物理化学学报 >> 2019, Vol. 35 >> Issue (9): 913-922.doi: 10.3866/PKU.WHXB201809036
所属专题: 碳氢键活化
收稿日期:
2018-09-21
录用日期:
2018-10-25
发布日期:
2018-10-29
通讯作者:
王从洋
E-mail:wangcy@iccas.ac.cn
基金资助:
Yuanyuan HU1,2,Congyang WANG1,2,*()
Received:
2018-09-21
Accepted:
2018-10-25
Published:
2018-10-29
Contact:
Congyang WANG
E-mail:wangcy@iccas.ac.cn
About author:
WANG Congyang obtained his B.S. degree from Nanjing University in 2000 and his Ph.D. degree from Peking University under the guidance of Prof. Zhenfeng Xi in 2005. After a postdoctoral stay in the same group, he moved to the University of Münster, Germany, working with Prof. Frank Glorius as an Alexander von Humboldt Research Fellow. In 2010, he started his independent research career at Institute of Chemistry, Chinese Academy of Sciences as a professor. In 2015, he became a joint professor at the University of Chinese Academy of Sciences (UCAS). Currently, his research interest focuses on manganese-group-metal catalysis
Supported by:
摘要:
近年来,过渡金属催化的碳氢键活化反应得到了快速的发展,已成为构建碳碳键及碳杂原子键的重要手段之一。利用双金属之间的协同效应,发展的双金属促进的碳氢键活化反应也引起了广泛的关注,并在均相催化领域里取得了良好的应用。双金属促进的碳氢键活化反应与单金属催化的碳氢键活化反应相比,能够表现出不同的化学选择性、区域选择性以及立体选择性,体现了其独特之处。本综述总结了各种双金属促进的碳氢键活化体系,同时依据实验和理论研究结果对可能的反应机理进行了探讨。
胡媛媛,王从洋. 双金属促进的均相碳氢键活化反应[J]. 物理化学学报, 2019, 35(9): 913-922.
Yuanyuan HU,Congyang WANG. Bimetallic C―H Activation in Homogeneous Catalysis[J]. Acta Physico-Chimica Sinica, 2019, 35(9): 913-922.
1 | Yu J. Q. ; Shi Z.-J C―H Activation Springer: Berlin, Germany,, 2010. |
2 |
Li C.-J. Acc. Chem. Res 2009, 42, 335.
doi: 10.1021/ar800164n |
3 |
Sun C. -L. ; Li B. -J. ; Shi Z. -J. Chem. Rev 2011, 111, 1293.
doi: 10.1021/cr100198w |
4 |
Arockiam P. B. ; Bruneau C. ; Dixneuf P. H. Chem. Rev. 2012.
doi: 10.1021/cr300153j |
5 |
Wencel-Delord J. ; Glorius F. Nat. Chem 2013, 5, 369.
doi: 10.1038/nchem.1607 |
6 |
Song G. ; Li X. Acc. Chem. Res 2015, 48, 1007.
doi: 10.1021/acs.accounts.5b00077 |
7 |
Moselage M. ; Li J. ; Ackermann L. ACS Catal 2016, 6, 498.
doi: 10.1021/acscatal.5b02344 |
8 |
He J. ; Wasa M. ; Chan K. S. L. ; Shao Q. ; Yu J.-Q. Chem. Rev 2017, 117, 8754.
doi: 10.1021/acs.chemrev.6b00622 |
9 |
Hummel J. R. ; Boerth J. A. ; Ellman J. A. Chem. Rev 2017, 117, 9163.
doi: 10.1021/acs.chemrev.6b00661 |
10 |
Shang R. ; Ilies L. ; Nakamura E. Chem. Rev. 2017, 117.
doi: 10.1021/acs.chemrev.6b00772 |
11 |
Hu Y. ; Zhou B. ; Wang C. Acc. Chem. Res 2018, 51, 816.
doi: 10.1021/acs.accounts.8b00028 |
12 | de Meijere A. ; Diederich F. Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2004. |
13 |
Sinfelt J. H. Acc. Chem. Res. 1977, 10, 15.
doi: 10.1021/ar50109a003 |
14 | Sinfelt J. H. Bimetallic Catalysis: Discoveries, Concepts and Applications; John Wiley and Sons: New York, USA, 1983. |
15 |
Shibasaki M. ; Yamamoto Y. Multimetallic Catalysts in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2004.
doi: 10.1126/science.1135941 |
16 |
Stamenkovic V. R. ; Fowler B. ; Mun B. S. ; Wang G. F. ; Ross P. N. ; Lucas C. A. ; Markovic N. M. Science, 2007, 315, 493.
