物理化学学报 >> 2022, Vol. 38 >> Issue (3): 2002024.doi: 10.3866/PKU.WHXB202002024
收稿日期:
2020-02-20
录用日期:
2020-04-09
发布日期:
2020-04-20
通讯作者:
董晓燕
E-mail:d_xy@tju.edu.cn
作者简介:
第一联系人:†These authors contributed equally to this work.
基金资助:
Miaomiao Liu, Wenjuan Wang, Xiuping Hao, Xiaoyan Dong()
Received:
2020-02-20
Accepted:
2020-04-09
Published:
2020-04-20
Contact:
Xiaoyan Dong
E-mail:d_xy@tju.edu.cn
About author:
Xiaoyan Dong, Email: d_xy@tju.edu.cn; Tel.: +86-22-27404981Supported by:
摘要:
阿尔茨海默氏病(AD)和2型糖尿病(T2DM)是常见的由蛋白质错误折叠引起的疾病,作为与此二者相关的致病蛋白,淀粉样β蛋白(Aβ)和人胰岛淀粉样多肽(hIAPP)的交叉聚集行为暗示了AD和T2DM的相关性。然而,Aβ和hIAPP在体内的交叉聚集过程尚不明确。为了更好地模拟体内环境特征,即同时存在不同形式的淀粉样蛋白聚集体,且少量的聚集体附着在血管壁上会成为聚集过程的种子,本文以硫代黄素T荧光测定,原子力显微镜,圆二色光谱,石英晶体微天平以及MTT法作为研究手段,探究了Aβ和hIAPP在溶液和固体表面的成核与交叉成核聚集行为。结果表明,少量的Aβ40和hIAPP种子(单体浓度的1/50)即可显著改变异源聚集的聚集路径,形成具有不同形态且含有更多β-折叠结构的异源聚集体,导致更高的细胞毒性。溶液和固体表面上的结果均证明异源成核聚集效率低于同源聚集,且异源聚集的特征很大程度上取决于种子类型。此外,不同于溶液中所得结果,hIAPP种子在固体表面的交叉成核聚集效率显著高于Aβ40种子,证明了界面性质对交叉聚集过程的影响。这些结论对于理解淀粉样蛋白交叉聚集过程具有重要意义。
刘苗苗, 王文娟, 郝秀萍, 董晓燕. Aβ40和hIAPP在溶液和表面的成核与交叉成核聚集行为[J]. 物理化学学报, 2022, 38(3), 2002024. doi: 10.3866/PKU.WHXB202002024
Miaomiao Liu, Wenjuan Wang, Xiuping Hao, Xiaoyan Dong. Seeding and Cross-Seeding Aggregations of Aβ40 and hIAPP in Solution and on Surface[J]. Acta Phys. -Chim. Sin. 2022, 38(3), 2002024. doi: 10.3866/PKU.WHXB202002024
Fig 1
Aggregation kinetics of hIAPP and Aβ40 monomers incubated with or without seeds by ThT assays. (a) Kinetic traces for Aβ40 in the absence (black) or presence of 5% hIAPP seeds (red), Aβ40 seeds (blue). (b) Kinetic traces for hIAPP in the absence (black) or presence of 5% hIAPP seeds (red), Aβ40 seeds (blue). Incubation of 25 μmol·L-1 Aβ40 or hIAPP monomers with or without 0.5 μmol·L-1 Aβ40 or hIAPP seeds in 30 mmol·L-1 HEPES (pH 7.4) 25 μmol·L-1 ThT at 37 ℃ for 72 h. (n = 3)."
Table 1
Lag phase time (Tlag) and apparent first-order aggregation constant (k) of Aβ or hIAPP aggregation kinetics in different conditions."
