物理化学学报 >> 2024, Vol. 40 >> Issue (1): 2303029.doi: 10.3866/PKU.WHXB202303029
曹玥晗1,2, 郭瑞2, 马敏智2, 黄泽皑2, 周莹1,2,*()
收稿日期:
2023-03-14
录用日期:
2023-04-14
发布日期:
2023-08-21
通讯作者:
周莹
E-mail:yzhou@swpu.edu.cn
作者简介:
第一联系人:†These authors contributed equally to this work.
基金资助:
Yuehan Cao1,2, Rui Guo2, Minzhi Ma2, Zeai Huang2, Ying Zhou1,2,*()
Received:
2023-03-14
Accepted:
2023-04-14
Published:
2023-08-21
Contact:
Ying Zhou
E-mail:yzhou@swpu.edu.cn
Supported by:
摘要:
光催化二氧化碳(CO2)还原制液体燃料和高值化学品技术不仅能充分利用可再生能源太阳光,实现化学储能;更重要的是,此技术以温室气体CO2为原料,因此可以减缓全球温室效应,构造人工碳循环。然而,光催化CO2还原制液体燃料和高值化学品反应过程中面临诸多挑战:(1) CO2分子吸附和活化过程困难;(2) (高附加值)碳产物选择性低;(3)产物生成后易发生其他副反应导致催化剂失活或产物选择性下降。受到以上三个挑战的制约,目前的反应效率较低,难以满足工业化应用。由于光催化CO2向高值化学品的转化过程为质子耦合光生电子参与的还原反应,因此活性位点的电子密度会显著影响以上挑战的解决。然而,光催化CO2还原过程涉及众多基元步骤,每个基元步骤对于活性位点的电子密度要求并不清晰,这导致无法有针对性设计高效的催化剂来促进光催化CO2分子的有效活化及高选择性转化。本文综述了近期活性位点的电子密度变化对于CO2分子吸附和活化过程、碳产物选择性调控和产物脱附及过氧化的影响规律,并总结了调控活性位点上电子密度的方法,旨在对未来设计高效光催化剂提供参考和理论依据。
曹玥晗, 郭瑞, 马敏智, 黄泽皑, 周莹. 活性位点电子密度变化对光催化CO2活化和选择转化的影响[J]. 物理化学学报, 2024, 40(1), 2303029. doi: 10.3866/PKU.WHXB202303029
Yuehan Cao, Rui Guo, Minzhi Ma, Zeai Huang, Ying Zhou. Effects of Electron Density Variation of Active Sites in CO2 Activation and Photoreduction: A Review[J]. Acta Phys. -Chim. Sin. 2024, 40(1), 2303029. doi: 10.3866/PKU.WHXB202303029
Table 1
Recent improvement of CO2 photoreduction by modulating the surface electron density."
Photocatalysts | Modification methods | Variation of surface electron density | Original product generation rate (μmol∙g−1∙h−1) | Modified product generation rate (μmol∙g−1∙h−1) | Original product selectivity (%) | Modified product selectivity (%) | References |
BOC and BOC-VDWGs-AL | Delamination | Increase | CO: 9.5 | CO: 188.2 | – | – | |
Bi4O5Cl2 and VCl-Bi4O5Cl2 | Defects | Decrease | CO: 0.0 | CO: 14.6 | – | – | |
NiO and Er/NiO1−x | Cocatalysts | Increase | CO: 14 | CO: 368 | – | – | |
BiOBr and Bi-MOF | Heterojunction | Decrease | CO: 5.1 | CO: 22.0 | – | – | |
ZnSe QDs and ZnSe/CdS DORs | Heterojunction | Decrease | CO: 0.0 | CO: 11.3 | – | -- | |
ROH-NiCo2O3 and Cu2S@ROH-NiCo2O3 | Heterojunction | Increase | CO: 1178.0 H2: 461.0 | CO: 7067.0 H2: 2767.0 | CO: 42.0 | CO: 72 | |
CdS and CdS/EDA | Heterojunction | Increase | CO: 2.9 H2: 62.9 | CO: 115.6 H2: 959.4 | – | – | |
U-Cu2O-LTH@PCN-3 and PCN | Heterojunction | Increase | CH3OH: 48.9 | CH3OH: 4.7 | – | – | |
Pb0.6Bi1.4Cs0.6O2Cl2 and Pb0.6Bi1.4O2Cl1.4 | Delamination | Increase | CH3OH: 6.6 CO: 4.5 | CH3OH: 0.9 CO: 0.6 | – | – | |
CN and mCD/CN | Heterojunction | Increase | CH3OH: 0.0 CO: 0.0 | CH3OH: 13.9 CO: 0.1 | – | – | |
CdS and CdS/A-GO | Heterojunction | Increase | CO: 0.6 H2: 5.1 CH3OH: 0.1 | CO: 2.2 H2: 76.3 CH3OH: 26.5 | – | – | |
BiOBr and 20%CdS/BiOBr | Heterojunction | Decrease | CH3OH: 104.3 | CH3OH: 219.0 | – | – | |
In2O3 and N-In2O3 | Doping | Decrease | CO: 0.0 | CH3OH: 394.0 CH4: 0.1 CO: 230 | – | – | |
CeO2 and Pd/CeO2 | Cocatalysts | Increase | CH3OH: 12.7 | CH4: 41.6 | CH4: 9 | CH4: 100 | |
Cd1−xS and AuSA/Cd1−xS | Cocatalysts | Increase | CO: 0.1 CH4: 0.2 H2: 0.0 | CO: 32.2 CH4: 11.3 H2: 7.9 | – | – | |
BMO and BMO-R | Defects | Increase | CO: 17.7 CH4: 3.3 | CO: 61.5 CH4: 12.4 | – | – | |
BiOBr and La/BiOBr | Cocatalysts | Increase | CH3OH: 10.6 | CH3OH: 21.0 CO: 0.1 CH4: 1.6 | CH3OH: 100 | CH3OH: 92 | |
Pd1/C3N4 and Pd1+NPs/C3N4 | Cocatalysts | Increase | CH4: 4.2 CO: 10.3 | CH4: 20.3 CO: 0.8 | CH4: 55 | CH4: 97 | |
Cu3SnS4 and VS Cu3SnS4 | Defects | Increase | CH4: 5.6 CO: 16.3 | CH4: 22.7 CO: 18.4 | – | – | |
TiO2 and VTi-TiO2 | Defects | Increase | CH4: 15.7 | CH4: 28.3 | CH4: 34 | CH4: 97 | |
Co3O4 and VO-Co3O4/NiCo2O4 | Heterojunctionand Defects | Increase | CO: 11.2 | CH4: 20.3 | – | – | |
