LamagniP.;BuhlK.B.;BremholmM.;et alACS Catal.2018,8,7.
doi: 10.1021/acscatal.8b01022 |
73 |
WenX.;DuanZ.;BaiL.;GuanJ.J. Power Sources2019,431,265.
doi: 10.1016/j.jpowsour.2019.126650 |
74 |
YuanK.;Lutzenkirchen-HechtD.;LiL.;ShuaiL.;LiY.;CaoR.;QiuM.;ZhuangX.;LeungM. K. H.;ChenY.;et alJ. Am. Chem. Soc.2020,142,5.
doi: 10.1021/jacs.9b11852 |
75 |
LiX.;BiW.;ChenM.;SunY.;JuH.;YanW.;ZhuJ.;WuX.;ChuW.;WuC.;et alJ. Am. Chem. Soc.2017,139,42.
doi: 10.1021/jacs.7b09074 |
76 |
Jonesj.;XiongH.;DeLaRivaA. T.;PetersonE. J.;PhamH.;ChallaS. R.;QiG.;OhS.;WiebengaM. H.;HernándezX. I.P.;et alScience2016,353,150.
doi: 10.1126/science.aaf8800 |
77 |
WeiS.;LiA.;LiuJ. C.;LiZ.;ChenW.;GongY.;ZhangQ.;CheongW.C.;WangY.;ZhengL.;et alNat. Nanotechnol.2018,13,9.
doi: 10.1038/s41565-018-0197-9 |
78 |
QuY.;LiZ.;ChenW.;LinY.;YuanT.;YangZ.;ZhaoC.;WangJ.;ZhaoC.;WangX.;et alNat. Catal.2018,1,10.
doi: 10.1038/s41929-018-0146-x |
79 |
ChenM. X.;ZhuM.;ZuoM.;ChuS. Q.;ZhangJ.;WuY.;LiangH. W.;FengX.Angew. Chem. Int. Ed.2020,59,4.
doi: 10.1002/anie.201912275 |
80 |
ZhouP.;LiN.;ChaoY.;ZhangW.;LvF.;WangK.;YangW.;GaoP.;GuoS.Angew. Chem. Int. Ed.2019,58,40.
doi: 10.1002/anie.201908351 |
81 |
YangZ.;ChenB.;ChenW.;QuY.;ZhouF.;ZhaoC.;XuQ.;ZhangQ.;DuanX.;WuY.Nat. Commun.2019,10,1.
doi: 10.1038/s41467-019-11796-4 |
82 |
QiaoB.;WangA.;YangX.;AllardL. F.;JiangZ.;CuiY.;LiuJ.;LiJ.;ZhangT.Nat. Chem.2011,3,8.
doi: 10.1038/nchem.1095 |
83 |
YangM.;AllardL. F.;Flytzani-StephanopoulosM.J. Am. Chem. Soc.2013,135,10.
doi: 10.1021/ja312646d |
84 |
GeX.;ZhouP.;ZhangQ.;XiaZ.;ChenS.;GaoP.;ZhangZ.;GuL.;GuoS.Angew. Chem. Int. Ed.2020,59,1.
doi: 10.1002/anie.201911516 |
85 |
ZhangZ.;FengC.;LiuC.;ZuoM.;QinL.;YanX.;XingY.;LiH.;SiR.;ZhouS.;et alNat. Commun.2020,11,1.
doi: 10.1038/s41467-020-14917-6 |
86 |
SunS.;ZhangG.;GauquelinN.;ChenN.;ZhouJ.;YangS.;ChenW.;MengX.;GengD.;BanisM. N.;et alSci. Rep.2013,3,1.
doi: 10.1038/srep01775 |
87 |
LiJ.;GuanQ.;WuH.;LiuW.;LinY.;SunZ.;YeX.;ZhengX.;PanH.;ZhuJ.;et alJ. Am. Chem. Soc.2019,141,37.