Samples | Tlag/h | k/h-1 |
Aβ40 alone | 38.2 ± 2.21 | 0.492 ± 0.321 |
Aβ40 + hIAPP seeds | 21.1 ± 1.03 | 0.542 ± 0.0841 |
Aβ40 + Aβ40 seeds | 4.86 ± 1.49 | 0.244 ± 0.0339 |
hIAPP alone | 10.2 ± 1.22 | 0.152 ± 0.0316 |
hIAPP + Aβ40 seeds | 12.8 ± 2.94 | 0.471 ± 0.132 |
hIAPP + hIAPP seeds | 8.79 ± 0.142 | 0.180 ± 0.0627 |
Fig 2
AFM images of Aβ or hIAPP in situ incubated for 72 h in the absence and presence of seeds. (a)Aβ40 alone, (b) Aβ40 with Aβ40 seeds, (c) Aβ40 with hIAPP seeds, (d) hIAPP alone, (e) hIAPP with Aβ40 seeds, (f) hIAPP with hIAPP seeds. Incubation of 25 μmol·L-1 Aβ40 or hIAPP monomers with or without 0.5 μmol·L-1 Aβ40 or hIAPP seeds in 30 mmol·L-1 HEPES (pH 7.4) 25 μmol·L-1 ThT at 37 ℃ for 72 h."
Table 2
The contents of secondary structure in Aβ and hIAPP aggregates."
Samples | α-helix/% | β-sheet/% | Turn/% | Others/% |
Aβ40 alone | 4.3 ± 2.5 | 46 ± 5.8 | 7.3 ± 0.62 | 42 ± 4.7 |
Aβ40 + Aβ40 seeds | 0 ± 1.5 | 60 ± 7.1 | 7.9 ± 2.4 | 32 ± 3.2 |
Aβ40 + hIAPP seeds | 0.84 ± 0.61 | 54 ± 5.7 | 0.74 ± 0.53 | 44 ± 3.9 |
hIAPP alone | 1.2 ± 0.74 | 52 ± 4.9 | 1.4 ± 0.83 | 46 ± 5.4 |
hIAPP + Aβ40 seeds | 10 ± 3.7 | 79 ± 7.8 | 11 ± 3.5 | 0 ± 1.6 |
hIAPP + hIAPP seeds | 34 ± 7.1 | 50 ± 6.5 | 16 ± 3.9 | 0 ± 0.51 |
Fig 4
Frequency change (ΔF) of the quartz crystal oscillator during the absorption of (a) Aβ40 monomers (b) hIAPP monomers to the chips without seeds fibrils (control, black line) and chips immobilized with Aβ40 seeds (red line) or hIAPP seeds (blue line). The resonance frequency and dissipation were recorded at the 3rd, 5th, 7th, 9th and 11th overtone corresponding to 15, 25, 35, 45 and 55 MHz, respectively, 25 μmol·L-1 Aβ40 or hIAPP monomer solution in 30 mmol·L-1 HEPES (pH 7.4) over the chips immobilized with or without 0.5 μmol·L-1 seeds at constant 37 ± 0.050 ℃, and a maintained flow rate of 50 μL·min-1 for 30 min (n = 3)."
Fig 5
Growth of Aβ40 and hIAPP monomers on immobilized seeds. (Aβ stands for Aβ, hI stands for hIAPP) (a) Change of molar density during the adsorption of Aβ40 monomers on immobilized Aβ40 seeds (black) and hIAPP seeds (pink), hIAPP monomers (25 μmol·L-1) on immobilized Aβ40 seeds (red) and hIAPP seeds (blue). (b) The average adsorption rate for adsorption of Aβ40 and hIAPP monomers on seeds. 25 μmol·L-1 Aβ40 or hIAPP monomer solution in 30 mmol·L-1 HEPES (pH 7.4) over the chips immobilized with or without 0.5 μmol·L-1 seeds at constant 37 ± 0.050 ℃, and a maintained flow rate of 50 μL·min-1 for 30 min (n = 3)."