C3N4 and Co/C3N4 | Cocatalysts | Increase | CH3OH: 17.7 | CH3OH: 235.5 H2: 18.9 CO: 2.9 CH4: 3.4 C2H4: 1.1 C3H6: 1.4 CH3OCH3: 3.3 | CH3OH: 100 | CH3OH: 96 |
Fig 1
(a) Calculated band structures and total density of states (DOS) of BMO-OVs. Absorption of B1-CO2 on BMO-OVs (b) and B2-CO2 on BMO (c). The yellow and blue isosurfaces with an isovalue of 0.003 au represent charge accumulation and depletion in the space. Reaction pathways for CO2 reduction on BMO-OVs (d) and BMO (e). "*" represents adsorption on substrate (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article) 72. Copyright 2019 Elsevier Inc. Color online."
Fig 4
CO2 photoreduction performance and the photocatalytic mechanism of S-scheme heterojunction. Photocatalytic activities of CO2 reduction over TiO2, TCx, and CsPbBr3 quantum dots (QDs) during 4-h experiment performed under UV-Vis light irradiation: time course of (a) H2, (b) CO, and (c) O2 production yields. The initial O2 concentrations were normalized. (d) Mass spectra of 13CO and total ion chromatography (inset) over TC2 in the photocatalytic reduction of 13CO2. Optimized structures of CO2 molecule adsorbed on (e) anatase TiO2 (101), (f) rutile TiO2 (110), and (g) CsPbBr3 (001) facets. The blue, red, green, gray, and brown spheres stand for Ti, O, Cs, Pb, and Br atoms, respectively. (h) The DOS of CsPbBr3. (i) Schematic illustration of TiO2/CsPbBr3 heterojunction: internal electric field (IEF)-induced charge transfer, separation, and the formation of S-scheme heterojunction under UV-visible-light irradiation for CO2 photoreduction. (j) Time-resolved photoluminescence (TRPL) spectra of TiO2 (T) and TC2 at emission wavelengths of 450 and 520 nm, respectively 85. Copyright 2021 Springer Nature. Color online."
Fig 5
Reaction mechanism study of CO2 photoreduction to CH4 on the Au1/ZIS catalyst. (a) In situ DRIFTS at 1000–2200 cm−1 for detecting the reaction intermediates in CO2 photoreduction over Au1/ZIS. (b) Free energy diagrams of photocatalytic CO2 to CH4 for Au1-S2/ZIS. The blue line shows the more favorable way, while the grey line shows the less favorable way. (c) The optimized adsorption configurations of CO2 molecules with their corresponding charge distribution on the surface of AuNPs/ZIS and Au1-S2/ZIS 92. Copyright 2022 Wiley-VCH GmbH. Color online."
Fig 6
Manipulating reactivity and selectivity by modulating the reaction pathways. CO2 photoreduction into fuels such as CH4 and CO through the use of single-metal-site (a) and dual-metal-site (b) catalytic systems (M represents the metal site, 'H+ + e−' refers to the proton coupled electron transfer process and '-H2O' means the desorption of H2O molecules after the intermediates react with the proton-electron pair). The single metal site tends to weakly bond with the sole C or O atom of adsorbed CO2 and produces a series of reactive intermediates, facilitating the formation of free CO molecules as well as hydrocarbon species such as CH4 after protonation. Contrastingly, we suggest that the dual-metal sites tend to simultaneously bond with both the C and O atoms in CO2 molecules, and hence give rise to a highly stable configuration of M―C―O―M intermediate. In this regard, it tends to need much more energy to simultaneously break the M―C and M―O bonds to form CO molecules, whereas further protonation of the C atom in the M―C―O―M intermediate is potentially easier, where the successive protonation results in the breakage of the C―O and C―M bonds to form exclusive hydrocarbon species like CH4. Note that the scissors symbols are intended to represent the bonds that are ultimately broken, rather than those necessarily broken at a specific stage of the pathway 89. Copyright 2019 Springer Nature."
