物理化学学报 >> 2020, Vol. 36 >> Issue (9): 1912005.doi: 10.3866/PKU.WHXB201912005
所属专题: 精准纳米合成
收稿日期:
2019-12-02
录用日期:
2019-12-30
发布日期:
2020-02-14
通讯作者:
赵宇飞,宋宇飞
E-mail:songyf@mail.buct.edu.cn;zhaoyufei@mail.buct.edu.cn
作者简介:
赵宇飞,出生于1985年。于2007年获得山西大学双学士学位。2011–2012年,于牛津大学Dermot O’Hare教授实验室交流学习。2013年于北京化工大学获得博士学位。现为北京化工大学化工资源有效利用国家重点实验室教授。主要研究方向为二维插层材料的可控合成及精细结构表征,LDHs基纳米材料的拓扑结构转变,面向高值精细化学品的光/电催化合成基金资助:
Tian Li, Xiaojie Hao, Sha Bai, Yufei Zhao(), Yu-Fei Song(
)
Received:
2019-12-02
Accepted:
2019-12-30
Published:
2020-02-14
Contact:
Yufei Zhao,Yu-Fei Song
E-mail:songyf@mail.buct.edu.cn;zhaoyufei@mail.buct.edu.cn
About author:
Emails: zhaoyufei@mail.buct.edu.cn, +86-10-64431832 (Y.S.)Supported by:
摘要:
水滑石(LDHs)是一种阴离子黏土材料,由于其主体层板厚度的可调性,使其在光/电催化、电池、超级电容器、传感器以及生物医药等领域都具有广泛应用。降低层厚至单层可使材料的物理化学性质发生根本改变,从而优化催化性能。近期研究表明,利用自上而下,自下而上的方法,可以实现单层LDHs类材料的合成,但是受限于产量(g级)以及成本设备等问题,目前规模化制备高质量单层LDHs类材料还没有工业案例。成核晶化隔离法是目前唯一规模化合成纳米LDHs的工业化方法,具有成本低,产量可吨级放大等优点。本综述从合成方法、表征手段、应用三个角度讨论了单层及超薄LDHs的精准调控,详细论述了近期关于单层及超薄LDHs合成突破以及LDHs的规模化生产进展,并对其性能进行了总结,为后续设计高性能单层LDHs提供思路。
李天, 郝晓杰, 白莎, 赵宇飞, 宋宇飞. 单层类水滑石纳米片的可控合成及规模生产展望[J]. 物理化学学报, 2020, 36(9), 1912005. doi: 10.3866/PKU.WHXB201912005
Tian Li, Xiaojie Hao, Sha Bai, Yufei Zhao, Yu-Fei Song. Controllable Synthesis and Scale-up Production Prospect of Monolayer Layered Double Hydroxide Nanosheets[J]. Acta Phys. -Chim. Sin. 2020, 36(9), 1912005. doi: 10.3866/PKU.WHXB201912005
表1
单层及超薄LDH合成方法"
Number | Method | Thickness | Solvent | Remarks | Ref. |
1 | Organic solvent exfoliation | DDS, butanol | Organic LDH compounds are delaminated in vacuum drying at room temperature | 6 | |
2 | Formamide exfoliation | Amino acids, formamide | The characteristic peak of LDH in XRD disappears, The strong hydrogen bond between the anion and the polar solvent in the intercalation leads to the penetration of a large number of solvents in the intercalation, thus promoting exfoliation | 36 | |
3 | Formamide exfoliation | 0.8 nm | Formamide | No prior modification of amino acids or surfactants is required, requiring approximately 2.5 d and excess formamide | 37 |
4 | Formamide exfoliation | 0.7–1.4 nm | Formamide | The samples were dispersed in formamide and treated with ultrasonic water bath at continuous intervals of 30 min | 41 |
5 | Liquid exfoliation at low temperature | 0.6 nm | Sodium hydroxide/ urea solution | At low temperature, the exfoliation degree was larger, the thickness was reduced to 0.6 nm at -10 ℃ | 42 |
6 | Temperature shock method | ~0.18 nm | H2O | The LDH solution was frozen in liquid nitrogen and then melted in 80 water bath with a delamination rate of 61% | 44 |
7 | Ostwald ripening driven exfoliation | 4–9 nm | H2O, DMF | While, the as-exfoliated nanosheets are still vertically aligned on the electrode and possess a good structural integrity, which exhibits good electrical contact and effectively avoids the restacking of the exfoliated nanosheets | 43 |