doi: 10.1021/jacs.9b06482 |
88 |
DengD.;ChenX.;YuL.;WuX.;LiuQ.;LiuY.;YangH.;TianH.;HuY.;DuP.;et alSci. Adv.2015,1,e1500462.
doi: 10.1126/sciadv.1500462 |
89 |
ZhangJ.;CaiW.;HuF. X.;YangH.;LiuB.Chem. Sci.2021,12,20.
doi: 10.1039/d1sc01375k |
90 |
HuX.;LuoG.;ZhaoQ.;WuD.;YangT.;WenJ.;WangR.;XuC.;HuN.J. Am. Chem. Soc.2020,142,39.
doi: 10.1021/jacs.0c07317 |
91 |
HuangP.;ChengM.;ZhangH.;ZuoM.;XiaoC.;XieY.Nano Energy2019,61,428.
doi: 10.1016/j.nanoen.2019.05.003 |
92 |
LiY.;WeiB.;ZhuM.;ChenJ.;JiangQ.;YangB.;HouY.;LeiL.;LiZ.;ZhangR.;et alAdv. Mater.2021,33,41.
doi: 10.1002/adma.202102212 |
93 |
LiangS.;JiangQ.;WangQ.;LiuY.Adv. Energy Mater.2021,11,36.
doi: 10.1002/aenm.202101477 |
94 |
ShangH.;JiangZ.;ZhouD.;PeiJ.;WangY.;DongJ.;ZhengX.;ZhangJ.;ChenW.Chem. Sci.2020,11,23.
doi: 10.1039/d0sc02343d |
95 |
SunX.;TuoY.;YeC.;ChenC.;LuQ.;LiG.;JiangP.;ChenS.;ZhuP.;MaM.;et alAngew. Chem. Int. Ed.2021,60,44.
doi: 10.1002/anie.202110433 |
96 |
WangY.;SuH.;HeY.;LiL.;ZhuS.;ShenH.;XieP.;FuX.;ZhouG.;FengC.;et alChem. Rev.2020,120,21.
doi: 10.1021/acs.chemrev.0c00594 |
97 |
ZhangN.;ZhangX.;KangY.;YeC.;JinR.;YanH.;LinR.;YangJ.;XuQ.;WangY.;et alAngew. Chem. Int. Ed.2021,60,24.
doi: 10.1002/anie.202101559 |
98 |
LiZ.;ChenY.;JiS.;TangY.;ChenW.;LiA.;ZhaoJ.;XiongY.;WuY.;GongY.;et alNat. Chem.2020,12,8.
doi: 10.1038/s41557-020-0473-9 |
99 |
JiS.;ChenY.;FuQ.;ChenY.;DongJ.;ChenW.;LiZ.;WangY.;GuL.;HeW.;et alJ. Am. Chem. Soc.2017,139,29.
doi: 10.1021/jacs.7b05018 |
100 |
GongM.;ZhouW.;TsaiM. C.;ZhouJ.;GuanM.;LinM. C.;ZhangB.;HuY.;WangD. Y.;YangJ.;et alNat. Commun.2014,5,4695.
doi: 10.1038/ncomms5695 |
101 |
KuhlK. P.;HatsukadeT.;CaveE. R.;AbramD. N.;KibsgaardJ.;JaramilloT. F.J. Am. Chem. Soc.2014,136,40.
doi: 10.1021/ja505791r |
102 |
ZhaoZ.;ChenZ.;LuG.J. Phys. Chem. C2017,121,38.
doi: 10.1021/acs.jpcc.7b06895 |
103 |
WangX.;SangX.;DongC.L.;YaoS.;ShuaiL.;LuJ.;YangB.;LiZ.;LeiL.;QiuM.;et alAngew. Chem. Int. Ed.2021,60,21.
doi: 10.1002/anie.202100011 |
104 |
WangX.;WangY.;SangX.;ZhengW.;ZhangS.;ShuaiL.;YangB.;LiZ.;ChenJ.;LeiL.;et alAngew. Chem. Int. Ed.2021,60,8.