Fig 7
(a) Average production rates of CH4, CO, and H2 using various photocatalysts based on CdS QDs. (b) Average production rates of CH4, CO, and H2 by CdS QDs with various Ni doping amounts. (c) Cycling production of CH4 and CO using Ni(0.26%): CdS QDs. (d) Mass spectra showing 13CH4 (m/z = 17) and 13CO (m/z = 29) produced over Ni(0.26%): CdS QDs in the photocatalytic reduction of 13CO2 94. Copyright 2018 Wiley-VCH GmbH."
1 |
Vu N. N. ; Kaliaguine S. ; Do T. O. Adv. Funct. Mater. 2019, 29, 1901825.
doi: 10.1002/adfm.201901825 |
2 |
Goldemberg J. Science 2007, 315, 808.
doi: 10.1126/science.1137013 |
3 |
Artz J. ; Müller T. E. ; Thenert K. ; Kleinekorte J. ; Meys R. ; Sternberg A. ; Bardow A. ; Leitner W. Chem. Rev. 2018, 118, 434.
doi: 10.1021/acs.chemrev.7b00435 |
4 |
Aresta M. ; Dibenedetto A. ; Angelini A. Chem. Rev. 2014, 114, 1709.
doi: 10.1021/cr4002758 |
5 |
Yi Q. ; Li W. ; Feng J. ; Xie K. Chem. Soc. Rev. 2015, 44, 5409.
doi: 10.1039/C4CS00453A |
6 |
Kang X. ; Fu G. ; Fu X. Z. ; Luo J. L. Chin. Chem. Lett. 2022, 34, 107757.
doi: 10.1016/j.cclet.2022.107757 |
7 |
Zhao Y. ; Waterhouse G. I. N. ; Chen G. ; Xiong X. ; Wu L. ; Tung Z. ; Zhang C. H. T. Chem. Soc. Rev. 2019, 48, 1972.
doi: 10.1039/C8CS00607E |
8 |
Gong E. ; Ali S. C. ; Hiragond B. ; Kim H. S. ; Powar N. S. ; Kim D. ; Kim H. ; In S. I. Energy Environ. Sci. 2022, 15, 880.
doi: 10.1039/D1EE02714J |
9 |
Indrakanti V. P. ; Kubicki J. D. ; Schobert H. H. Energy Environ. Sci. 2009, 2, 745.
doi: 10.1039/B822176F |
10 |
Kondratenko E. V. ; Mul G. ; Baltrusaitis J. ; Larrazábal G. O. ; Pérez-Ramírez J. Energy Environ. Sci. 2013, 6, 3112.
doi: 10.1039/C3EE41272E |
11 |
Peterson A. A. ; Abild-Pedersen F. ; Studt F. ; Rossmeisl J. ; Norskov J. K. Energy Environ. Sci. 2010, 3, 1311.
doi: 10.1039/C0EE00071J |
12 |
Kuang S. ; Li M. ; Chen X. ; Chi H. ; Lin J. ; Hu Z. ; Hu S. ; Zhang S. ; Ma X. Chin. Chem. Lett. 2022, 23, 108013.
doi: 10.1016/j.cclet.2022.108013 |
13 |
Li H. ; Zhao J. ; Luo L. ; Du J. ; Zeng J. Acc. Chem. Res. 2021, 54, 1454.
doi: 10.1021/acs.accounts.0c00715 |
14 |
Wagner A. ; Sahm C. D. ; Reisner E. Nat. Catal. 2020, 3, 775.
doi: 10.1038/s41929-020-00512-x |
15 |
Kong T. ; Jiang Y. ; Xiong Y. Chem. Soc. Rev. 2020, 49, 6579.
doi: 10.1039/C9CS00920E |
16 |
Liu G. ; Wang L. ; Wang B. ; Zhu X. ; Yang J. ; Liu P. ; Zhu W. ; Chen Z. ; Xia J. Chin. Chem. Lett. 2022, 34, 107962.
doi: 10.1016/j.cclet.2022.107962 |
17 | Han B. Acta Phys. -Chim. Sin. 2022, 38, 2012011. |
韩布兴; 物理化学学报, 2022, 38, 2012011.
doi: 10.3866/PKU.WHXB202012011 |
|
18 |
Li H. ; Wang L. ; Dai Y. ; Pu Z. ; Lao Z. ; Chen Y. ; Wang M. ; Zheng X. ; Zhu J. ; Zhang W. ; et al Nat. Nanotechnol. 2018, 13, 411.
doi: 10.1038/s41565-018-0089-z |
19 |
Wang L. ; Zhang W. ; Zheng X. ; Chen Y. ; Wu W. ; Qiu J. ; Zhao X. ; Zhao X. ; Dai Y. ; Zeng J. Nat. Energy 2017, 2, 869.
doi: 10.1038/s41560-017-0015-x |
20 |
Chen Y. ; Li H. ; Zhao W. ; Zhang W. ; Li J. ; Li W. ; Zheng X. ; Yan W. ; Zhang W. ; Zhu J. ; et al Nat. Commun. 2019, 10, 1885.
