Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (2): 1903052.doi: 10.3866/PKU.WHXB201903052
Special Issue: Supercapacitor
• REVIEW • Previous Articles Next Articles
Jiayao Zhu1,Yue Dong2,Su Zhang1,*(),Zhuangjun Fan3,*()
Received:
2019-03-25
Accepted:
2019-04-25
Published:
2019-05-08
Contact:
Su Zhang,Zhuangjun Fan
E-mail:suzhangs@163.com;fanzhj666@163.com
Supported by:
Jiayao Zhu, Yue Dong, Su Zhang, Zhuangjun Fan. Application of Carbon-/Graphene Quantum Dots for Supercapacitors[J]. Acta Physico-Chimica Sinica 2020, 36(2), 1903052. doi: 10.3866/PKU.WHXB201903052
Table 1
Performance of supercapacitors based on carbon-/graphene quantum dots-conductive carbon composites."
Materials | Methods | Interaction | Function of CD/GQD | Specific surface area (m2.g−1) | Specific capacitance | Rate capability | Electrolyte | Testing system | Ref. |
CD/graphene oxide | microfluid spinning | hydrogen bond | pillar | 435.1 | 91.9 F∙g−1@ 0.1 mA∙cm−2 | 60.1 F∙g−1@ 1 mA∙cm−2 | H2SO4/PVA | solid | |
CD/activated carbon | sonication | – | – | 723 | 134 F∙g−1@ 1 A∙g−1 | 95 F∙g−1@ 50 mV∙s−1 | 6 mol∙L−1 KOH | two electrode | |
GQD/carbonized MOF-5 | electrochemical deposition | – | providing pseudocapacitance, increasing surface wettability | 704.2 | 780 F∙g−1@ 10 mV∙s−1 | – | 1 mol∙L−1 H2SO4 | three electrode | |
294.1 F∙g−1@ 0.5 A∙g−1 | 195.8 F∙g−1@ 20 A∙g−1 | two electrode | |||||||
GQD/graphene hydrogel | electrochemical deposition | – | providing sub-nanometer pores | 292 | 268 F∙g−1@ 1.25 A∙g−1 | 130 F∙g−1@ 5 A∙g−1 | 1 mol∙L−1 H2SO4 | two electrode | |
GQD/porous graphene oxide | ozone treatment | chemical bond | pillar | 7.24 | 353 F∙g−1@ 2 mV∙s−1 | 234 F∙g−1@ 500 mV∙s−1 | 6 mol∙L−1 KOH | three electrode | |
69.7 F∙g−1@ 2 mV∙s−1 | 26.2 F∙g−1@ 500 mV∙s−1 | 1 mol∙L−1 Na2SO4 | two electrode | ||||||
GQD/graphene | electrochemical deposition | metal chelating/coordination | – | – | 7.02 μF∙cm−2@ 0.02 μA∙cm−2 | 3.22 μF∙cm−2@ 0.03 μA∙cm−2 | H2SO4/PVA | solid | |
GQD/carbon nanofiber | low temperature synthesis | covalent ester bond | providing active sites | – | 213 F∙g−1@ 1 A∙g−1 | 31 F∙g−1@ 10 A∙g−1 | 1 mol∙L−1 H2SO4 | two electrode | |
GQD/chitosan-derived carbon | carbonization | – | – | – | 545 F∙g−1@ 1 A∙g−1 | 175 F∙g−1@ 20 A∙g−1 | 1 mol∙L−1 H2SO4 | three electrode | |
CD/polyacrylamide-derived carbon | carbonization | – | – | 1025 | 468 F∙g−1@ 1 A∙g−1 | 374 F∙g−1@ 30 A∙g−1 | 3 mol∙L−1 KOH | three electrode | |
510 F∙g−1@ 1 A∙g−1 | 398 F∙g−1@ 30 A∙g−1 | 4 mol∙L−1 H2SO4 | three electrode | ||||||
438 F∙g−1@ 1 A∙g−1 | 312 F∙g−1@ 30 A∙g−1 | 1 mol∙L−1 Li2SO4 | three electrode | ||||||
N-doping GQD/carbonized MOF-8-CNT | electrochemical deposition | – | providing pseudocapacitance, increasing wettability | 520 | 540 F∙g−1@ 0.5 A∙g−1 | 332.1 F∙g−1@ 20 A∙g−1 | 1 mol∙L−1 H2SO4 | two electrode | |
CD/reduced graphene oxide | hydrothermal deposition | – | pillar | 44.52 | 308 F∙g−1@ 0.5 A∙g−1 | 222 F∙g−1@ 20 A∙g−1 | 6 mol∙L−1 KOH | three electrode | |
GQD/carbon nanotube/carbon cloth | electrochemical deposition | – | increasing interface interaction | – | 592.8 mF∙cm−2@ 0.5 mA∙cm−2 | 461 mF∙cm−2@ 20 mA∙cm−2 | H2SO4/PVA | solid | |
N-doping GQD/ graphene oxide | optical reduction | – | pillar | – | 344 F∙g−1@ 0.25 A∙g−1 | 210 F∙g−1@ 4.17 A∙g−1 | 6 mol∙L−1 KOH | three electrode | |
GQD/glucosamine hydrochloride | hydrothermal-carbonization | – | improving conductivity | 2829 | 388 F∙g−1@ 1 A∙g−1 | 233 F∙g−1@ 100 A∙g−1 | 6 mol∙L−1 KOH | two electrode |
Fig 3
(a) Scheme of preparation route of GQDs/porous graphene composite by in-situ O3 oxidation; digital photographs of (b) graphene oxide and ozone treatment-graphene oxide suspensions, (c) ozone treatment-graphene oxide powder, (d) GQDs/porous graphene powder; (e–f) SEM images, (g–h) TEM images, (i) XRD patterns of GQDs/porous graphene composites. Adapted with permission from Ref. 49, Copyright 2015, Wiley-VCH Verlag GmbH & Co. KGaA. "
Fig 4
(a) Schematic of the dot-sheet structure between CDs and graphene; (b) Schematic of formation of CDs/graphene fibers via microfluid-oriented strategy; (c) Schematic of CDs/graphene fiber-based micro-supercapacitors used to power diverse electronic devices. Adapted with permission from Ref. 48, Copyright 2018, The Royal Society of Chemistry."