doi: 10.1002/anie.202013427 |
105 |
JiangK.;SiahrostamiS.;AkeyA.J.;LiY.;LuZ.;LattimerJ.;HuY.;StokesC.;GangishettyM.;ChenG.;et alChem2017,3,6.
doi: 10.1016/j.chempr.2017.09.014 |
106 |
YangH. B.;HungS.-F.;LiuS.;YuanK.;MiaoS.;ZhangL.;HuangX.;WangH.-Y.;CaiW.;ChenR.;et alNat. Energy2018,3,2.
doi: 10.1038/s41560-017-0078-8 |
107 |
HuanT. N.;RanjbarN.;RousseG.;SougratiM.;ZitoloA.;MougelV.;JaouenF.;FontecaveM.ACS Catal.2017,7,3.
doi: 10.1021/acscatal.6b03353 |
108 |
GuJun.;HsuC-S.;BaiL.;ChenH.;HuX.Science2019,364,6445.
doi: 10.1126/science.aaw7515 |
109 |
LiX.;XiS.;SunL.;DouS.;HuangZ.;SuT.;WangX.Adv. Sci.2020,7,17.
doi: 10.1002/advs.202001545 |
110 |
LinL.;LiH.;YanC.;LiH.;SiR.;LiM.;XiaoJ.;WangG.;BaoX.Adv. Mater.2019,31,41.
doi: 10.1002/adma.201903470 |
111 |
PanF.;LiB.;SarnelloE.;FeiY.;FengX.;GangY.;XiangX.;FangL.;LiT.;HuY. H.;et alACS Catal.2020,10,19.
doi: 10.1021/acscatal.0c02499 |
112 |
WangT.;SangX.;ZhengW.;YangB.;YaoS.;LeiC.;LiZ.;HeQ.;LuJ.;LeiL.;et alAdv. Mater.2020,32,29.
doi: 10.1002/adma.202002430 |
113 |
HouP.;SongW.;WangX.;HuZ.;KangP.Small2020,16,24.
doi: 10.1002/smll.202001896 |
114 |
SuP.;IwaseK.;HaradaT.;KamiyaK.;NakanishiS.Chem. Sci.2018,9,16.
doi: 10.1039/c8sc00604k |
115 |
YangH.;LinQ.;WuY.;LiG.;HuQ.;ChaiX.;RenX.;ZhangQ.;LiuJ.;HeC.Nano Energy2020,70,104454.
doi: 10.1016/j.nanoen.2020.104454 |
116 |
WangX.;ChenZ.;ZhaoX.;YaoT.;ChenW.;YouR.;ZhaoC.;WuG.;WangJ.;HuangW.;et alAngew. Chem. Int. Ed.2018,57,7.
doi: 10.1002/anie.201712451 |
117 |
WuY.;JiangZ.;LuX.;LiangY.;WangH.Nature2019,575,7784.
doi: 10.1038/s41586-019-1760-8 |
118 | ChuS.;LiX.;RobertsonA. W.;SunZ.Acta Phys. -Chim. Sin.2021,37,2009023. |
楚森林;李欣;RobertsonA. W.;孙振宇;物理化学学报,2021,37,2009023.
doi: 10.3866/PKU.WHXB202009023 |
|
119 |
ChuS.;YanX.;ChoiC.;HongS.;RobertsonA. W.;MasaJ.;HanB.;JungY.;SunZ.Green Chem.2020,22,19.
doi: 10.1039/d0gc02279a |
120 | YangY.;ZhangY.;HuJ.-S.;WanL.-J. Acta Phys. -Chim. Sin.2020,36,1906085. |
杨艳;张云;胡劲松;万立骏;物理化学学报,2020,36,1906085.
doi: 10.3866/PKU.WHXB201906085 |
|
121 | MengY.;KuangS.;LiuH.;FanQ.;MaX.;ZhangS.Acta Phys. -Chim. Sin.2021,37,2006034. |
孟怡辰;况思宇;刘海;范群;马新宾;张生;物理化学学报,2021,37,2006034.
