Acta Phys. -Chim. Sin. ›› 2014, Vol. 30 ›› Issue (4): 781-788.doi: 10.3866/PKU.WHXB201402191
• PHYSICAL CHEMISTRY OF MATERIALS • Previous Articles Next Articles
TANG Wei1, WANG Jing1, YAO Peng-Jun1,2, DU Hai-Ying1,3, SUN Yan-Hui1,3
Received:
2014-01-13
Revised:
2014-02-18
Published:
2014-03-31
Contact:
WANG Jing
E-mail:wangjing@dlut.edu.cn
Supported by:
The project was supported by the National Natural Science Foundation of China (61176068, 61131004, 61001054).
TANG Wei, WANG Jing, YAO Peng-Jun, DU Hai-Ying, SUN Yan-Hui. Preparation, Characterization and Gas Sensing Mechanism of ZnO-Doped SnO2 Nanofibers[J]. Acta Phys. -Chim. Sin. 2014, 30(4), 781-788. doi: 10.3866/PKU.WHXB201402191
(1) Wang, J.; Han, Y.; Feng, M.; Chen, J.; Li, X.; Zhang, S. J. Mater. Sci. 2011, 46, 416. doi: 10.1007/s10853-010-4863-z (2) Zhang, K.; Davis, M.; Qiu, J.; Hope-Weeks, L.;Wang, S. Nanotechnology 2012, 23, 385701. doi: 10.1088/0957-4484/23/38/385701 (3) Yao, J.; Yan, H.; Lieber, C. M. Nat. Nanotechnol. 2013, 8, 329. doi: 10.1038/nnano.2013.55 (4) Wan, Q.; Li, Q.; Chen, Y.;Wang, T.; He, X.; Li, J.; Lin, C. Appl. Phys. Lett. 2004, 84, 3654. doi: 10.1063/1.1738932 (5) Le, D. T. T.; Van Duy, N.; Tan, H. M.; Trung, N. N.; Van, P. T. H.; Hoa, N. D.; Van Hieu, N. J. Mater. Sci. 2013, 48, 7253. doi: 10.1007/s10853-013-7545-9 (6) Sankir, N. D.; Dogan, B. J. Mater. Sci. 2010, 45, 6424. doi: 10.1007/s10853-010-4727-6 (7) Comini, E.; Faglia, G.; Sberveglieri, G.; Calestani, D.; Zanotti, L.; Zha, M. Sens. Actuator B-Chem. 2005, 111, 2. (8) Banerjee, N.; Bhowmik, B.; Roy, S.; Sarkar, C. K.; Bhattacharyya, P. J. Nanosci. Nanotechnol. 2013, 13, 6826. doi: 10.1166/jnn.2013.7786 (9) Ho, P. Y.; Thiyagu, S.; Kao, S. H.; Kao, C. Y.; Lin, C. F. Nanoscale 2014, 6, 466. doi: 10.1039/c3nr04418a (10) Kim, M. S.; Lee, S. H.; Yoon, H.; Jung, J. H.; Leem, J. Y. J. Nanosci. Nanotechnol. 2013, 13, 6236. doi: 10.1166/jnn.2013.7688 (11) Zeng, J.; Zhao, C.; Chong, F.; Cao, Y.; Subhan, F.;Wang, Q.; Yu, J.; Zhang, M.; Luo, L.; Ren,W.; Chen, X.; Yan, Z. J. Chromatogr. A 2013, 1319, 21. doi: 10.1016/j.c hroma.2013.10.040 (12) Xia, Y.; Yang, P.; Sun, Y.;Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353. doi: 10.1002/adma.200390087 (13) Chen, P. P.;Wang, J.; Yao, P. J.; Du, H. Y.; Li, X. G. Acta Phys. -Chim. Sin. 2012, 28, 1. [陈鹏鹏, 王兢, 姚朋军, 杜海英, 李晓干. 物理化学学报, 2012, 28, 1.] doi: 10.3866/PKU.W HXB2012281 (14) Du, J.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. J. Funct. Mater. 2005, 36, 1603. [杜娟, 李越湘, 彭绍琴, 吕功煊, 李树本. 功能材料, 2005, 36, 1603.] (15) Lee, D. J.; Lee, H.; Ryou, M. H.; Han, G. B.; Lee, J. N.; Song, J.; Choi, J.; Cho, K. Y.; Lee, Y. M.; Park, J. K. ACS Appl. Mater. Interfaces 2013, 5, 12005. doi: 10.1021/am403798a (16) Li, X. Y.; Li, Y. C.; Yu, D. G.; Liao, Y. Z.;Wang, X. Int. J. Mol. Sci. 2013, 14, 21647. doi: 10.3390/ijms141121647 (17) Yu, D. G.; Li, X. Y.; Chian,W.; Li, Y.;Wang, X. Biomed. Mater. Eng. 2014, 24, 695. (18) Xu, L.;Wang, L.; Si, N.; He, J. J. Control. Release 2013, 172,e131. (19) Ding, B.;Wang, M.; Yu, J.; Sun, G. Sensors 2009, 9, 1609. doi: 10.3390/s90301609 (20) Wang, Z.; Li, Z.; Jiang, T.; Xu, X.;Wang, C. ACS Appl. Mater. Interfaces 2013, 5, 2013. doi: 10.1021/am3028553 (21) Guan, H.; Shao, C.; Chen, B.; Gong, J.; Yang, X. Inorg. Chem. Commun. 