Fig 6
Change of dissipation (ΔD) versus frequency change (ΔF) during the adsorption of Aβ40 monomers on immobilized Aβ40 seeds (black) and hIAPP seeds (pink), hIAPP monomers on immobilized Aβ40 seeds (red) and hIAPP seeds (blue). 25 μmol·L-1 Aβ40 or hIAPP monomer solution in 30 mmol·L-1 HEPES (pH 7.4) over the chips immobilized with or without 0.5 μmol·L-1 seeds at constant 37 ± 0.050 ℃, and a maintained flow rate of 50 μL·min-1 for 30 min (n = 3)."
Fig 7
Cell viability assays (a) with preformed Aβ40 seeds and hIAPP seeds and (b) Aβ40 aggregates and hIAPP aggregates incubated with Aβ40 seeds and hIAPP seeds. The SH-SY5Y cell viability with aggregates of 5 μmol·L-1 Aβ40 or hIAPP monomer incubated with or without 0.1 μmol·L-1 Aβ40 or hIAPP seeds Statistical significance analyzed by one-way analysis of variance + Tukey's test, ^^^P < 0.001, compared to the control; **P < 0.01, compared to the Aβ40 alone group; ##P < 0.05, compared to the hIAPP alone group (n= 6)."
1 |
Westermark G. T. ; Fändrich M. ; Lundmark K. ; Westermark P. Csh. Perspect. Med. 2018, 8 (1), a024323.
doi: 10.1101/cshperspect.a024323 |
2 |
Ren B. ; Zhang Y. ; Zhang M. ; Liu Y. ; Zhang D. ; Gong X. ; Feng Z. ; Tang J. ; Chang Y. ; Zheng J. J. Mater. Chem. B 2019, 7 (46), 7267.
doi: 10.1039/c9tb01871a |
3 |
Lim K. H. Front. Mol. Neurosci. 2019, 12, 158.
doi: 10.3389/fnmol.2019.00158 |
4 |
Hardy J. ; Selkoe D. J. Science 2002, 297 (5580), 353.
doi: 10.1126/science.1072994 |
5 |
Ono K. ; Takahashi R. ; Ikeda T. ; Yamada M. J. Neurochem. 2012, 122 (5), 883.
doi: 10.1111/j.1471-4159.2012.07847.x |
6 |
Palotay J. L. ; Howard C. F. Vet. Pathol. 1982, 19 (Suppl. 7), 181.
doi: 10.1177/030098588201907s14 |
7 |
Despa F. ; Goldstein L. B. ; Biessels G. J. Ann. Neurol. 2019, 87 (3), 486.
doi: 10.1002/ana.25668 |
8 |
Baram M. ; Atsmon-Raz Y. ; Ma B. ; Nussinov R. ; Miller Y. Phys. Chem. Chem. Phys. 2016, 18 (4), 2330.
doi: 10.1039/c5cp03338a |
9 |
Zhu H. ; Tao Q. ; Ang T. F. A. ; Massaro J. ; Gan Q. ; Salim S. ; Zhu R.-Y. ; Kolachalama V.B. ; Zhang X. ; Devine S. ; et al JAMA Netw. Open 2019, 2 (8), e199826.
doi: 10.1001/jamanetworkopen.2019.9826 |
10 |
Biessels G. J. ; Strachan M. W. J. ; Visseren F. L. J. ; Kappelle L. J. ; Whitmer R. A. Lancet Diabetes Endo. 2014, 2 (3), 246.
doi: 10.1016/S2213-8587(13)70088-3 |
11 |
Verdile G. ; Keane K. N. ; Cruzat V. F. ; Medic S. ; Sabale M. ; Rowles J. ; Wijesekara N. ; Martins R. N. ; Fraser P. E. ; Newsholme P. Mediat. Inflamm. 2015, 2015, 105828.
doi: 10.1155/2015/105828 |
12 |
Schultz N. ; Byman E. ; Wennström M. Neurobiol. Aging 2018, 69, 94.
doi: 10.1016/j.neurobiolaging.2018.05.003 |
13 |
Eisenberg D. ; Nelson R. ; Sawaya M. R. ; Balbirnie M. ; Sambashivan S. ; Ivanova M. I. ; Madsen A. O. ; Riekel C. Acc. Chem. Res. 2006, 39 (9), 568.