8 | Aqueous miscible organic solvent treatment method | H2O, acetone | LDH wet samples were re-dispersed in acetone and stirred for 1 h, then washed with acetone. Dry samples were kept in monolayer | 45 | |
9 | Amino acid reconstruction method | ~0.8–1.5 nm | Amino acids | LDH was calcination in air and then reconstruct in aqueous solution of amino acid | 46 |
10 | Water-Plasma-Enabled Exfoliation | 1.54 nm | H2O | The as-obtained pristine CoFe LDHs were subjected to water-plasma treatment in a dielectric barrier discharge (DBD) plasma reactor for 5 min to obtain ultrathin CoFe LDHs nanosheets | 47 |
11 | Dry Exfoliation | 0.6 nm | Ar dry exfoliation is a clean, time-saving, non-toxic method and avoids the adsorption of solvent molecules | 48 | |
12 | Reverse microemulsion method | 1.5 nm | H2O, iso-octane, DDS, 1-butanol | Particle size in diameter and thickness can be effectively controlled by the ratio of water to surfactant, but surfactant residues are unavoidable | 49 |
13 | One step synthesis by formamide | 0.8 nm | H2O, formamide | The monolayer LDH was synthesized by adding formamide directly during the reaction | 52 |
14 | One-step synthesis by ethylene glycol | 0.85 nm | Ethylene glycol | It remains stable when dispersed in water or dried into powder | 56 |
15 | One step synthesis by H2O2 | 1.44 nm | H2O, H2O2 | LDHs catalyzes the rapid decomposition of H2O2 and releases a large amount of O2, which causes the layers to move violently, resulting in the separation of LDHs layers | 57 |
16 | One step synthesis by NH3·H2O | 0.8 nm | H2O | The gel was synthesized by co-precipitation, washed and re-dispersed by ultrasound in water, and the sample remained stable for 20 d at -4 ℃ | 58 |
1 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306 (5696), 666.
doi: 10.1126/science.1102896 |
2 |
Wang N. ; Yang G. ; Wang H. X. ; Yan C. Z. ; Sun R. ; Wong C. P. Mater. Today 2019, 27, 33.
doi: 10.1016/j.mattod.2018.10.039 |
3 |
Manzeli S. ; Ovchinnikov D. ; Pasquier D. ; Yazyev O. V. ; Kis A. Nat. Rev. Mater. 2017, 2 (8), 17033.
doi: 10.1038/natrevmats.2017.33 |
4 |
Zhao H. X. ; Yu H. T. ; Quan X. ; Chen S. ; Zhao H. M. ; Wang H. RSC Adv. 2014, 4 (2), 624.
doi: 10.1039/c3ra45776a |
5 |
McAteer D. ; Godwin I. J. ; Ling Z. ; Harvey A. ; He L. ; Boland C. S. ; Vega-Mayoral V. ; Szydłowska B. ; Rovetta A. A. ; Backes C. ; et al Adv. Energy Mater. 2018, 8 (15), 1702965.
doi: 10.1002/aenm.201702965 |
6 |
Adachi-Pagano M. ; Forano C. ; Besse J. P. Chem. Commun. 2000, (1), 91.
doi: 10.1039/A908251D |
7 | Qiu J. S. ; An Y. L. ; Li Q. X. ; Zhou Y. ; Yang Q. Acta Phys. -Chim. Sin. 2004, 20, 260. |
邱介山; 安玉良; 李杞秀; 周颖; 杨青. 物理化学学报, 2004, 20, 260.