2003, 6, 1409. doi: 10.1016/j.inoche.2003.08.021 (22) Yang, X.; Shao, C.; Guan, H.; Li, X.; Gong, J. Inorg. Chem. Commun. 2004, 7, 176. doi: 10.1016/j.inoche.2003.10.035 (23) Onozuka, K.; Ding, B.; Tsuge, Y.; Naka, T.; Yamazaki, M.; Sugi, S.; Ohno, S.; Yoshikawa, M.; Shiratori, S. Nanotechnology 2006, 17, 1026. doi: 10.1088/0957-4484/17/4/030 (24) Wang, Y.; Ramos, I.; Santiago-Aviles, J. J. IEEE Sens. 2007, 7, 1347. doi: 10.1109/JSEN.2007.905045 (25) Chen, P. P.;Wang, J.; Zhang, C. L.; Hao, Y.W.; Du, H. Y. Acta. Phys. -Chim. Sin. 2013, 29, 1827. [陈鹏鹏, 王兢, 张春丽,郝育闻, 杜海英. 物理化学学报, 2013, 29, 1827.] doi: 10.3866/P KU.WHXB201306091 (26) Zhang, Y.; He, X.; Li, J.; Miao, Z.; Huang, F. Sens. Actuator BChem. 2008, 132, 67. doi: 10.1016/j.snb.2008.01.006 (27) Choi, Y. J.; Hwang, I. S.; Park, J. G.; Choi, K. J.; Park, J. H.; Lee, J. H. Nanotechnology 2008, 19, 095508. doi: 10.1088/0957-4484/19/9/095508 (28) Zheng, Y.;Wang, J.; Yao, P. Sens. Actuators B 2011, 156, doi: 10.1016/j.snb.2011.02.026 (29) Park, J. A.; Moon, J.; Lee, S. J.; Lim, S. C.; Zyung, T. Curr. Appl. Phys. 2009, 9, S210. (30) Wei, S.; Yu, Y.; Zhou, M. Mater. Lett. 2010, 64, 2284. doi: 10.1016/j.matlet.2010.07.038 (31) Lee, C.; Choi, S.W.; Park, J. Y.; Kim, S. S. Sensor. Lett. 2011, 9, 132. doi: 10.1166/sl.2011.1435 (32) Zhang, Z.; Li, X.;Wang, C.;Wei, L.; Liu, Y.; Shao, C. J. Phys. Chem. C 2009, 113, 19397. doi: 10.1021/jp9070373 (33) Zhao, M.;Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L. Sens. Actuator B-Chem. 2011, 156, 588. doi: 10.1016/j.snb.2011.01.070 (34) Song, X.;Wang, Z.; Liu, Y.;Wang, C.; Li, L. Nanotechnology 2009, 20, 075501. doi: 10.1088/0957-4484/20/7/075501 (35) Choi, S.W.; Park, J. Y.; Kim, S. S. Nanotechnology 2009, 20, 465603. doi: 10.1088/0957-4484/20/46/465603 (36) Moon, J.; Park, J. A.; Lee, S. J.; Zyung, T. ETRI J. 2009, 31, 636. doi: 10.4218/etrij.09.1209.0004 (37) Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.;Wang, C.; Liu, Y. J. Phys. Chem. C 2010, 114, 7920. doi: 10.1021/jp100262q (38) Du, H. Y.;Wang, J.; Yao, P. J.; Hao, Y.W.; Li, X. G. J. Mater. Sci. 2013, 48, 3597. doi: 10.1007/s10853-013-7157-4 (39) Shao, C.; Yang, X.; Guan, H.; Liu, Y.; Gong, J. Inorg. Chem. Commun. 2004, 7, 625. doi: 10.1016/j.inoche.2004.03.006 (40) Abdelrazek, E.; Elashmawi, I.; Labeeb, S. Physica B 2010, 405, 2021. doi: 10.1016/j.physb.2010.01.095 (41) Loría-Bastarrachea, M.; Herrera-Kao,W.; Cauich-Rodríguez, J.; Cervantes-Uc, J.; Vázquez-Torres, H.; ávila-Ortega, A. J. Therm. Anal. Calorim. 2011, 104, 737. doi: 10.1007/s10973-010-1061-9 (42) Siddheswaran, R.; Sankar, R.; Babu, M. R.; Rathnakumari, M.; Jayavel, R.; Murugakoothan, P.; Sureshkumar, P. Cryst. Res. Technol. 