doi: 10.1038/s41467-019-09918-z |
21 |
Peng Y. ; Wang L. ; Luo Q. ; Cao Y. ; Dai Y. ; Li Z. ; Li H. ; Zheng X. ; Yan W. ; Yang J. ; et al Chem 2018, 4, 613.
doi: 10.1016/j.chempr.2018.01.019 |
22 |
Xue Z. H. ; Luan D. ; Zhang H. ; Lou X. W. Joule 2022, 6, 92.
doi: 10.1016/j.joule.2021.12.011 |
23 |
Yan H. ; Yang J. ; Ma G. ; Wu G. ; Zong X. ; Lei Z. ; Shi J. ; Li C. J. Catal. 2009, 266, 165.
doi: 10.1016/j.jcat.2009.06.024 |
24 |
Song H. ; Meng X. ; Wang S. ; Zhou W. ; Wang X. ; Kako T. ; Ye J. J. Am. Chem. Soc. 2019, 141, 20507.
doi: 10.1021/jacs.9b11440 |
25 |
Xie J. ; Jin R. ; Li A. ; Bi Y. ; Ruan Q. ; Deng Y. ; Zhang Y. ; Yao S. ; Sankar G. ; Ma D. ; et al Nat. Catal. 2018, 1, 889.
doi: 10.1038/s41929-018-0170-x |
26 |
Rao Z. ; Cao Y. ; Huang Z. ; Yin Z. ; Wan W. ; Ma M. ; Wu Y. ; Wang J. ; Yang G. ; Cui Y. ; et al ACS Catal. 2021, 11, 4730.
doi: 10.1021/acscatal.0c04826 |
27 |
Cao Y. ; Zhang R. ; Zheng Q. ; Cui W. ; Liu Y. ; Zheng K. ; Dong F. ; Zhou Y. ACS Appl. Mater. Interfaces 2020, 12, 34432.
doi: 10.1021/acsami.0c09216 |
28 |
Zhao Z. ; Cao Y. ; Dong F. ; Wu F. ; Li B. ; Zhang Q. ; Zhou Y. Nanoscale 2019, 11, 6360.
doi: 10.1039/C8NR10356A |
29 |
Cao Y. ; Zheng Q. ; Rao Z. ; Zhang R. ; Xie Z. ; Yu S. ; Zhou Y. Chin. Chem. Lett. 2020, 31, 2689.
doi: 10.1016/j.cclet.2020.07.032 |
30 |
Habisreutinger S. N. ; Schmidt-Mende L. ; Stolarczyk J. K. Angew. Chem. Int. Ed. 2013, 52, 7372.
doi: 10.1002/anie.201207199 |
31 |
Aresta M. ; Dibenedetto A. Dalton Trans. 2007, 28, 2975.
doi: 10.1039/B700658F |
32 |
Maginn E. J. J. Phys. Chem. Lett. 2010, 1, 3478.
doi: 10.1021/jz101582c |
33 |
Centi G. ; Perathoner S. ChemSusChem 2010, 3, 195.
doi: 10.1002/cssc.200900289 |
34 |
Lewis N. S. ; Nocera D. G. Proc. Natl. Acad. Sci. USA 2006, 103, 15729.
doi: 10.1073/pnas.0603395103 |
35 |
Pasten C. ; Santamarina J. C. Energy Policy 2012, 49, 468.
doi: 10.1016/j.enpol.2012.06.051 |
36 |
Fontecave M. Angew. Chem. Int. Ed. 2011, 50, 6704.
doi: 10.1002/anie.201102819 |
37 |
Li Y. ; Hao J. ; Song H. ; Zhang F. ; Bai X. ; Meng X. ; Zhang H. ; Wang S. ; Hu Y. ; Ye J. Nat. Commun. 2019, 10, 2359.
doi: 10.1038/s41467-019-10304-y |
38 |
Freund H. J. ; Roberts M. W. Surf. Sci. Rep. 1996, 25, 225.
doi: 10.1016/S0167-5729(96)00007-6 |
39 |
Varghese O. K. ; Paulose M. ; LaTempa T. J. ; Grimes C. A. Nano Lett. 2009, 9, 731.
doi: 10.1021/nl803258p |
40 |
Kim W. ; Seok T. ; Choi W. Energy Environ. Sci. 2012, 5, 6066.
doi: 10.1039/C2EE03338K |
41 |
Birdja Y. Y. ; Pérez-Gallent E. ; Figueiredo M. C. ; Göttle A. J. ; Calle-Vallejo F. ; Koper. M. T. M. Nat. Energy 2019, 4, 732.
doi: 10.1038/s41560-019-0450-y |
42 |
Gong E. ; Ali S. ; Hiragond C. B. ; Kim H. S. ; Powar N. S. ; Kim D. ; Kim H. ; In S. I. Energy Environ. Sci. 2022, 15, 880.
doi: 10.1039/D1EE02714J |
43 |
Yang H. ; Zhang J. F. ; Dai K. Chin. J. Catal. 2022, 43, 255.
doi: 10.1016/S1872-2067(20)63784-6 |
44 |
Wang Y. ; Chen E. ; Tang J. ACS Catal. 2022, 12, 7300.