doi: 10.3866/PKU.WHXB201608233 |
|
8 | Mai L. Q. ; Yang S. ; Han C. H. ; Xu L. ; Xu X. ; Pi Y. Q. Acta Phys. -Chim. Sin. 2011, 27, 1551. |
麦立强; 杨霜; 韩春华; 徐林; 许絮; 皮玉强. 物理化学学报, 2011, 27, 1551.
doi: 10.3866/PKU.WHXB20110710 |
|
9 |
Liu Z. N. ; Xu K. L. ; Sun H. ; Yin S. Y. Small 2015, 11 (18), 2182.
doi: 10.1002/smll.201402222 |
10 |
Li X. D. ; Sun Y. F. ; Xu J. Q. ; Shao Y. J. ; Wu J. ; Xu X. L. ; Pan Y. ; Ju H. X. ; Zhu J. F. ; Xie Y. Nat. Energy 2019, 4 (8), 690.
doi: 10.1038/s41560-019-0431-1 |
11 |
Di J. ; Xia J. X. ; Chisholm M. F. ; Zhong J. ; Chen C. ; Cao X. Z. ; Dong F. ; Chi Z. ; Chen H. L. ; Weng Y. X. ; et al Adv. Mater. 2019, 31 (28), e1807576.
doi: 10.1002/adma.201807576 |
12 |
Shi L. R. ; Chen K. ; Du R. ; Bachmatiuk A. ; Rümmeli M. H. ; Priydarshi M. K. ; Zhang Y. F. ; Manivannan A. ; Liu Z. F. Small 2015, 11 (47), 6302.
doi: 10.1002/smll.201502013 |
13 |
Dan Y. P. ; Lu Y. ; Kybert N. J. ; Luo Z. T. ; Johnson A. T. C. Nano Lett. 2009, 9 (4), 1472.
doi: 10.1021/nl8033637 |
14 |
Ohno Y. ; Maehashi K. ; Yamashiro Y. ; Matsumoto K. Nano Lett. 2009, 9 (9), 3318.
doi: 10.1021/nl901596m |
15 |
Wu X. W. ; Li H. P. ; Song S. ; Zhang R. J. ; Hou W. G. Int. J. Pharm. 2013, 454 (1), 453.
doi: 10.1016/j.ijpharm.2013.06.043 |
16 |
Zhao M. Q. ; Zhang Q. ; Huang J. Q. ; Wei F. Adv. Funct. Mater. 2012, 22 (4), 675.
doi: 10.1002/adfm.201102222 |
17 |
Khan A. I. ; Ragavan A. ; Fong B. ; Markland C. ; O'Brien M. ; Dunbar T. G. ; Williams G. R. ; O'Hare D. Ind. Eng. Chem. Res. 2009, 48 (23), 10196.
doi: 10.1021/ie9012612 |
18 |
Kim S. J. Polym. Sci., Part B: Polym. Phys. 2003, 41 (9), 936.
doi: 10.1002/polb.10453 |
19 |
Lin Y. J. ; Li D. Q. ; Evans D. G. ; Duan X. Polym. Degrad. Stab. 2005, 88 (2), 286.
doi: 10.1016/j.polymdegradstab.2004.11.007 |
20 |
Guo S. C. ; Li D. Q. ; Zhang W. F. ; Pu M. ; Evans D. G. ; Duan X. J. Solid State Chem. 2004, 177 (12), 4597.
doi: 10.1016/j.jssc.2004.09.028 |
21 |
Zhao Y. ; Li F. ; Zhang R. ; Evans D. G. ; Duan X. Chem. Mater. 2002, 14 (10), 4286.
doi: 10.1021/cm020370h |
22 |
Evans D. G. ; Duan X. Chem. Commun. 2006, (5), 485.
doi: 10.1039/b510313b |
23 |
Zhao Y. F. ; Li B. ; Wang Q. ; Gao W. ; Wang C. L. J. ; Wei M. ; Evans D. G. ; Duan X. ; O'Hare D. Chem. Sci. 2014, 5 (3), 951.