doi: 10.1039/b608694m |
17 |
Wang C. ; Xi Z. Chem. Soc. Rev 2007, 36, 1395.
doi: 10.1021/cr500208k |
18 |
Buchwalter P. ; Rosé J. ; Braunstein P. Chem. Rev 2015, 115, 28.
doi: 10.1039/c6sc05556g |
20 |
Mankad N. P. Chem. Commun 2018, 54, 1291.
doi: 10.1039/c7cc09675e |
21 |
Davies H. M. L. ; Beckwith R. E. J. Chem. Rev. , 2003, 103, 2861.
doi: 10.1021/cr0200217 |
22 |
Du Bois J. Org. Process Res. Dev. , 2011, 15, 758.
doi: 10.1021/op200046v |
23 |
Kornecki K. P. ; Briones J. F. ; Boyarshikh V. ; Fullilove F. ; Autschbach J. ; Schrote K. E. ; Lancaster K. M. ; Davies H. M. ; Berry J. F. Science, 2013, 342, 351.
doi: 10.1126/science.1243200 |
24 |
Davies H. M. L. ; Morton D. ACS Cent. Sci 2017, 3, 936.
doi: 10.1021/acscentsci.7b00329 |
25 |
Lyons T. W. ; Sanford M. S. Chem. Rev 2010, 110, 1147.
doi: 10.1021/cr900184e |
26 |
Lane B. S. ; Brown M. A. ; Sames D. J. Am. Chem. Soc 2005, 127, 8050.
doi: 10.1021/ja043273t |
27 |
Ricci P. ; Kr mer K. ; Cambeiro X. C. ; Larrosa I. J. Am. Chem. Soc 2013, 135, 13258.
doi: 10.1021/ja405936s |
28 |
Yeung C. S. ; Dong V. M. Chem. Rev 2011, 111, 1215.
doi: 10.1021/cr100280d |
29 |
Ricci P. ; Krämer K. ; Larrosa I. J. Am. Chem. Soc 2014, 136, 18082.
doi: 10.1021/ja510260j |
30 |
Whitaker D. ; Batuecas M. ; Ricci P. ; Larrosa I. Chem. Eur. J 2017, 23, 12763.
doi: 10.1002/chem.201703527 |
31 |
Huang G. -H. ; Li J.-M. ; Huang J. -J. ; Lin J. -D. ; Chuang G. J. Chem. Eur. J. 2014, 20, 5240.
doi: 10.1002/chem.201304633 |
32 |
Martin T. ; Verrier C. ; Hoarau C. ; Marsais F. Org. Lett 2008, 10, 2909.
doi: 10.1021/ol801035c |
33 |
Joo J. M. ; Touré B. B. ; Sames D. J. Org. Chem 2010, 75, 4911.
doi: 10.1021/jo100727j |
34 |
Strotman N. A. ; Chobanian H. R. ; Guo Y. ; He J. ; Wilson J. E. Org. Lett 2010, 12, 3578.
doi: 10.1021/ol1011778 |
35 |
Théveau L. ; Verrier C. ; Lassalas P. ; Martin T. ; Dupas G. ; Querolle O. ; Hijfte L. V. ; Marsais F. ; Hoarau C. Chem. Eur. J 2011, 17, 14450.
doi: 10.1002/chem.201101615 |
36 |
Zhu F. ; Wang Z.-X. Org. Lett 2015, 17, 1601.
doi: 10.1021/acs.orglett.5b00510 |
37 |
Kokornaczyk A. ; Schepmann D. ; Yamaguchi J. ; Itami K. ; Wünsch B. Med. Chem. Commun 2016, 7, 327.
doi: 10.1039/C5MD00526D |
38 |
Hu L.-Q. ; Deng R.-L. ; Li Y. -F. ; Zeng C.-J. ; Shen D. -S. ; Liu F.-S. Organometallics 2018, 37, 214.
doi: 10.1021/acs.organomet.7b00784 |
39 |
Pivsa-Art S. ; Satoh T. ; Kawamura Y. ; Miura M. ; Nomura M. Bull. Chem. Soc. Jpn 1998, 71, 467.
doi: 10.1246/bcsj.71.467 |
40 |
Kondo Y. ; Komine T. ; Sakamoto T. Org. Lett 2000, 2, 3111.
doi: 10.1021/ol000183u |
41 |
Mori A. ; Sekiguchi A. ; Masui K. ; Shimada T. ; Horie M. ; Osakada K. ; Kawamoto M. ; Ikeda T. J. Am. Chem. Soc 2003, 125, 1700.