Table 2
Performance of supercapacitors based on carbon-/graphene quantum dots-pseudocapacitive material composites."
Materials | Methods | Influence on morphologies | Electrolyte | Specific capacitance | Cycle stability | Function of CD/GQD | Ref. | |
CD/RuO2 | mixing | – | 1 mol∙L−1 H2SO4 | 594 F∙g−1@1 A∙g−1 460 F g−1@50 A∙g−1 | 97% @ 5000 cycles @ 5 A∙g−1 | improving conductivity | ||
CD/Ni(OH)2 | hydrothermal treatment | control morphology change | 2 mol∙L−1 KOH | 2750 F∙g−1@1 A g−1, 1763 F∙g−1@20 A∙g−1 | 96% @ 2000 cycles @ 20 A∙g−1 | improving conductivity, inducing morphology change, accelerating ion transport | ||
CD/NiCo2O4 | reflux-heat treatment | – | 2 mol∙L−1 KOH | 856 F∙g−1@1 A∙g−1 520 F∙g−1@100 A∙g−1 | 99% @ 10000 cycles @ 5 A∙g−1 | improving conductivity | ||
CD/NiCo2O4 | hydrothermal-air heat treatment | control morphology change | 3 mol∙L−1 KOH | 2168 F∙g−1@1 A∙g−1, 1620 F∙g−1@30 A∙g−1 | No fading @ 5000 cycles @ 30 A∙g−1 | inducing morphology change, accelerating ion transport, increasing wettability | ||
CD/MnO2 | hydrothermal treatment | control morphology change | 1 mol∙L−1 Na2SO4 | 340 F∙g−1@1 A∙g−1 260 F∙g−1@20 A∙g−1 | 76% @ 10000 cycles @ 1 A∙g−1 | improving conductivity and wettability | ||
GQD/MnO2 | plasma enhanced chemical vapor deposition | Mn-O-C bond | 1 mol∙L−1 Na2SO4 | 1094 F∙g−1@5 mV∙s−1, 380 F∙g−1@100 mV∙s−1 | 95% @ 10000 cycles @ 1 A∙g−1 | improving conductivity and stability | ||
GQD/halloysite nanotubes | electrostatic assembly | – | 1 mol∙L−1 Na2SO4 | 323 F∙g−1@5 mV∙s−1, 186 F∙g−1@100 mV∙s−1, 363 F∙g−1@0.5 A∙g−1, 216 F∙g−1@20 A∙g−1 | 88% @ 5000 cycles @ 6 A∙g−1 | accelerating ion transport | ||
N-doped GQD /Fe3O4/halloysite nanotubes | electrostatic assembly | – | 1 mol∙L−1 Na2SO4 | 370 F∙g−1@5 mV ∙s−1, 210 F∙g−1@100 mV∙s−1, 418 F∙g−1@0.5 A∙g−1, 130 F∙g−1@10 A∙g−1 | 83% @ 3000 cycles @ 1 A∙g−1 | accelerating ion transport | ||
GQD/polyaniline | mixed oxidation-polymerization | control morphology change | 0.5 mol∙L−1 H2SO4 | 1044 F∙g−1@1 A∙g−1, 635 F∙g−1@10 A∙g−1 | 80% @ 3000 cycles @ 1 A∙g−1 | increase structural stability, accelerating ion transport | ||
CD/polyaniline | mixed oxidation-polymerization | control morphology change | 1 mol∙L−1 H2SO4 | 970 F∙g−1@1 A∙g−1, 610 F∙g−1@20 A∙g−1 | 85% @ 2000 cycles @ 10 A∙g−1 | improving structural stability and conductivity | ||
CD/polyaniline | electrochemical polymerization | – | 1 mol∙L−1 H2SO4 | 738 F∙g−1@1 A∙g−1, 495 F∙g−1@10 A∙g−1 | 78% @ 1000 cycles @ 5 A∙g−1 | increase structural stability, accelerating ion transport | ||
CD/polypyrrole | electrostatic adsorption | – | 1 mol∙L−1 KCl | 306 F∙g−1@0.5 A∙g−1, 210 F∙g-1 @ 40 A∙g-1 | 85% @ 5000 cycles @ 5mA∙cm−2 | Increase structural stability, accelerating ion transport | ||