doi: 10.1021/acscatal.2c01012 |
45 |
Jiang X. ; Nie X. ; Guo X. ; Song C. ; Chen J. G. Chem. Rev. 2020, 120, 7984.
doi: 10.1021/acs.chemrev.9b00723 |
46 |
Adekoya D. ; Tahir M. ; Amin N. A. S. Renew. Sustain. Energy Rev. 2019, 116, 109389.
doi: 10.1016/j.rser.2019.109389 |
47 |
Hu T. ; Dai K. ; Zhang J. ; Chen S. Appl. Catal. B 2020, 269, 118844.
doi: 10.1016/j.apcatb.2020.118844 |
48 |
Das R. ; Chakraborty S. ; Peter S. C. ACS Energy Lett. 2021, 6, 3270.
doi: 10.1021/acsenergylett.1c01522 |
49 |
Si S. ; Shou H. ; Mao Y. ; Bao X. ; Zhai G. ; Song K. ; Wang Z. ; Wang P. ; Liu Y. ; Zheng Z. ; et al Angew. Chem. Int. Ed. 2022, 61, e202209446.
doi: 10.1002/anie.202209446 |
50 |
Pan Q. ; Abdellah M. ; Cao Y. ; Lin W. ; Liu Y. ; Meng J. ; Zhou Q. ; Zhao Q. ; Yan X. ; Li Z. ; et al Nat. Commun. 2022, 13, 845.
doi: 10.1038/s41467-022-28409-2 |
51 |
Fan Y. ; Zhou W. ; Qiu X. ; Li H. ; Jiang Y. ; Sun Z. ; Han D. ; Niu L. ; Tang Z. Nat. Sustain. 2021, 4, 509.
doi: 10.1038/s41893-021-00682-x |
52 |
Luo L. ; Luo J. ; Li H. ; Ren F. ; Zhang Y. ; Liu A. ; Li W. X. ; Zeng J. Nat. Commun. 2021, 12, 1218.
doi: 10.1038/s41467-021-21482-z |
53 |
Luo L. ; Gong Z. ; Xu Y. ; Ma J. ; Liu H. ; Xing J. ; Tang J. J. Am. Chem. Soc. 2022, 144, 740.
doi: 10.1021/jacs.1c09141 |
54 |
Feng N. ; Lin H. ; Song H. ; Yang L. ; Tang D. ; Deng F. ; Ye J. Nat. Commun. 2021, 12, 4652.
doi: 10.1038/s41467-021-24912-0 |
55 |
Zheng K. ; Wu Y. ; Zhu J. ; Wu M. ; Jiao X. ; Li L. ; Wang S. ; Fan M. ; Hu J. ; Yan W. ; et al J. Am. Chem. Soc. 2022, 144, 12357.
doi: 10.1021/jacs.2c03866 |
56 |
Sun X. ; Chen X. ; Fu C. ; Yu Q. ; Zheng X. S. ; Fang F. ; Liu Y. ; Zhu J. ; Zhang W. ; Huang W. Nat. Commun. 2022, 13, 6677.
doi: 10.1038/s41467-022-34563-4 |
57 |
Low J. ; Yu J. ; Jaroniec M. ; Wageh S. ; Al-Ghamdi A. A. Adv. Mater. 2017, 29, 1601694.
doi: 10.1002/adma.201601694 |
58 |
Ran J. ; Jaroniec M. ; Qiao S. Z. Adv. Mater. 2018, 30, 1704649.
doi: 10.1002/adma.201704649 |
59 |
Cao Y. ; Guo L. ; Dan M. ; Doronkin D. E. ; Han C. ; Rao Z. ; Liu Y. ; Meng J. ; Huang Z. ; Zheng K. ; et al Nat. Commun. 2021, 12, 1675.
doi: 10.1038/s41467-021-21925-7 |
60 |
Zhang Y. ; Zhi X. ; Harmer J. R. ; Xu H. ; Davey K. ; Ran J. ; Qiao S. Z. Angew. Chem. Int. Ed. 2022, 61, e202212355.
doi: 10.1002/anie.202212355 |
61 | Yao S. ; Sun B. Q. ; Zhang P. ; Tian Z. Y. ; Yin H. Q. ; Zhang Z. M. Appl. Catal. B 2022, 317, 121702. |
62 |
Wang Z. ; Zhu J. ; Zu X. ; Wu Y. ; Shang S. ; Ling P. ; Qiao P. ; Liu C. ; Hu J. ; Pan Y. ; et al Angew. Chem. Int. Ed. 2022, 61, e202203249.
doi: 10.1002/anie.202203249 |
63 |
Tian T. ; Jin X. ; Guo N. ; Li H. ; Han Y. ; Yuan Y. Appl. Catal. B 2022, 308, 121227.
doi: 10.1016/j.apcatb.2022.121227 |
64 |
Ma M. ; Huang Z. ; Doronkin D. E. ; Fa W. ; Rao Z. ; Zou Y. Appl. Catal. B 2022, 300, 120695.
doi: 10.1016/j.apcatb.2021.120695 |
65 |
Feng X. ; Zheng R. ; Gao C. ; Wei W. ; Peng J. ; Wang R. ; Yang S. ; Zou W. ; Wu X. ; Ji Y. ; et al Nat. Commun. 2022, 13, 2146.