doi: 10.1021/ja0289189 |
42 |
Bellina F. ; Cauteruccio S. ; Fiore A. D. ; Marchetti C. ; Rossi R. Tetrahedron , 2008, 64, 6060.
doi: 10.1016/j.tet.2008.01.051 |
43 |
Tani S. ; Uehara T. N. ; Yamaguchi J. ; Itami K. Chem. Sci 2014, 5, 123.
doi: 10.1039/C3SC52199K |
44 |
Gorelsky S. I. Organometallics, 2012, 31, 794.
doi: 10.1021/om2012612 |
45 |
Oh K. H. ; Kim S. M. ; Lee M. J. ; Park J. K. Adv. Synth. Catal 2015, 357, 3927.
doi: 10.1002/adsc.201500726 |
46 |
Leow D. ; Li G. ; Mei T. -S. ; Yu J.-Q. Nature 2012, 486, 518.
doi: 10.1038/nature11158 |
47 |
Yang Y.-F. ; Cheng G. -J. ; Liu P. ; Leow D. ; Sun T. -Y. ; Chen P. ; Zhang X. ; Yu J. -Q. ; Wu Y. -D. ; Houk K. N. J. Am. Chem. Soc. 2014, 136, 344.
doi: 10.1021/ja410485g |
48 |
Fang L. ; Saint-Denis T. G. ; Taylor B. L. H. ; Ahlquist S. ; Hong K. ; Liu S. ; Han L. ; Houk K. N. ; Yu J.-Q. J. Am. Chem. Soc 2017, 139, 10702.
doi: 10.1021/jacs.7b03296 |
49 |
Anand M. ; Sunoj R. B. ; Schaefer H. F. J. Am. Chem. Soc 2014, 136, 5535.
doi: 10.1021/ja412770h |
50 |
Yoo E. J. ; Ma S. ; Mei T. -S.; ; Chan K. S. L. ; Yu J. J. Am. Chem. Soc. 2011, 133, 7652.
doi: 10.1021/ja202563w |
51 |
Anand M. ; Sunoj R. B. ; Schaefer H. F. ACS Catal 2016, 6, 696.
doi: 10.1021/acscatal.5b02639 |
52 |
Kleiman J. P. ; Dubeck M. J. Am. Chem. Soc. 1963, 85, 1544.
doi: 10.1021/ja00893a040 |
53 |
Clement N. D. ; Cavell K. J. Angew. Chem. Int. Ed 2004, 43, 3845.
doi: 10.1002/anie.200454166 |
54 |
Kanyiva K. S. ; Nakao Y. ; Hiyama T. Angew. Chem. Int. Ed 2007, 46, 8872.
doi: 10.1002/anie.200703758 |
55 |
Tobisu M. ; Hyodo I. ; Chatani N. J. Am. Chem. Soc. , 2009, 131, 12070.
doi: 10.1021/ja9053509 |
56 |
Hachiya H. ; Hirano K. ; Satoh T. ; Miura M. Angew. Chem. Int. Ed 2010, 49, 2202.
doi: 10.1002/anie.200906996 |
57 |
Vechorkin O. ; Proust V. ; Hu X. Angew. Chem. Int. Ed. 2010, 49, 3061.
doi: 10.1002/anie.200907040 |
58 |
Yao T. ; Hirano K. ; Satoh T. ; Miura M. Angew. Chem. Int. Ed 2012, 51, 775.
doi: 10.1002/anie.201106825 |
59 |
Amaike K. ; Muto K. ; Yamaguchi J. ; Itami K. J. Am. Chem. Soc 2012, 134, 13573.
doi: 10.1021/ja306062c |
60 |
Nett. A. J. ; Zhao W. ; Zimmerman P. M. ; Montgomery J. J. Am. Chem. Soc 2015, 137, 7636.
doi: 10.1021/jacs.5b04548 |
61 |
Misal Castro L. C. ; Chatani N. Chem. Lett 2015, 44, 410.
doi: 10.1246/cl.150024 |
62 |
Zhan B. ; Liu B. ; Hu F. ; Shi B. Chin. Sci. Bull 2015, 60, 2907.
doi: 10.1360/N972015-00389 |
63 |
Yang X. ; Shan G. ; Wang L. ; Rao Y. Tetrahedron Lett. , 2016, 57, 819.
doi: 10.1016/j.tetlet.2016.01.009 |
64 |
Nakao Y. ; Kanyiva K. S. ; Hiyama T. J. Am. Chem. Soc 2008, 130, 2448.