doi: 10.3866/PKU.WHXB202006034 |
|
122 |
LiY.;ChuS.;ShenH.;XiaQ.;RobertsonA. W.;MasaJ.;SiddiquiU.;SunZ.ACS Sustain. Chem. Eng.2020,8,12.
doi: 10.1021/acssuschemeng.0c00800 |
123 |
ChenR.;SuH. Y.;LiuD.;HuangR.;MengX.;CuiX.;TianZ. Q.;ZhangD. H.;DengD.Angew. Chem. Int. Ed.2020,59,1.
doi: 10.1002/anie.201910662 |
124 |
YangH.;WuY.;LiG.;LinQ.;HuQ.;ZhangQ.;LiuJ.;HeC.J. Am. Chem. Soc.2019,141,32.
doi: 10.1021/jacs.9b04907 |
125 |
GuanA.;ChenZ.;QuanY.;PengC.;WangZ.;ShamT.-K.;YangC.;JiY.;QianL.;XuX.;et alCS Energy Lett.2020,5,4.
doi: 10.1021/acsenergylett.0c00018 |
126 |
KarapinarD.;HuanN. T.;SahraieN. R.;LiJ. K.;WakerleyD.;TouatiN.;ZannaS.;TavernaD.;Galvão TizeiL.H.;ZitoloA.;et alAngew. Chem. Int. Ed.2019,58,42.
doi: 10.1002/anie.201907994 |
127 |
XuH.;RebollarD.;HeH.;ChongL.;LiuY.;LiuC.;SunC.-J.;LiT.;MunteanJ. V.;WinansR. E.;et alNat. Energy2020,5,8.
doi: 10.1038/s41560-020-0666-x |
128 |
ChenZ.;MouK.;YaoS.;LiuL.ChemSusChem2018,11,17.
doi: 10.1002/cssc.201800925 |
129 |
YangF.;SongP.;LiuX.;MeiB.;XingW.;JiangZ.;GuL.;XuW.Angew. Chem. Int. Ed.2018,57,38.
doi: 10.1002/anie.201805871 |
130 |
LinL.;LiuT.;XiaoJ.;LiH.;WeiP.;GaoD.;NanB.;SiR.;WangG.;BaoX.Angew. Chem. Int. Ed.2020,59,50.
doi: 10.1002/anie.202009191 |
131 |
ZhaoC.;DaiX.;YaoT.;ChenW.;WangX.;WangJ.;YangJ.;WeiS.;WuY.;LiY.J. Am. Chem. Soc.2017,139,24.
doi: 10.1021/jacs.7b02736 |
132 |
ZuX.;LiX.;LiuW.;SunY.;XuJ.;YaoT.;YanW.;GaoS.;WangC.;WeiS.;et alAdv. Mater.2019,31,15.
doi: 10.1002/adma.201808135 |
133 |
JiangZ.;WangT.;PeiJ.;ShangH.;ZhouD.;LiH.;DongJ.;WangY.;CaoR.;ZhuangZ.;et alEnergy Environ. Sci.2020,13,9.
doi: 10.1039/d0ee01486a |
134 |
SaY. J.;JungH.;ShinD.;JeongH. Y.;RingeS.;KimH.;HwangY. J.;JooS. H.ACS Catal.2020,10,19.
doi: 10.1021/acscatal.0c02325 |
135 |
GongY.;JiaoL. L.;QianY.;PanC.;ZhengL.;CaiX.;LiuB.;YuS.;JiangH.Angew. Chem.2020,132,7.
doi: 10.1002/ange.201914977 |
136 |
ZhengW.;YangJ.;ChenH.;HouY.;WangQ.;GuM.;HeF.;XiaY.;XiaZ.;LiZ.;et alAdv. Funct. Mater.2019,30,4.
doi: 10.1002/adfm.201907658 |
137 |
ZhangH.;LiJ.;XiS.;DuY.;HaiX.;WangJ.;XuH.;WuG.;ZhangJ.;LuJ.;et alAngew. Chem. Int. Ed.2019,58,42.