doi: 10.1021/ar0500618 |
14 |
Roostaei T. ; Nazeri A. ; Felsky D. ; De Jager P. L. ; Schneider J. A. ; Pollock B. G. ; Bennett D. A. ; Voineskos A. N. Mol. Psychiatr. 2017, 22 (2), 287d.
doi: 10.1038/mp.2016.35 |
15 |
Jackson K. ; Barisone G. A. ; Diaz E. ; Jin L. W. ; DeCarli C. ; Despa F. Ann. Neurol. 2013, 74 (4), 517.
doi: 10.1002/ana.23956 |
16 |
Soto C. ; Pritzkow S. Nat. Neurosci. 2018, 21 (10), 1332.
doi: 10.1038/s41593-018-0235-9 |
17 |
Armiento V. ; Spanopoulou A. ; Kapurniotu A. Angew. Chem. Int. Edit. 2020, 59 (9), 3372.
doi: 10.1002/anie.201906908 |
18 |
Jucker M. ; Walker L. C. Ann. Neurol. 2011, 70 (4), 532.
doi: 10.1002/ana.22615 |
19 |
Kiriyama Y. ; Nochi H. Cells 2018, 7 (8), 95.
doi: 10.3390/cells7080095 |
20 |
O'Nuallain B. ; Williams A. D. ; Westermark P. ; Wetzel R. J. Biol. Chem. 2004, 279 (17), 17490.
doi: 10.1074/jbc.M311300200 |
21 |
Mulder H. ; Leckstrom A. ; Uddman R. ; Ekblad E. ; Westermark P. ; Sundler F. J. Neurosci. 1995, 15 (11), 7625.
doi: 10.1523/JNEUROSCI.15-11-07625.1995 |
22 |
Fawver J. N. ; Ghiwot Y. ; Koola C. ; Carrera W. ; Rodriguez-Rivera J. ; Hernandez C. ; Dineley K. T. ; Kong Y. ; Li J. R. ; Jhamandas J. ; et al Curr. Alzheimer Res. 2014, 11 (10), 928.
doi: 10.2174/1567205011666141107124538 |
23 |
Banks W. A. ; Kastin A. J. Peptides 1998, 19 (5), 883.
doi: 10.1016/S0196-9781(98)00018-7 |
24 |
Hu R. D. ; Zhang M. Z. ; Chen H. ; Jiang B. B. ; Zheng J. ACS Chem. Neurosci. 2015, 6 (10), 1759.
doi: 10.1021/acschemneuro.5b00192 |
25 |
Yan L. -M. ; Velkova A. ; Tatarek-Nossol M. ; Andreetto E. ; Kapurniotu A. Angew. Chem. Int. Edit. 2007, 46 (8), 1246.
doi: 10.1002/anie.200604056 |
26 |
Moreno-Gonzalez I. ; Edwards G. ; Salvadores N. ; Shahnawaz M. ; Diaz-Espinoza R. ; Soto C. Mol. Psychiatr. 2017, 22 (9), 1327.
doi: 10.1038/mp.2016.230 |
27 |
Kakinen A. ; Sun Y. X. ; Javed I. ; Faridi A. ; Pilkington E. H. ; Faridi P. ; Purcell A. W. ; Zhou R. H. ; Ding F. ; Lin S. J. ; et al Sci. Bull. 2019, 64 (1), 26.
doi: 10.1016/j.scib.2018.11.012 |
28 |
Seeliger J. ; Weise K. ; Opitz N. ; Winter R. J. Mol. Biol. 2012, 421 (2-3), 348.
doi: 10.1016/j.jmb.2012.01.048 |
29 |
Hao X. P. ; Zheng J. ; Sun Y. ; Dong X. Y. Langmuir 2019, 35 (7), 2821.