2006, 41, 446. (43) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. doi: 10.1021/ja0299452 (44) Calatayud, M.; Markovits, A.; Menetrey, M.; Mguig, B.; Minot, C. Catal. Today 2003, 85, 125. doi: 10.1016/S0920-5861(03)00381-X (45) Hou, C. P.; Li, Y. H.; Ge, X. T.; Fang, D. R.; Shen, L.; Liu, X. Q. Electronic Components and Materials 2004, 23, 17. [侯长平, 李永红, 葛秀涛, 方大儒, 沈玲, 刘杏芹. 电子元件与材料,< B>2004, 23, 17.] (46) Zheng,W.; Lu, X.;Wang,W.; Li, Z.; Zhang, H.;Wang, Y.; Wang, Z.;Wang, C. Sens. Actuator B-Chem. 2009, 142, 61. doi: 10.1016/j.snb.2009.07.031 (47) Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Inorg. Chem. 2009, 48, 1819. doi: 10.1021/ic802293p (48) Wang, C.; Shao, C.; Zhang, X.; Liu, Y. Inorg. Chem. 2009, 48,7261. doi: 10.1021/ic9005983i, L.; Liu, Y.; Shao, C. J. Phys. Chem. C 2009, 113, 19397. doi: 10.1021/jp9070373 (33) Zhao, M.; Wang, X.; Ning, L.; Jia, J.; Li, X.; Cao, L. Sens. Actuator B-Chem. 2011, 156, 588. doi: 10.1016/j.snb.2011.01.070 (34) Song, X.; Wang, Z.; Liu, Y.; Wang, C.; Li, L. Nanotechnology 2009, 20, 075501. doi: 10.1088/0957-4484/20/7/075501 (35) Choi, S. W.; Park, J. Y.; Kim, S. S. Nanotechnology 2009, 20, 465603. doi: 10.1088/0957-4484/20/46/465603 (36) Moon, J.; Park, J. A.; Lee, S. J.; Zyung, T. ETRI J. 2009, 31, 636. doi: 10.4218/etrij.09.1209.0004 (37) Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.; Wang, C.; Liu, Y. J. Phys. Chem. C 2010, 114, 7920. doi: 10.1021/jp100262q (38) Du, H. Y.; Wang, J.; Yao, P. J.; Hao, Y. W.; Li, X. G. J. Mater. Sci. 2013, 48, 3597. doi: 10.1007/s10853-013-7157-4 (39) Shao, C.; Yang, X.; Guan, H.; Liu, Y.; Gong, J. Inorg. Chem. Commun. 2004, 7, 625. doi: 10.1016/j.inoche.2004.03.006 (40) Abdelrazek, E.; Elashmawi, I.; Labeeb, S. Physica B 2010, 405, 2021. doi: 10.1016/j.physb.2010.01.095 (41) Loría-Bastarrachea, M.; Herrera-Kao, W.; Cauich-Rodríguez, J.; Cervantes-Uc, J.; Vázquez-Torres, H.; ávila-Ortega, A. J. Therm. Anal. Calorim. 2011, 104, 737. doi: 10.1007/s10973-010-1061-9 (42) Siddheswaran, R.; Sankar, R.; Ramesh Babu, M.; Rathnakumari, M.; Jayavel, R.; Murugakoothan, P.; Sureshkumar, P. Cryst. Res. Technol. 2006, 41, 446. (43) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. doi: 10.1021/ja0299452 (44) Calatayud, M.; Markovits, A.; Menetrey, M.; Mguig, B.; Minot, C. Catal. Today 2003, 85, 125. doi: 10.1016/S0920-5861(03)00381-X (45) Hou, C. P.; Li, Y. H.; Ge, X. T.; Fang, D. R.; Shen, L.; Liu, X. Q. E. C. & M. 2004, 23, 17. [侯长平, 李永红, 葛秀涛, 方大儒, 沈玲, 刘杏芹. 电子元件与材料, 2004, 23, 17.] (46) Zheng, W.; Lu, X.; Wang, W.; Li, Z.; Zhang, H.; Wang, Y.; Wang, Z.; Wang, C. Sens. Actuator B-Chem. 2009, 142, 61. doi: 10.1016/j.snb.2009.07.031 (47) Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Inorg. Chem. 2009, 48, 1819. doi: 10.1021/ic802293p (48) Wang, C.; Shao, C.; Zhang, X.; Liu, Y. Inorg. Chem. 2009, 48, 7261. doi: 10.1021/ic9005983
|