doi: 10.1002/anie.201906079 |
138 |
PanY.;LinR.;ChenY.;LiuS.;ZhuW.;CaoX.;ChenW.;WuK.;CheongW. C.;WangY.;et alJ. Am. Chem. Soc.2018,140,12.
doi: 10.1021/jacs.8b00814 |
139 |
SunL.;HuangZ.;RedduV.;SuT.;FisherA. C.;WangX.Angew. Chem. Int. Ed.2020,59,39.
doi: 10.1002/anie.202007445 |
140 |
WangX.;PanY.;NingH.;WangH.;GuoD.;WangW.;YangZ.;ZhaoQ.;ZhangB.;ZhengL.;et alAppl. Catal. B: Environ.2020,266,118630.
doi: 10.1016/j.apcatb.2020.118630 |
141 |
ZhangB.;ZhangJ.;ShiJ.;TanD.;LiuL.;ZhangF.;LuC.;SuZ.;TanX.;ChengX.;et alNat. Commun.2019,10,1.
doi: 10.1038/s41467-019-10854-1 |
142 |
NiW.;GaoY.;LinY.;MaC.;GuoX.;WangS.;ZhangS.ACS Catal.2021,11,9.
doi: 10.1021/acscatal.0c05514 |
143 |
YingY.;LuoX.;QiaoJ.;HuangH.Adv. Funct. Mater.2020,31,3.
doi: 10.1002/adfm.202007423 |
144 |
PanY.;ZhangC.;LiuZ.;ChenC.;LiY.Matter2020,2,1.
doi: 10.1016/j.matt.2019.11.014 |
145 |
VasileffA.;XuC.;JiaoY.;ZhengY.;QiaoS.-Z.Chem2018,4,8.
doi: 10.1016/j.chempr.2018.05.001 |
146 |
OuyangY.;ShiL.;BaiX.;LiQ.;WangJ.Chem. Sci.2020,11,7.
doi: 10.1039/c9sc05236d |
147 |
DingC.;FengC.;MeiY.;LiuF.;WangH.;DupuisM.;LiC.Appl. Catal. B: Environ.2020,268,118391.
doi: 10.1016/j.apcatb.2019.118391 |
148 |
ZhongM.;TranK.;MinY.;WangC.;WangZ.;DinhC. T.;De LunaP.;YuZ.;RasouliA. S.;BrodersenP.;et alNature2020,581,7807.
doi: 10.1038/s41586-020-2242-8 |
149 |
ChenD.;ZhangL. H.;DuJ.;WangH.;GuoJ.;ZhanJ.;LiF.;YuF.Angew. Chem. Int. Ed.2021,60,45.
doi: 10.1002/anie.202109579 |
150 |
WangX.;De AraujoJ. F.;JuW.;BaggerA.;SchmiesH.;KuhlS.;RossmeislJ.;StrasserP.Nat. Nanotechnol.2019,14,11.
doi: 10.1038/s41565-019-0551-6 |
151 |
JiaoJ.;LinR.;LiuS.;CheongW. C.;ZhangC.;ChenZ.;PanY.;TangJ.;WuK.;HungS. F.;et alNat. Chem.2019,11,3.
doi: 10.1038/s41557-018-0201-x |
152 |
WuY.;CaoS.;HouJ.;LiZ.;ZhangB.;ZhaiP.;ZhangY.;SunL.Adv. Energy Mater.2020,10,29.
doi: 10.1002/aenm.202070123 |
153 |
WangY.;ChenZ.;HanP.;DuY.;GuZ.;XuX.;ZhengG.ACS Catal.2018,8,8.
doi: 10.1021/acscatal.8b01014 |
154 |
GuoW.;LiuS.;TanX.;WuR.;YanX.;ChenC.;ZhuQ.;ZhengL.;MaJ.;ZhangJ.;et alAngew. Chem. Int. Ed.2021,60,40.
doi: 10.1002/anie.202108635 |
155 |
QinX.;ZhuS.;XiaoF.;ZhangL.;ShaoM.ACS Energy Lett.2019,4,7.