doi: 10.1021/acs.langmuir.8b03599 |
30 | Naiki H. ; Nakakuki K. Lab. Invest. 1996, 74 (2), 374. |
31 |
Nielsen L. ; Khurana R. ; Coats A. ; Frokjaer S. ; Brange J. ; Vyas S. ; Uversky V. N. ; Fink A. L. Biochemistry 2001, 40 (20), 6036.
doi: 10.1021/bi002555c |
32 |
Syed S. B. ; Khan F. I. ; Khan S. H. ; Srivastava S. ; Hasan G. M. ; Lobb K. A. ; Islam A. ; Hassan M. I. ; Ahmad F. Int. J. Biol. Macromol. 2018, 117, 1252.
doi: 10.1016/j.ijbiomac.2018.06.025 |
33 |
Wang C. G. ; Xu L. ; Cheng F. ; Wang H. Q. ; Jia L. Y. RSC Adv. 2015, 5 (38), 30197.
doi: 10.1039/c5ra02314a |
34 |
Sauerbrey G. Z. Phys. 1959, 155 (2), 206.
doi: 10.1007/BF01337937 |
35 |
Michaels T. C. T. ; Buell A. K. ; Terentjev E. M. ; Knowles T. P. J. J. Phys. Chem. Lett. 2014, 5 (4), 695.
doi: 10.1021/jz4024833 |
36 |
Voinova M. V. ; Rodahl M. ; Jonson M. ; Kasemo B. Phys. Scr. 1999, 59 (5), 391.
doi: 10.1238/Physica.Regular.059a00391 |
37 | Li S. ; Liu F. F. ; Yu L. L. ; Zhao Y. J. ; Dong X. Y. Acta Phys. -Chim. Sin. 2016, 32 (6), 1391. |
李松; 刘夫锋; 余林玲; 赵彦娇; 董晓燕; 物理化学学报, 2016, 32 (6), 1391.
doi: 10.3866/PKU.WHXB201603221 |
|
38 | Deng J. ; Ma T. ; Chang Z. W. ; Zhao W. Z. ; Yang J. Acta Phys. -Chim. Sin. 2020, 36 (4), 1905019. |
邓静; 马涛; 常自伟; 赵伟静; 杨俊; 物理化学学报, 2020, 36 (4), 1905019.
doi: 10.3866/PKU.WHXB201905019 |
|
39 | Mao X. B. ; Wang C. X. ; Liu L. ; Ma X. J. ; Niu L. ; Yang Y. L. ; Wang C. Acta Phys. -Chim. Sin. 2010, 26 (4), 850. |
毛晓波; 王晨轩; 刘磊; 马晓晶; 牛琳; 杨延莲; 王琛; 物理化学学报, 2010, 26 (4), 850.
doi: 10.3866/PKU.WHXB20100440 |
|
40 |
Qahwash I. M. ; Boire A. ; Lanning J. ; Pytel T. K. P. ; Meredith S. C. J. Biol. Chem. 2007, 282 (51), 36987.
doi: 10.1074/jbc.M702146200 |
41 |
Trigg B. J. ; Lee C. F. ; Vaux D. J. ; Jean L. Biochem. J. 2013, 456 (1), 67.
doi: 10.1042/BJ20130605 |
42 | He C. X. ; Yuan A. P. ; Zhang Q. L. ; Ren X. Z. ; Li C. H. ; Liu J. H. Acta Phys. -Chim. Sin. 2012, 28 (11), 2721. |
何传新; 袁安朋; 张黔玲; 任祥忠; 李翠华; 刘剑洪; 物理化学学报, 2012, 28 (11), 2721.
doi: 10.3866/PKU.WHXB201207191 |
|
43 |
Saraiva A. M. ; Pereira M. C. ; Brezesinski G. Langmuir 2010, 26 (14), 12060.
doi: 10.1021/la101203h |
44 |
Haataja L. ; Gurlo T. ; Huang C. J. ; Butler P. C. Endocr. Rev. 2008, 29 (3), 303.
doi: 10.1210/er.2007-0037 |
45 |
Zhang Y. C. ; Lu L. ; Jia J. P. ; Jia L. F. ; Geula C. ; Pei J. J. ; Xu Z. Q. ; Qin W. ; Liu R. Q. ; Li D. ; et al PLoS One 2014, 9 (1), e85885.