doi: 10.1039/c3sc52546e |
24 |
Zhao Y. F. ; Tan L. ; Xu Y. Q. ; Wang Z. L. ; Song Y. F. ; Wang J. K. ; Hao X. J. Chin. Sci. Bull. 2018, 63 (34), 3598.
doi: 10.1360/n972018-00839 |
25 |
Wang Q. ; O'Hare D. Chem. Rev. 2012, 112 (7), 4124.
doi: 10.1021/cr200434v |
26 |
Yu J. F. ; Wang Q. ; O'Hare D. ; Sun L. Y. Chem. Soc. Rev. 2017, 46 (19), 5950.
doi: 10.1039/c7cs00318h |
27 |
Meyn M. ; Beneke K. ; Lagaly G. Inorg. Chem. 1990, 29 (26), 5201.
doi: 10.1021/ic00351a013 |
28 |
Negrete; Letoffe J. M. ; Putaux J. L. ; David L. ; Bourgeat-Lami E. Langmuir 2004, 20 (5), 1564.
doi: 10.1021/la0349267 |
29 |
Okay O. ; Oppermann W. Macromolecules 2007, 40 (9), 3378.
doi: 10.1021/ma062929v |
30 |
Jobbágy M. ; Iyi N. J. Phys. Chem. C 2010, 114 (42), 18153.
doi: 10.1021/jp1078778 |
31 |
Klebow B. ; Meleshyn A. Langmuir 2011, 27 (21), 12968.
doi: 10.1021/la202493z |
32 |
O'Leary S. ; O'Hare D. ; Seeley G. Chem. Commun. 2002, (14), 1506.
doi: 10.1039/b204213d |
33 |
Jobbágy M. ; Regazzoni A. E. J. Colloid Interface Sci. 2004, 275 (1), 345.
doi: 10.1016/j.jcis.2004.01.082 |
34 |
Naik V. V. ; Ramesh T. N. ; Vasudevan S. J. Phys. Chem. Lett. 2011, 2 (10), 1193.
doi: 10.1021/jz2004655 |
35 |
Naik V. V. ; Vasudevan S. Langmuir 2011, 27 (21), 13276.
doi: 10.1021/la202876g |
36 |
Hibino T. ; Jones W. J. Mater. Chem. 2001, 11 (5), 1321.
doi: 10.1039/b101135i |
37 |
Li L. ; Ma R. Z. ; Ebina Y. ; Iyi N. ; Sasaki T. Chem. Mater. 2005, 17 (17), 4386.
doi: 10.1021/cm0510460 |
38 |
Liu Z. P. ; Ma R. Z. ; Osada M. ; Iyi N. ; Ebina Y. ; Takada K. ; Sasaki T. J. Am. Chem. Soc. 2006, 128 (14), 4872.
doi: 10.1021/ja0584471 |
39 |
Song F. ; Hu X. L. Nat. Commun. 2014, 5, 4477.
doi: 10.1038/ncomms5477 |
40 |
Fan K. ; Chen H. ; Ji Y. F. ; Huang H. ; Claesson P. M. ; Daniel Q. ; Philippe B. ; Rensmo H. ; Li F. S. ; Luo Y. ; et al Nat. Commun. 2016, 7, 11981.
doi: 10.1038/ncomms11981 |
41 |
Wu Q. L. ; Olafsen A. ; Vistad ; Ø. B. ; Roots J. ; Norby P. J. Mater. Chem. 2005, 15 (44), 4695.
doi: 10.1039/b511184f |
42 |
Wei Y. ; Li F. C. ; Liu L. RSC Adv. 2014, 4 (35), 18044.
doi: 10.1039/c3ra46995f |
43 |
Chen B. ; Zhang Z. ; Kim S. ; Lee S. ; Lee J. ; Kim W. ; Yong K. ACS Appl. Mater. Interfaces 2018, 10 (51), 44518.