doi: 10.1038/s41467-022-29671-0 |
66 |
Jiao W. ; Xie Y. ; He F. ; Wang K. ; Ling Y. ; Hu Y. ; Wang J. ; Ye H. ; Wu J. ; Hou Y. Chem. Eng. J. 2021, 418, 129286.
doi: 10.1016/j.cej.2021.129286 |
67 |
Zhu L. ; Liu Y. ; Peng X. ; Li Y. ; Men Y. L. ; Liu P. ; Pan Y. X. ACS Appl. Mater. Interfaces 2020, 12, 12892.
doi: 10.1021/acsami.0c00163 |
68 |
Wang Y. ; Liu X. ; Han X. ; Godin R. ; Chen J. ; Zhou W. ; Jiang C. ; Thompson J. F. ; Mustafa K. B. ; Shevlin S. A. ; et al Nat. Commun. 2020, 11, 2531.
doi: 10.1038/s41467-020-16227-3 |
69 |
Liu P. ; Huang Z. ; Gao X. ; Hong X. ; Zhu J. ; Wang G. ; Wu Y. ; Zeng J. ; Zheng X. Adv. Mater. 2022, 34, 2200057.
doi: 10.1002/adma.202200057 |
70 |
Shi Y. ; Li J. ; Mao C. ; Liu S. ; Wang X. ; Liu X. ; Zhao S. ; Liu X. ; Huang Y. ; Zhang L. Nat. Commun. 2021, 12, 5923.
doi: 10.1038/s41467-021-26219-6 |
71 |
Wang J. ; Bo T. ; Shao B. ; Zhang Y. ; Jia L. ; Tan X. ; Zhou W. ; Yu T. Appl. Catal. B 2021, 297, 120498.
doi: 10.1016/j.apcatb.2021.120498 |
72 |
Yu Z. ; Yang K. ; Yu C. ; Lu K. ; Huang W. ; Xu L. ; Zou L. X. ; Wang S. ; Chen Z. ; Hu J. ; et al Adv. Funct. Mater. 2022, 32, 2111999.
doi: 10.1002/adfm.202111999 |
73 |
Yue X. ; Cheng L. ; Li F. ; Fan J. ; Xiang Q. Angew. Chem. Int. Ed. 2022, 61, e202208414.
doi: 10.1002/anie.202208414 |
74 |
Xin Z. K. ; Gao Y. J. ; Gao Y. ; Song H. W. ; Zhao J. ; Fan F. T. ; Xia A. D. ; Li X. B. ; Tung C. H. ; Wu L. Z. Adv. Mater. 2022, 34, 2106662.
doi: 10.1002/adma.202106662 |
75 |
Xiao Y. ; Maimaitizi H. ; Okitsu K. ; Tursun Y. ; Abulizi A. Part. Part. Syst. Charact. 2022, 39, 2200019.
doi: 10.1002/ppsc.202200019 |
76 |
Yang Y. ; Pan Y. X. ; Tu X. ; Liu C. J. Nano Energy 2022, 101, 107613.
doi: 10.1016/j.nanoen.2022.107613 |
77 |
Shi X. ; Dong X. ; He Y. ; Yan P. ; Zhang S. ; Dong F. ACS Catal 2022, 12, 3965.
doi: 10.1021/acscatal.2c00157 |
78 |
Li L. ; Dai X. ; Chen D. L. ; Zeng Y. ; Hu Y. ; Lou X. W. Angew. Chem. Int. Ed. 2022, 61, e202205839.
doi: 10.1002/anie.202205839 |
79 |
Cao H. ; Jiang S. ; Xue J. ; Zhu X. ; Zhang Q. ; Bao J. J. Phys. Chem. Lett. 2022, 13, 8397.
doi: 10.1021/acs.jpclett.2c01983 |
80 |
Ni M. ; Zhu Y. ; Guo C. ; Chen D. L. ; Ning J. ; Zhong Y. ; Hu Y. ACS Catal 2023, 13, 2502.
doi: 10.1021/acscatal.2c05577 |
81 |
Álvarez A. ; Borges M. ; Corral-Pérez J. J. ; Olcina J. G. ; Hu L. ; Cornu D. ; Huang R. ; Stoian D. ; Urakawa A. ChemPhysChem 2017, 18, 3135.
doi: 10.1002/cphc.201700782 |
82 |
Cao Y. ; Zhang R. ; Zhou T. ; Jin S. ; Huang J. ; Ye L. ; Huang Z. ; Wang F. ; Zhou Y. ACS Appl. Mater. Interfaces 2020, 12, 9935.
doi: 10.1021/acsami.9b21157 |
83 |
Xiong Z. ; Wang H. ; Xu N. ; Li H. ; Fang B. ; Zhao Y. ; Zhang J. ; Zheng C. Int. J. Hydrog. Energy 2015, 40, 10049.
doi: 10.1016/j.ijhydene.2015.06.075 |
84 |
Iizuka K. ; Wato T. ; Miseki Y. ; Saito K. ; Kudo A. J. Am. Chem. Soc. 2011, 133, 20863.
doi: 10.1021/ja207586e |
85 |
Wang Z. ; Teramura K. ; Hosokawa S. ; Tanaka T. J. Mater. Chem. A 2015, 3, 11313.