doi: 10.1371/journal.pone.0085885 |
[1] | 霍春安, 邱圣杰, 梁青满, 耿碧君, 雷志超, 王干, 邹玉玲, 田中群, 杨扬. 光镊捕获和操控尺度极限的进展[J]. 物理化学学报, 2024, 40(1): 2303037 - . |
[2] | 雷淦昌, 郑勇, 曹彦宁, 沈丽娟, 王世萍, 梁诗景, 詹瑛瑛, 江莉龙. 钾改性氧化铝基羰基硫水解催化剂及其失活机理[J]. 物理化学学报, 2023, 39(9): 2210038 -0 . |
[3] | 赵永智, 陈晨阳, 刘文燚, 胡伟飞, 刘金平. 固态锂电池界面优化策略的研究进展[J]. 物理化学学报, 2023, 39(8): 2211017 -0 . |
[4] | 陈瑶, 陈存, 曹雪松, 王震宇, 张楠, 刘天西. CO2和N2电还原中缺陷及界面工程的最新进展[J]. 物理化学学报, 2023, 39(8): 2212053 -0 . |
[5] | 刘元凯, 余涛, 郭少华, 周豪慎. 高性能硫化物基全固态锂电池设计:从实验室到实用化[J]. 物理化学学报, 2023, 39(8): 2301027 -0 . |
[6] | 刘欢, 马宇, 曹斌, 朱奇珍, 徐斌. MXenes在水系锌离子电池中的应用研究进展[J]. 物理化学学报, 2023, 39(5): 2210027 -0 . |
[7] | 汪茹, 刘志康, 严超, 伽龙, 黄云辉. 高安全锂离子电池复合集流体的界面强化[J]. 物理化学学报, 2023, 39(2): 2203043 -0 . |
[8] | 王文亮, 张灏纯, 陈义钢, 史海峰. 具有光催化与光芬顿反应协同作用的2D/2D α-Fe2O3/g-C3N4 S型异质结用于高效降解四环素[J]. 物理化学学报, 2022, 38(7): 2201008 - . |
[9] | 宋雨珂, 谢文富, 邵明飞. 一体化电极电催化二氧化碳还原研究进展[J]. 物理化学学报, 2022, 38(6): 2101028 - . |
[10] | 朱思颖, 李辉阳, 胡忠利, 张桥保, 赵金保, 张力. 锂离子电池氧化亚硅负极结构优化和界面改性研究进展[J]. 物理化学学报, 2022, 38(6): 2103052 - . |
[11] | 孙轲, 赵永青, 殷杰, 靳晶, 刘翰文, 席聘贤. 有机配体表面改性NiCo2O4纳米线用于水全分解[J]. 物理化学学报, 2022, 38(6): 2107005 - . |
[12] | 殷宇豪, 沈阳, 王虎, 陈肖, 邵林, 华文宇, 王娟, 崔义. TiN/HfxZr1-xO2/TiN铁电电容器的原位生长与表征[J]. 物理化学学报, 2022, 38(5): 2006016 - . |
[13] | 俞宏伟, 李实, 李金龙, 朱韶华, 孙成珍. 气驱油油气混相过程的界面传质特性及其分子机制[J]. 物理化学学报, 2022, 38(5): 2006061 - . |
[14] | 常明凯, 胡娜, 李遥, 鲜东帆, 周万强, 王静一, 时燕琳, 刘春立. Eu(Ⅲ)在蒙脱石上的吸附及碳酸根和磷酸根对其吸附的影响[J]. 物理化学学报, 2022, 38(3): 2003031 - . |
[15] | 何子旭, 陈亚威, 黄凡洋, 揭育林, 李新鹏, 曹瑞国, 焦淑红. 氟代溶剂在锂金属电池中的应用[J]. 物理化学学报, 2022, 38(11): 2205005 - . |
|