doi: 10.1021/ja710766j |
65 |
Tsai C.-C. ; Shih W. -C. ; Fang C.-H. ; Li C. -Y. ; Ong T. -G. ; Yap G. P. A. J. Am. Chem. Soc. 2010, 132, 11887.
doi: 10.1021/ja1061246 |
66 |
Nakao Y. ; Yamada Y. ; Kashihara N. ; Hiyama T. J. Am. Chem. Soc 2010, 132, 13666.
doi: 10.1021/ja106514b |
67 |
Lee W. -C. ; Chen C.-H. ; Liu C.-Y. ; Yu M. -S. ; Lin Y. -H. ; Ong T.-G. Chem. Commun. 2015, 51, 17104.
doi: 10.1039/C5CC07455J |
68 |
Shih W. -C. ; Chen W.-C. ; Lai Y. -C. ; Yu M. -S. ; Ho J.-J. ; Yap G. P. A. ; Ong T.-G. Org. Lett. 2012, 14, 2046.
doi: 10.1021/ol300570f |
69 |
Lee W. -C. ; Wang C. -H. ; Lin Y. -H. ; Shih W. -C. ; Ong T.-G. Org. Lett. 2013, 15, 5358.
doi: 10.1021/ol402644y |
70 |
Liu S. ; Sawicki J. ; Driver T. G. Org. Lett 2012, 14, 3744.
doi: 10.1021/ol301606y |
71 |
Yu M. -S. ; Lee W.-C. ; Chen C. -H. ; Tsai F. -Y. ; Ong T.-G. Org. Lett. 2014, 16, 4826.
doi: 10.1021/ol502314p |
72 |
Inoue F. ; Saito T. ; Semba K. ; Nakao Y. Chem. Commun 2017, 53, 4497.
doi: 10.1039/C7CC00852J |
73 |
Okumura S. ; Nakao Y. Asian J. Org. Chem 2018, 7, 1355.
doi: 10.1002/ajoc.201800208 |
74 |
Wang Y. -X. ; Qi S. -L. ; Luan Y. -X. ; Han X. -W. ; Wang S. ; Chen H. ; Ye M. J. Am. Chem. Soc. 2018, 140, 5360.
doi: 10.1021/jacs.8b02547 |
75 |
Nakao Y. ; Idei H. ; Kanyiva K. S. ; Hiyama T. J. Am. Chem. Soc 2009, 131, 15996.
doi: 10.1021/ja907214t |
76 |
Tamura R. ; Yamada Y. ; Nakao Y. ; Hiyama T. Angew. Chem. Int. Ed 2012, 51, 5679.
doi: 10.1002/anie.201200922 |
77 |
Donets P. A. ; Cramer N. Angew. Chem. Int. Ed. 2015, 54, 633.
doi: 10.1002/anie.201409669 |
78 |
Nakao Y. ; Idei H. ; Kanyiva K. S. ; Hiyama T. J. Am. Chem. Soc 2009, 131, 5070.
doi: 10.1021/ja901153s |
79 |
Nakao Y. ; Morita E. ; Idei H. ; Hiyama T. J. Am. Chem. Soc 2011, 133, 3264.
doi: 10.1021/ja1102037 |
80 |
Donets P. A. ; Cramer N. J. Am. Chem. Soc. , 2013, 135, 11772.
doi: 10.1021/ja406730t |
81 |
Okumura S. ; Tang S. ; Saito T. ; Semba K. ; Sakaki S. ; Nakao Y. J. Am. Chem. Soc 2016, 138, 14699.
doi: 10.1021/jacs.6b08767 |
82 |
Okumura S. ; Nakao Y. Org. Lett 2017, 19, 584.
doi: 10.1021/acs.orglett.6b03741 |
83 |
Okumura S. ; Komine T. ; Shigeki E. ; Semba K. ; Nakao Y. Angew. Chem. Int. Ed 2018, 57, 929.
doi: 10.1002/anie.201710520 |
84 |
Louillat M. ; Patureau F. W. Org. Lett 2013, 15, 164.
doi: 10.1021/ol303216u |
85 |
Dikarev E. V. ; Gray T. G. ; Li B. Angew. Chem. Int. Ed 2005, 44, 1721.
doi: 10.1002/anie.200462433 |
86 |
Dikarev E. V. ; Li B. ; Zhang H. T. J. Am. Chem. Soc 2006, 128, 2814.
doi: 10.1021/ja058294h |
87 |
Durivage J. C. ; Gruhn N. E. ; Li B. ; Dikarev E. V. ; Lichtenberger D. L. J. Cluster Sci 2008, 19, 275.