doi: 10.1039/C5TA01697E |
86 |
Yui T. ; Kan A. ; Saitoh C. ; Koike K. ; Ibusuki T. ; Ishitani O. ACS Appl. Mater. Interfaces 2011, 3, 2594.
doi: 10.1021/am200425y |
87 |
Baran T. ; Wojtyła S. ; Dibenedetto A. ; Aresta M. ; Macyk W. Appl. Catal. B 2015, 178, 170.
doi: 10.1016/j.apcatb.2014.09.052 |
88 |
Solymosi F. ; Tombácz I. Catal. Lett. 1994, 27, 61.
doi: 10.1007/BF00806978 |
89 |
Cao L. ; Sahu S. ; Anilkumar P. ; Bunker C. E. ; Xu J. ; Fernando K. A. S. ; Wang P. ; Guliants E. A. ; Tackett K. N. ; Sun Y. P. J. Am. Chem. Soc. 2011, 133, 4754.
doi: 10.1021/ja200804h |
90 |
Zhang H. ; Wang Y. ; Zuo S. ; Zhou W. ; Zhang J. ; Lou X. W. D. J. Am. Chem. Soc. 2021, 143, 2173.
doi: 10.1021/jacs.0c08409 |
91 |
Zhang Z. ; Wang Z. ; Cao S. W. ; Xue C. J. Phys. Chem. C 2013, 117, 25939.
doi: 10.1021/jp409311x |
92 |
Ma Z. ; Li P. ; Ye L. ; Zhou Y. ; Su F. ; Ding C. ; Xie H. ; Bai Y. ; Wong P. K. J. Mater. Chem. A 2017, 5, 24995.
doi: 10.1039/C7TA08766G |
93 |
Yu H. ; Li J. ; Zhang Y. ; Yang S. ; Han K. ; Dong F. ; Ma T. ; Huang H. Angew. Chem. Int. Ed. 2019, 58, 3880.
doi: 10.1002/anie.201813967 |
94 |
Wang B. ; Yang S. Z. ; Chen H. ; Gao Q. ; Weng Y. X. ; Zhu W. ; Liu G. ; Zhang Y. ; Ye Y. ; Zhu H. ; et al Appl. Catal. B 2020, 277, 119170.
doi: 10.1016/j.apcatb.2020.119170 |
95 |
Jin X. ; Lv C. ; Zhou X. ; Ye L. ; Xie H. ; Liu Y. ; Su H. ; Zhang B. ; Chen G. ChemSusChem 2019, 12, 2740.
doi: 10.1002/cssc.201900621 |
96 |
Yang X. ; Wang S. ; Yang N. ; Zhou W. ; Wang P. ; Jiang K. ; Li S. ; Song H. ; Ding X. ; Chen H. ; et al Appl. Catal. B 2019, 259, 118088.
doi: 10.1016/j.apcatb.2019.118088 |
97 |
Wang F. ; Wei S. ; Zhang Z. ; Patzke G. R. ; Zhou Y. Phys. Chem. Chem. Phys. 2016, 18, 6706.
doi: 10.1039/C5CP06835E |
98 |
Zuo F. ; Wang L. ; Wu T. ; Zhang Z. ; Borchardt D. ; Feng P. J. Am. Chem. Soc 2010, 132, 11856.
doi: 10.1021/ja103843d |
99 |
Zhao Z. ; Tan H. ; Zhao H. ; Lv Y. ; Zhou L. J. ; Song Y. ; Sun Z. Chem. Commun. 2014, 50, 2755.
doi: 10.1039/C3CC49182J |
100 |
Xiong T. ; Cen W. ; Zhang Y. ; Dong F. ACS Catal. 2016, 6, 2462.
doi: 10.1021/acscatal.5b02922 |
101 |
Dong X. ; Li J. ; Xing Q. ; Zhou Y. ; Huang H. ; Dong F. Appl. Catal. B 2018, 232, 69.
doi: 10.1016/j.apcatb.2018.03.054 |
102 |
Chen P. ; Lei B. ; Dong X. ; Wang H. ; Sheng J. ; Cui W. ; Li J. ; Sun Y. ; Wang Z. ; Dong F. ACS Nano 2020, 14, 15841.
doi: 10.1021/acsnano.0c07083 |
103 |
Zhang R. ; Li P. ; Wang F. ; Ye L. ; Gaur A. ; Huang Z. ; Zhao Z. ; Bai Y. ; Zhou Y. Appl. Catal. B 2019, 250, 273.
doi: 10.1016/j.apcatb.2019.03.025 |
104 |
Gao Q. ; Xu J. ; Wang Z. ; Zhu Y. Appl. Catal. B 2020, 271, 118933.
doi: 10.1016/j.apcatb.2020.118933 |
105 |
Zhang L. ; Zhang J. ; Yu H. ; Yu J. Adv. Mater. 2022, 34, 2107668.
doi: 10.1002/adma.202107668 |
106 |
Xu Q. ; Zhang L. ; Cheng B. ; Fan J. ; Yu J. Chem 2020, 6, 1543.
doi: 10.1016/j.chempr.2020.06.010 |
107 |
Chen Y. ; Wang F. ; Cao Y. ; Zhang F. ; Zou Y. ; Huang Z. ; Ye L. ; Zhou Y. ACS Appl. Energy Mater. 2020, 3, 4610.