doi: 10.1021/acsami.8b16962 |
44 |
Zhang Z. N. ; Min L. F. ; Chen P. ; Zhang W. ; Wang Y. X. Mater. Lett. 2017, 195, 198.
doi: 10.1016/j.matlet.2017.02.088 |
45 |
Wang Q. ; O'Hare D. Chem. Commun. 2013, 49 (56), 6301.
doi: 10.1039/c3cc42918k |
46 |
Yu J. F. ; Ruengkajorn K. ; Crivoi D. G. ; Chen C. P. ; Buffet J. C. ; O'Hare D. Nat. Commun. 2019, 10, 2398.
doi: 10.1038/s41467-019-10362-2 |
47 |
Liu R. ; Wang Y. Y. ; Liu D. D. ; Zou Y. Q. ; Wang S. Y. Adv. Mater. 2017, 29 (30), 1701546.
doi: 10.1002/adma.201701546 |
48 |
Wang Y. Y. ; Zhang Y. Q. ; Liu Z. J. ; Xie C. ; Feng S. ; Liu D. D. ; Shao M. F. ; Wang S. Y. Angew. Chem. Int. Ed. 2017, 56 (21), 5867.
doi: 10.1002/anie.201701477 |
49 |
Hu G. ; Wang N. ; O'Hare D. ; Davis J. Chem. Commun. 2006, (3), 287.
doi: 10.1039/b514368c |
50 |
Zhao Y. F. ; Wang Q. ; Bian T. ; Yu H. J. ; Fan H. ; Zhou C. ; Wu L. Z. ; Tung C. H. ; O'Hare D. ; Zhang T. R. Nanoscale 2015, 7 (16), 7168.
doi: 10.1039/c5nr01320h |
51 |
Jia X. D. ; Zhao Y. F. ; Chen G. B. ; Shang L. ; Shi R. ; Kang X. F. ; Waterhouse G. I. N. ; Wu L. Z. ; Tung C. H. ; Zhang T. R. Adv. Energy Mater. 2016, 6 (10), 1502585.
doi: 10.1002/aenm.201502585 |
52 |
Yu J. F. ; Martin B. R. ; Clearfield A. ; Luo Z. P. ; Sun L. Y. Nanoscale 2015, 7 (21), 9448.
doi: 10.1039/c5nr01077b |
53 |
Zhao Y. F. ; Zhang X. ; Jia X. D. ; Waterhouse G. I. N. ; Shi R. ; Zhang X. R. ; Zhan F. ; Tao Y. ; Wu L. Z. ; Tung C. H. ; et al Adv. Energy Mater. 2018, 8, 1703585.
doi: 10.1002/aenm.201703585 |
54 |
Zhang X. ; Zhao Y. F. ; Zhao Y. X. ; Shi R. ; Waterhouse G. I. N. ; Zhang T. R. Adv. Energy Mater. 2019, 9 (24), 1900881.
doi: 10.1002/aenm.201900881 |
55 |
Tan L. ; Xu S. M. ; Wang Z. L. ; Xu Y. Q. ; Wang X. ; Hao X. J. ; Bai S. ; Ning C. J. ; Wang Y. ; Zhang W. K. ; et al Angew. Chem. Int. Ed. 2019, 58 (34), 11860.
doi: 10.1002/anie.201904246 |
56 |
Li H. Q. ; Tran T. N. ; Lee B. J. ; Zhang C. F. ; Park J. D. ; Kang T. H. ; Yu J. S. ACS Appl. Mater. Interfaces 2017, 9 (24), 20294.
doi: 10.1021/acsami.7b02912 |
57 |
Yan Y. X. ; Liu Q. ; Wang J. ; Wei J. B. ; Gao Z. ; Mann T. ; Li Z. S. ; He Y. ; Zhang M. L. ; Liu L. H. J. Colloid Interface Sci. 2012, 371 (1), 15.