doi: 10.1021/acsenergylett.9b01015 |
156 |
NiW.;LiuZ.;ZhangY.;MaC.;DengH.;ZhangS.;WangS.Adv. Mater.2021,33,1.
doi: 10.1002/adma.202003238 |
157 |
RongX.;WangH. J.;LuX. L.;SiR.;LuT. B.Angew. Chem. Int. Ed.2020,59,5.
doi: 10.1002/anie.201912458 |
158 |
HanS.-G.;MaD.-D.;ZhouS.-H.;ZhangK.;WeiW.-B.;DuY.;WuX.-T.;XuQ.;ZouR.;ZhuQ.-L.Appl. Catal. B: Environ.2021,283,119591.
doi: 10.1016/j.apcatb.2020.119591 |
159 |
HuangP.;ChengZ.;ZengL.;YuJ.;TanL.;MohapatraP.;FanL.-S.;ZhuY.ACS Catal.2020,10,24.
doi: 10.1021/acscatal.0c03941 |
160 |
PanF.;LiB.;SarnelloE.;HwangS.;GangY.;FengX.;XiangX.;AdliN. M.;LiT.;SuD.;et alNano Energy2020,68,104384.
doi: 10.1016/j.nanoen.2019.104384 |
161 |
WangH.-H.;LvL.-B.;ZhangS.-N.;SuH.;ZhaiG.-Y.;LeiW.-W.;LiX.-H.;ChenJ.-S.Nano Res.2020,13,8.
doi: 10.1007/s12274-020-2810-0 |
162 |
LiY.;AdliN. M.;ShanW.;WangM.;ZachmanM.J.;HwangS.;TabassumH.;KarakalosS.;FengZ.;WangG.;et alEnergy Environ. Sci.2022,15,5.
doi: 10.1039/d2ee00318j |
163 |
ChenX.;MaD.-D.;ChenB.;ZhangK.;ZouR.;WuX.-T.;ZhuQ.-L.Appl. Catal. B: Environ.2020,267,118720.
doi: 10.1016/j.apcatb.2020.118720 |
164 |
ChenS.;LiW.H.;JiangW.;YangJ.;ZhuJ.;WangL.;OuH.;ZhuangZ.;ChenM.;SunX.;et alAngew. Chem. Int. Ed.2022,61,4.
doi: 10.1002/anie.202114450 |
165 |
PazF. A.;KlinowskiJ.;VilelaS. M.;TomeJ. P.;CavaleiroJ. A.;RochaJ.Chem. Soc. Rev.2012,41,3.
doi: 10.1039/c1cs15055c |
166 |
BangS.;LeeY. M.;HongS.;ChoK. B.;NishidaY.;SeoM. S.;SarangiR.;FukuzumiS.;NamW.Nat. Chem.2014,6,10.
doi: 10.1038/nchem.2055 |
167 |
RenX.;LiuS.;LiH.;DingJ.;LiuL.;KuangZ.;LiL.;YangH.;BaiF.;HuangY.;et alSci. Chin. Chem.2020,63,12.
doi: 10.1007/s11426-020-9847-9 |
168 |
ZhangX.;WuZ.;ZhangX.;LiL.;LiY.;XuH.;LiX.;YuX.;ZhangZ.;LiangY.;et alNat. Commun.2017,8,14675.
doi: 10.1038/ncomms14675 |
169 |
ZhangX.;WangY.;GuM.;WangM.;ZhangZ.;PanW.;JiangZ.;ZhengH.;LuceroM.;WangH.;et alNat. Energy2020,5,9.
