物理化学学报 >> 2022, Vol. 38 >> Issue (2): 2007068.doi: 10.3866/PKU.WHXB202007068

所属专题: 石墨烯的功能与应用

综述 上一篇    下一篇

石墨烯晶圆的制备:从高品质到规模化

姜蓓1, 孙靖宇2,3,*(), 刘忠范1,2,*()   

  1. 1 北京大学纳米化学研究中心,北京分子科学国家研究中心,北京大学化学与分子工程学院,北京 100871
    2 北京石墨烯研究院,北京 100095
    3 苏州大学能源学院,苏州大学能源与材料创新研究院,苏州大学-北京石墨烯研究院协同创新中心,江苏 苏州 215006
  • 收稿日期:2020-07-25 录用日期:2020-08-19 发布日期:2020-08-21
  • 通讯作者: 孙靖宇,刘忠范 E-mail:sunjy86@suda.edu.cn;zfliu@pku.edu.cn
  • 作者简介:孙靖宇,1986年出生。2013年获牛津大学博士学位;现为苏州大学教授、博士生导师,北京石墨烯研究院研究员、课题组长。主要研究方向为石墨烯晶圆、石墨烯玻璃、烯碳能源材料的可控直接制备
    刘忠范,1962年出生。1990年获东京大学博士学位;现为中国科学院院士,北京大学教授、博士生导师,北京石墨烯研究院院长。主要研究方向为石墨烯的CVD生长方法与应用
  • 基金资助:
    国家重点基础研究发展规划项目(973)(2016YFA0200103);国家自然科学基金(61527814);国家自然科学基金(51702225);北京分子科学国家研究中心(BNLMS-CXTD-202001);北京市科学技术委员会(Z191100000819004)

Synthesis of Graphene Wafers: from Lab to Fab

Bei Jiang1, Jingyu Sun2,3,*(), Zhongfan Liu1,2,*()   

  1. 1 Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
    2 Beijing Graphene Institute (BGI), Beijing 100095, China
    3 College of Energy, Soochow Institute for Energy and Materials InnovationS, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, Jiangsu Province, China
  • Received:2020-07-25 Accepted:2020-08-19 Published:2020-08-21
  • Contact: Jingyu Sun,Zhongfan Liu E-mail:sunjy86@suda.edu.cn;zfliu@pku.edu.cn
  • About author:Email: zfliu@pku.edu.cn (Z.L.)
    Email: sunjy86@suda.edu.cn (J.S.)
  • Supported by:
    the National Basic Research Program of China(2016YFA0200103);the National Natural Science Foundation of China(61527814);the National Natural Science Foundation of China(51702225);the Beijing National Laboratory for Molecular Sciences(BNLMS-CXTD-202001);the Beijing Municipal Science and Technology Planning Project(Z191100000819004)

摘要:

石墨烯晶圆是引领未来的战略材料,在集成电路、微机电系统和传感器等领域具有广阔的应用前景。实现石墨烯晶圆广泛应用的前提是高品质材料的规模化制备。可控性高、工艺兼容性强、成本低的化学气相沉积(chemical vapor deposition,CVD)法,是高品质石墨烯晶圆规模化制备的首选方法。本文将综述石墨烯晶圆的CVD制备进展:首先探讨石墨烯晶圆的制备需求,从实用牵引和应用场景出发,提出石墨烯晶圆的制备品质等级;随后重点介绍石墨烯的晶圆级制备方法和石墨烯晶圆材料的规模化制备技术;最后,对石墨烯晶圆可行的制备路线进行总结,并展望未来可能的发展方向。

关键词: 石墨烯晶圆, 化学气相沉积, 高品质, 规模化制备

Abstract:

Graphene wafers have emerged in response to the increasing demand of wafer-scale two-dimensional materials and high-performance on-chip devices in the field of integrated circuits, microelectromechanical systems, and sensors. Wafer-scale graphene films display great application potential, owing to their atomic layer thickness, excellent thermal and electrical conductivity, and compatibility with wafer-processing technology. Therefore, batch production of graphene wafers is exceedingly crucial. The chemical vapor deposition (CVD) method has attracted attention for the production of high-quality graphene wafers with high controllability, high compatibility, and low cost. Mature CVD manufacturing has been widely employed in the semiconductor industry to date, aiding in the industrialization of CVD graphene wafers and creating opportunities for graphene to enter the new era of nanoelectronics. The quality of graphene wafers has a significant impact on the subsequent device fabrication; hence, considerable efforts have been made to date to realize precise control over domain size, structural defects, and layer thickness during synthesis. In this study, we summarize the recent progress made in wafer-scale CVD graphene synthesis. Initially, we introduce the quality requirements of graphene wafers targeting various application scenarios, and propose the classification of graphene wafers. Single crystallinity is considered to be a key requirement for the graphene used in high-performance electronics and optoelectronics. We then review the recent CVD-derived graphene wafers with regard to substrate types (metal/nonmetal), highlighting the constrictions in graphene quality and corresponding synthetic solutions. Batch synthesis of graphene wafers is further discussed. The significant role of flow dynamics in the up-scaling process is emphasized, followed by relevant experimental instances based on computational fluid dynamics simulations. Finally, strategies for obtaining graphene wafers are overviewed, with the proposal of future perspectives. This study focuses on three areas: (1) Application requirements for the quality of graphene wafers, including target substrate types and as-grown graphene features (chemical stability and electrical and thermal properties), (2) CVD strategies of graphene wafers: As for the growth scenarios on metal substrates, controllable preparation of bilayer/multilayer graphene and the elimination of structural defects remain challenging. With respect to the synthesis over nonmetal wafers, concrete examples highlighting the epitaxial growth on a crystalline substrate and tailorable growth on a surface-reconstructed substrate are summarized. (3) Batch synthesis of graphene wafers: CVD routes for scalable production are explored.

Key words: Graphene wafer, Chemical vapor deposition, High quality, Batch synthesis