doi: 10.1016/j.jcis.2011.12.075 |
58 |
Zhang Y. P. ; Li H. P. ; Du N. ; Zhang R. J. ; Hou W. G. Colloids Surface A 2016, 501, 49.
doi: 10.1016/j.colsurfa.2016.04.046 |
59 |
Zhao Y. F. ; Zhao Y. X. ; Waterhouse G. I. N. ; Zheng L. R. ; Cao X. Z. ; Teng F. ; Wu L. Z. ; Tung C. H. ; O'Hare D. ; Zhang T. R. Adv. Mater. 2017, 29 (42), 1703828.
doi: 10.1002/adma.201703828 |
60 | Song, Y. F.; Bai, S.; Zhao, Y. F.; Li, T. Scale-up Production of Monolayer Layered Double Hydroxide Nanosheets. China Patent ZL202010089388.2. |
宋宇飞,白莎,赵宇飞,李天.一种规模化制备单层水滑石纳米片材料的方法:中国, ZL202010089388.2[P]. | |
61 | Song, J. Q.; Xu, X. Y.; Lin, Y. J.; Li, D. Q.; Duan, X. Synthesis of Nano-layered Composite Metal Hydroxide. China Patent ZL200910084976.0, 2010-12-08. |
宋家庆,徐向宇,林彦军,李殿卿,段雪.一种纳米层状复合金属氢氧化物的制备方法:中国, ZL200910084976.0[P]. 2010-12-08. | |
62 | http://www.gzs.buct.edu.cn/kycg/yyyjcg/85007.htm. |
63 |
Yan D. F. ; Li Y. X. ; Huo J. ; Chen R. ; Dai L. M. ; Wang S. Y. Adv. Mater. 2017, 29 (48), 1606459.
doi: 10.1002/adma.201606459 |
64 |
Wang Z. L. ; Xu S. M. ; Xu Y. Q. ; Tan L. ; Wang X. ; Zhao Y. F. ; Duan H. H. ; Song Y. F. Chem. Sci. 2019, 10 (2), 378.
doi: 10.1039/c8sc04480e |
65 |
Zhao Y. F. ; Chen G. B. ; Bian T. ; Zhou C. ; Waterhouse G. I. N. ; Wu L. Z. ; Tung C. H. ; Smith L. J. ; O'Hare D. ; Zhang T. R. Adv. Mater. 2015, 27 (47), 7824.
doi: 10.1002/adma.201503730 |
66 |
Chen S. C. ; Wang H. ; Kang Z. X. ; Jin S. ; Zhang X. D. ; Zheng X. S. ; Qi Z. M. ; Zhu J. F. ; Pan B. C. ; Xie Y. Nat. Commun. 2019, 10, 788.
doi: 10.1038/s41467-019-08697-x |
67 |
Huo W. C. ; Cao T. ; Liu X. Y. ; Xu W. N. ; Dong B. Q. ; Zhang Y. X. ; Dong F. Green Energy Environ. 2019, 4 (3), 270.
doi: 10.1016/j.gee.2018.11.001 |
68 |
Xiong P. ; Zhang X. Y. ; Wan H. ; Wang S. J. ; Zhao Y. F. ; Zhang J. Q. ; Zhou D. ; Gao W. C. ; Ma R. Z. ; Sasaki T. ; et al Nano Lett. 2019, 19 (7), 4518.
doi: 10.1021/acs.nanolett.9b01329 |
69 |
Li Z. H. ; Liu K. ; Fan K. ; Yang Y. S. ; Shao M. F. ; Wei M. ; Duan X. Angew. Chem. Int. Ed. 2019, 58 (12), 3962.
doi: 10.1002/anie.201814705 |
70 |
Werner S. ; Lau V. W. h. ; Hug S. ; Duppel V. ; Clausen-Schaumann H. ; Lotsch B. V. Langmuir 2013, 29 (29), 9199.
doi: 10.1021/la400846w |
71 |
Peng L. Q. ; Mei X. ; He J. ; Xu J. K. ; Zhang W. K. ; Liang R. Z. ; Wei M. ; Evans D. G. ; Duan X. Adv. Mater. 2018, 30 (16), 1707389.