doi: 10.1038/s41560-020-0667-9 |
170 | Gao, Y.; Yang, Y.; Hao, L.; Hong, S.; Tan, X.; Wu, T. -S.; Soo, Y. -L.; Robertson, A. W.; Yang, Q.; Sun, Z. Chem. Catal. 2022, in press. doi: 10.1016/j.checat.2022.06.010 |
[1] | 朱锐杰, 康磊磊, 李林, 潘晓丽, 王华, 苏杨, 李广亿, 程鸿魁, 李仁贵, 刘晓艳, 王爱琴. WO3-TiO2负载的Pt单原子催化剂光热协同催化丙烷和丙烯氧化[J]. 物理化学学报, 2024, 40(1): 2303003 - . |
[2] | 曹玥晗, 郭瑞, 马敏智, 黄泽皑, 周莹. 活性位点电子密度变化对光催化CO2活化和选择转化的影响[J]. 物理化学学报, 2024, 40(1): 2303029 - . |
[3] | 徐涵煜, 宋雪旦, 张青, 于畅, 邱介山. 理论研究Cu@C2N催化剂表面上水分子对电催化CO2还原反应机理的影响[J]. 物理化学学报, 2024, 40(1): 2303040 - . |
[4] | 段欣漩, Sendeku Marshet Getaye, 张道明, 周道金, 徐立军, 高学庆, 陈爱兵, 邝允, 孙晓明. 钨掺杂镍铁水滑石高效电催化析氧反应[J]. 物理化学学报, 2024, 40(1): 2303055 - . |
[5] | 王宁, 李一, 崔乾, 孙晓玥, 胡悦, 罗运军, 杜然. 金属气凝胶:可控制备与应用展望[J]. 物理化学学报, 2023, 39(9): 2212014 -0 . |
[6] | 罗耀武, 王定胜. 单原子催化剂电子结构调控实现高效多相催化[J]. 物理化学学报, 2023, 39(9): 2212020 -0 . |
[7] | 夏伟锋, 季成宇, 王锐, 裘式纶, 方千荣. 基于四硫富瓦烯的无金属共价有机框架材料用于高效电催化析氧反应[J]. 物理化学学报, 2023, 39(9): 2212057 -0 . |
[8] | 宋千伟, 何观朝, 费慧龙. 基于单原子催化剂的光热催化转化:原理和应用[J]. 物理化学学报, 2023, 39(9): 2212038 -0 . |
[9] | 陈瑶, 陈存, 曹雪松, 王震宇, 张楠, 刘天西. CO2和N2电还原中缺陷及界面工程的最新进展[J]. 物理化学学报, 2023, 39(8): 2212053 -0 . |
[10] | 于彦会, 饶鹏, 封苏阳, 陈民, 邓培林, 李静, 苗政培, 康振烨, 沈义俊, 田新龙. 钴原子团簇用于高效氧还原反应[J]. 物理化学学报, 2023, 39(8): 2210039 -0 . |
[11] | 兰畅, 楚宇逸, 王烁, 刘长鹏, 葛君杰, 邢巍. 质子交换膜燃料电池阴极非贵金属M-Nx/C型氧还原催化剂研究进展[J]. 物理化学学报, 2023, 39(8): 2210036 -0 . |
[12] | 杨帅, 徐瑜歆, 郝子坤, 秦胜建, 张润鹏, 韩钰, 杜利伟, 朱紫洢, 杜安宁, 陈欣, 吴昊, 乔冰冰, 李坚, 王艺, 孙昺晨, 闫融融, 赵晋津. 高效医学传感钙钛矿材料研究进展[J]. 物理化学学报, 2023, 39(5): 2211025 -0 . |
[13] | 荣佑文, 桑佳琪, 车丽, 高敦峰, 汪国雄. 二氧化碳电催化还原中的电解质效应[J]. 物理化学学报, 2023, 39(5): 2212027 -0 . |
[14] | 王晶晶, 曹贵强, 段瑞贤, 李向阳, 李喜飞. 金属单原子催化剂增强硫正极动力学的研究进展[J]. 物理化学学报, 2023, 39(5): 2212005 -0 . |
[15] | 王奥琦, 陈军, 张鹏飞, 唐珊, 冯兆池, 姚婷婷, 李灿. NiMo(O)物相结构与电解水析氢反应活性的关联[J]. 物理化学学报, 2023, 39(4): 2301023 -0 . |
|