doi: 10.1021/acsaem.0c00273 |
108 |
Xu F. ; Meng K. ; Cheng B. ; Wang S. ; Xu J. ; Yu J. Nat. Commun. 2020, 11, 4613.
doi: 10.1038/s41467-020-18350-7 |
109 |
Li J. ; Huang H. ; Xue W. ; Sun K. ; Song X. ; Wu C. ; Nie L. ; Li Y. ; Liu C. ; Pan Y. ; et al Nat. Catal. 2021, 4, 719.
doi: 10.1038/s41929-021-00665-3 |
110 |
Li X. ; Sun Y. ; Xu J. ; Shao Y. ; Wu J. ; Xu X. ; Pan Y. ; Ju H. ; Zhu J. ; Xie Y. Nat. Energy 2019, 4, 690.
doi: 10.1038/s41560-019-0431-1 |
111 |
Li Y. ; Wang S. ; Wang X. ; He Y. ; Wang Q. ; Li Y. ; Li M. ; Yang G. ; Yi J. ; Lin H. ; et al J. Am. Chem. Soc. 2020, 142, 19259.
doi: 10.1021/jacs.0c09060 |
112 |
Guo L. ; Cao Y. ; Dan M. ; Zou C. ; Huang Z. ; Zhou Y. Chin. Sci. Bull. 2020, 65, 522.
doi: 10.1360/TB-2019-0670 |
113 |
Ma M. ; Chen J. ; Huang Z. ; Fa W. ; Wang F. ; Cao Y. ; Yang Y. ; Rao Z. ; Wang R. ; Zhang R. ; et al Chem. Eng. J. 2022, 444, 136585.
doi: 10.1016/j.cej.2022.136585 |
114 |
Wang J. ; Xia T. ; Wang L. ; Zheng X. ; Qi Z. ; Gao C. ; Zhu J. ; Li Z. ; Xu H. ; Xiong Y. Angew. Chem. Int. Edit. 2018, 57, 16447.
doi: 10.1002/anie.201810550 |
115 |
Cao Y. ; Zhang R. ; Zhou T. ; Jin S. ; Huang J. ; Ye L. ; Huang Z. ; Wang F. ; Zhou Y. ACS Appl. Mater. Interfaces 2020, 12, 9935.
doi: 10.1021/acsami.9b21157 |
116 |
Ma M. ; Huang Z. ; Wang R. ; Zhang R. ; Yang T. ; Rao Z. ; Fa W. ; Zhang F. ; Cao Y. ; Yu S. ; et al Green Chem. 2022, 24, 8791.
doi: 10.1039/D2GC03226K |
[1] | 雷淦昌, 郑勇, 曹彦宁, 沈丽娟, 王世萍, 梁诗景, 詹瑛瑛, 江莉龙. 钾改性氧化铝基羰基硫水解催化剂及其失活机理[J]. 物理化学学报, 2023, 39(9): 2210038 -0 . |
[2] | 陈鹏, 周莹, 董帆. 二维光催化材料电子结构和性能调控策略研究进展[J]. 物理化学学报, 2021, 37(8): 2010010 - . |
[3] | 赵康宁, 李潇, 苏东. 高熵纳米合金在电化学催化中的应用[J]. 物理化学学报, 2021, 37(7): 2009077 - . |
[4] | 徐冰妍, 张应, 皮业灿, 邵琪, 黄小青. 镍基金属有机框架及其衍生物在电催化析氧反应中的研究进展[J]. 物理化学学报, 2021, 37(7): 2009074 - . |
[5] | 王欢, 吴云雁, 赵燕飞, 刘志敏. 离子液体介导CO2化学转化研究进展[J]. 物理化学学报, 2021, 37(5): 2010022 - . |
[6] | 郁桂云,胡丰献,程伟伟,韩字童,刘超,戴勇. ZnCuAl-LDH/Bi2MoO6纳米复合材料的构建及其可见光催化降解性能[J]. 物理化学学报, 2020, 36(7): 1911016 - . |
[7] | 葛靖暄, 胡钧, 朱盈婷, 泽妮诗, 臧德进, 秦召贤, 黄毅超, 张江威, 魏永革. 多酸在电催化析氢反应中的应用研究进展[J]. 物理化学学报, 2020, 36(1): 1906063 - . |
[8] | 林舟,申琳璠,瞿希铭,张俊明,姜艳霞,孙世刚. 盐封后碳化钼电催化剂的制备及其氢析出性能[J]. 物理化学学报, 2019, 35(5): 523 -530 . |
[9] | 金毅, 王悦, 卞富永, 史强, 葛茂发, 王树, 张兴康, 徐四川. 多巴胺第三受体蛋白三维结构及其活性位点氨基酸残基[J]. 物理化学学报, 2011, 27(10): 2432 -2446 . |
[10] | 徐四川, 邓圣荣, 马丽英, 史强, 葛茂发, 张兴康. 牛视紫红质蛋白质中视黄醛的活性位点[J]. 物理化学学报, 2009, 25(07): 1290 -1296 . |
[11] | 计明娟, 杨鹏程. 甲硫氨酸-脑啡肽的活性位点[J]. 物理化学学报, 2000, 16(07): 596 -600 . |
|