[1] | Meng Li, Fulin Yang, Jinfa Chang, Alex Schechter, Ligang Feng. MoP-NC Nanosphere Supported Pt Nanoparticles for Efficient Methanol Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2301005-0. |
[2] | Tao Sun, Chenxi Li, Yupeng Bao, Jun Fan, Enzhou Liu. S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212009-. |
[3] | Xinhe Wu, Guoqiang Chen, Juan Wang, Jinmao Li, Guohong Wang. Review on S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212016-0. |
[4] | Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2211051-. |
[5] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[6] | Keyu Zhang, Yunfeng Li, Shidan Yuan, Luohong Zhang, Qian Wang. Review of S-Scheme Heterojunction Photocatalyst for H2O2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212010-. |
[7] | Jintao Dong, Sainan Ji, Yi Zhang, Mengxia Ji, Bin Wang, Yingjie Li, Zhigang Chen, Jiexiang Xia, Huaming Li. Construction of Z-Scheme MnO2/BiOBr Heterojunction for Photocatalytic Ciprofloxacin Removal and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212011-. |
[8] | Jie Wang, Guigao Liu, Qinbai Yun, Xichen Zhou, Xiaozhi Liu, Ye Chen, Hongfei Cheng, Yiyao Ge, Jingtao Huang, Zhaoning Hu, Bo Chen, Zhanxi Fan, Lin Gu, Hua Zhang. Epitaxial Growth of Unconventional 4H-Pd Based Alloy Nanostructures on 4H-Au Nanoribbons towards Highly Efficient Electrocatalytic Methanol Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2305034-. |
[9] | Yue Huang, Feifei Mei, Jinfeng Zhang, Kai Dai, Graham Dawson. Construction of 1D/2D W18O49/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2108028-. |
[10] | Shanchi Liu, Kai Wang, Mengxue Yang, Zhiliang Jin. Rationally Designed Mn0.2Cd0.8S@CoAl LDH S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2109023-. |
[11] | Gaowei Han, Feiyan Xu, Bei Cheng, Youji Li, Jiaguo Yu, Liuyang Zhang. Enhanced Photocatalytic H2O2 Production over Inverse Opal ZnO@Polydopamine S-Scheme Heterojunctions [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2112037-. |
[12] | Wenliang Wang, Haochun Zhang, Yigang Chen, Haifeng Shi. Efficient Degradation of Tetracycline via Coupling of Photocatalysis and Photo-Fenton Processes over a 2D/2D α-Fe2O3/g-C3N4 S-Scheme Heterojunction Catalyst [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2201008-. |
[13] | Hongyu Liu, Gang Meng, Zanhong Deng, Meng Li, Junqing Chang, Tiantian Dai, Xiaodong Fang. Progress in Research on VOC Molecule Recognition by Semiconductor Sensors [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2008018-. |
[14] | Ying Liu, Xiaofang Liu, Lin Xia, Chaojie Huang, Zhaoxuan Wu, Hui Wang, Yuhan Sun. Methanol Synthesis by COx Hydrogenation over Cu/ZnO/Al2O3 Catalyst via Hydrotalcite-Like Precursors: the Role of CO in the Reactant Mixture [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2002017-. |
[15] | Hongying Li, Haiming Gong, Zhiliang Jin. In2O3-Modified Three-Dimensional Nanoflower MoSx Form S-scheme Heterojunction for Efficient Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2201037-. |
|