doi: 10.1007/s10876-007-0179-9 |
88 |
Hansen J. ; Li B. ; Dikarev E. ; Autschbach J. ; Davies H. M. L. J. Org. Chem 2009, 74, 6564.
doi: 10.1021/jo900998s |
89 |
Yang L. ; Semba K. ; Nakao Y. Angew. Chem. Int. Ed 2017, 56, 4853.
doi: 10.1002/anie.201701238 |
90 |
Hu Y. ; Zhou B. ; Chen H. ; Wang C. Angew. Chem. Int. Ed. , 2018, 57, 12071.
doi: 10.1002/anie.201806287 |
91 |
Zhou B. ; Hu Y. ; Liu T. ; Wang C. Nat. Commun 2017, 8, 1169.
doi: 10.1038/s41467-017-01262-4 |
92 |
Zhou B. ; Hu Y. ; Wang C. Angew. Chem. Int. Ed 2015, 54, 13659.
doi: 10.1002/anie.201506187 |
93 |
Negishi E. ; Kondakov D. Y. ; Choueiry D. ; Kasai K. ; Takahashi T. J. Am. Chem. Soc 1996, 118, 9577.
doi: 10.1021/ja9538039 |
[1] | 侯玉翠, 何卓森, 任树行, 吴卫泽. 均相催化剂催化氧气氧化生物质制备甲酸[J]. 物理化学学报, 2023, 39(9): 2212065 -0 . |
[2] | 高凤雨, 刘恒恒, 姚小龙, Sani Zaharaddeen, 唐晓龙, 罗宁, 易红宏, 赵顺征, 于庆君, 周远松. 球形表面富锰MnxCo3−xO4−ƞ尖晶石型催化剂选择性催化还原NOx研究[J]. 物理化学学报, 2023, 39(9): 2212003 -0 . |
[3] | 李莹, 来雪琦, 曲津朋, 赖勤志, 伊廷锋. 钠离子电池用高性能锑基负极材料的调控策略研究进展[J]. 物理化学学报, 2022, 38(11): 2204049 - . |
[4] | 陈鹏, 周莹, 董帆. 二维光催化材料电子结构和性能调控策略研究进展[J]. 物理化学学报, 2021, 37(8): 2010010 - . |
[5] | 刘东, 陈圣韬, 李仁杰, 彭天右. 用于光催化能量转换的Z-型异质结的研究进展[J]. 物理化学学报, 2021, 37(6): 2010017 - . |
[6] | 张雪华, 曹彦伟, 陈琼遥, 沈超仁, 何林. 均相催化CO2/H2还原羰基化合成高值化学品研究进展[J]. 物理化学学报, 2021, 37(5): 2007052 - . |
[7] | 张继宏, 钟地长, 鲁统部. 钴(Ⅱ)基分子配合物用于光催化二氧化碳还原[J]. 物理化学学报, 2021, 37(5): 2008068 - . |
[8] | 苑琦, 杨昊, 谢淼, 程涛. 二氧化碳电还原反应的理论研究[J]. 物理化学学报, 2021, 37(5): 2010040 - . |
[9] | 单春晖,白若鹏,蓝宇. 过渡金属参与C―H键切断模式的理论研究进展[J]. 物理化学学报, 2019, 35(9): 940 -953 . |
[10] | 朱月路,赵鑫阳,吴谦,陈颖,赵劲. 多功能氧酰胺导向基在碳氢键活化反应中的研究进展[J]. 物理化学学报, 2019, 35(9): 989 -1004 . |
[11] | 王露, 孙威, 刘超. 同核铁系双金属络合物及其在均相催化体系中的应用[J]. 物理化学学报, 2019, 35(7): 697 -708 . |
[12] | 赵越,崔佳桐,胡继闯,马嘉璧. VO1-4+阳离子与n-CmH2m+2 (m = 3, 5, 7)烷烃的反应性研究:氧含量和碳链长度的影响[J]. 物理化学学报, 2019, 35(5): 531 -538 . |
[13] | 郑东,熊鹏飞,钟北京. NOFBX新型绿色推进剂燃烧化学反应动力学模型[J]. 物理化学学报, 2019, 35(11): 1241 -1247 . |
[14] | 陈必华,ELAGEED Elnazeer H. M.,张永亚,高国华. 离子液体BmmimOAc催化2-芳氨基乙醇与二硫化碳一步缩合合成3-芳基-2-噻唑硫酮[J]. 物理化学学报, 2018, 34(8): 952 -958 . |
[15] | 任春醒,李晓霞,郭力. CL-20热分解反应机理的ReaxFF分子动力学模拟[J]. 物理化学学报, 2018, 34(10): 1151 -1162 . |
|