doi: 10.1002/adma.201707389 |
[1] | 段欣漩, Sendeku Marshet Getaye, 张道明, 周道金, 徐立军, 高学庆, 陈爱兵, 邝允, 孙晓明. 钨掺杂镍铁水滑石高效电催化析氧反应[J]. 物理化学学报, 2024, 40(1): 2303055 - . |
[2] | 胡荣, 韦丽云, 鲜靖林, 房光钰, 吴植傲, 樊淼, 郭家越, 李青翔, 刘凯思, 姜会钰, 徐卫林, 万骏, 姚永刚. 微波热冲快速制备二维多孔La0.2Sr0.8CoO3钙钛矿用于高效电催化析氧反应[J]. 物理化学学报, 2023, 39(9): 2212025 -0 . |
[3] | 陈瑶, 陈存, 曹雪松, 王震宇, 张楠, 刘天西. CO2和N2电还原中缺陷及界面工程的最新进展[J]. 物理化学学报, 2023, 39(8): 2212053 -0 . |
[4] | 鲁航语, 侯瑞林, 褚世勇, 周豪慎, 郭少华. 高比能锂离子电池层状富锂正极材料改性策略研究进展[J]. 物理化学学报, 2023, 39(7): 2211057 -0 . |
[5] | 傅焰鹏, 朱昌宝. 钠离子电池电极材料的设计策略——固态离子学视角[J]. 物理化学学报, 2023, 39(3): 2209002 -0 . |
[6] | 刘瑶钰, 王宇辰, 刘碧莹, Amer Mahmoud, 严凯. 钴钒水滑石纳米片用于电催化尿素氧化[J]. 物理化学学报, 2023, 39(2): 2205028 -0 . |
[7] | 张涛, 龚思敏, 陈平, 陈琪, 陈立桅. 利用多氟丙烯酸酯添加剂提升准二维钙钛矿发光二极管性能[J]. 物理化学学报, 2023, 39(12): 2301024 - . |
[8] | 卢浩然, 魏雅清, 龙闰. 纳米孔缺陷导致单层黑磷电荷局域极大抑制非辐射电子-空穴复合的时域模拟[J]. 物理化学学报, 2022, 38(5): 2006064 - . |
[9] | 林飞宇, 杨英, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益. 湿空气下制备稳定的CsPbI2Br钙钛矿太阳电池[J]. 物理化学学报, 2022, 38(4): 2005007 - . |
[10] | 韩爱娣, 闫晓晖, 陈俊任, 程晓静, 章俊良. 分散溶剂对PEMFC催化层中超薄Nafion离聚物质子传导的影响[J]. 物理化学学报, 2022, 38(3): 1912052 - . |
[11] | 刘影, 刘晓放, 夏林, 黄超杰, 吴兆萱, 王慧, 孙予罕. 以类水滑石为前驱体的Cu/ZnO/Al2O3催化剂用于COx加氢合成甲醇:CO在反应混合物中的作用[J]. 物理化学学报, 2022, 38(3): 2002017 - . |
[12] | 姜蓓, 孙靖宇, 刘忠范. 石墨烯晶圆的制备:从高品质到规模化[J]. 物理化学学报, 2022, 38(2): 2007068 - . |
[13] | 杜亚东, 孟祥桐, 汪珍, 赵鑫, 邱介山. 石墨烯基二氧化碳电化学还原催化剂的研究进展[J]. 物理化学学报, 2022, 38(2): 2101009 - . |
[14] | 王薇, 黄宇, 王震宇. 缺陷工程调控石墨相氮化碳及其光催化空气净化应用进展[J]. 物理化学学报, 2021, 37(8): 2011073 - . |
[15] | 秦祖赠, 吴靖, 李斌, 苏通明, 纪红兵. 光催化CO2还原的超薄层状催化剂[J]. 物理化学学报, 2021, 37(5): 2005027 - . |
|