graphene aerogel /CD/CuS | hydrothermal-heat treatment | – | 6 mol∙L−1 KOH | 782 F∙g−1@1 A∙g−1, 410 F∙g−1@10 A∙g−1 | 80% @ 5000 cycles @ 5 A∙g−1 | increasing interface bonding, providing pseudocapacitance | ||
Graphene/CD/ MnOx | low temperature chemical reduction | reductant, crystalline core | 1 mol∙L−1 Na2SO4 | 480 F∙g−1@0.2 A∙g−1, 100 F∙g−1@1.25 A∙g−1 | 94.7% @ 10000 cycles @ 1.2 A∙g−1 | protecting graphene structure | ||
graphene aerogel/CD/MnO2 | hydrothermal-oxidation | reducing MnO2 particle sizes | 1 mol∙L−1 Na2SO4 | 721 F∙g−1@1 A∙gW#8722;1, 643 F∙g−1@20 A∙g−1 | 92% @ 10000 cycles @ 10 A∙g−1 | increasing interface bonding and stability | ||
graphene oxide/CD/polypyrrole | blending polymerization | – | 1 mol∙L−1 LiCl | 576 F∙g−1@0.5 A∙g−1, 488 F∙g−1@10 A∙g−1 | 93% @ 1000 cycles @ 10 A∙g−1 | increasing interface bonding and dielectrical property |
1 |
Simon P. ; Gogotsi Y. Nat. Mater. 2008, 7, 845.
doi: 10.1038/nmat2297 |
2 |
Salanne M. ; Rotenberg B. ; Naoi K. ; Kaneko K. ; Taberna P. L. ; Grey C. P. ; Dunn B. ; Simon P. Nature Energy 2016, 1 (6), 16070.
doi: 10.1038/nenergy.2016.70 |
3 |
Wang F. ; Wu X. ; Yuan X. ; Liu Z. ; Zhang Y. ; Fu L. ; Zhu Y. ; Zhou Q. ; Wu Y. ; Huang W. Chem. Soc. Rev. 2017, 46 (22), 6816.
doi: 10.1039/c7cs00205j |
4 |
Wang G. ; Zhang L. ; Zhang J. Chem. Soc. Rev. 2012, 41 (2), 797.
doi: 10.1039/c1cs15060j |
5 |
Simon P. ; Gogotsi Y. Acc. Chem. Res. 2013, 46 (5), 1094.
doi: 10.1021/ar200306b |
6 |
Wang Y. ; Song Y. ; Xia Y. Chem. Soc. Rev. 2016, 45 (21), 5925.
doi: 10.1039/c5cs00580a |
7 |
Xu Y. ; Wang X. ; Zhang W. L. ; Lv F. ; Guo S. Chem. Soc. Rev. 2018, 47 (2), 586.
doi: 10.1039/c7cs00500h |
8 |
Lim S. Y. ; Shen W. ; Gao Z. Chem. Soc. Rev. 2015, 44 (1), 362.
doi: 10.1039/c4cs00269e |
9 |
Wang Y. ; Hu A. J. Mater. Chem. C 2014, 2 (34), 6921.
doi: 10.1039/c4tc00988f |
10 |
Li L. ; Wu G. ; Yang G. ; Peng J. ; Zhao J. ; Zhu J. J. Nanoscale 2013, 5 (10), 4015.
doi: 10.1039/c3nr33849e |
11 |
Zhang Z. ; Zhang J. ; Chen N. ; Qu L. Energy Environ. Sci. 2012, 5 (10), 8869.
doi: 10.1039/c2ee22982j |
12 |
Zheng X. T. ; Ananthanarayanan A. ; Luo K. Q. ; Chen P. Small 2015, 11 (14), 1620.
doi: 10.1002/smll.201402648 |
13 |
Xia R. ; Wang S. M. ; Dong W. W. ; Fang X. D. Acta Phys. -Chim. Sin. 2017, 33 (4), 670.
doi: 10.3866/PKU.WHXB201701101 |
夏锐; 王时茂; 董伟伟; 方晓东. 物理化学学报, 2017, 33 (4), 670.
doi: 10.3866/PKU.WHXB201701101 |
|
14 |
He P. ; Yuan F. L. ; Wang Z. F. ; Tan Z. A. ; Fan L. Z. Acta Phys. -Chim. Sin. 2018, 34 (11), 1250.
doi: 10.3866/PKU.WHXB201804041 |
贺平; 袁方龙; 王子飞; 谭占鳌; 范楼珍. 物理化学学报, 2018, 34 (11), 1250.
doi: 10.3866/PKU.WHXB201804041 |
|
15 |
Hu C. ; Mu Y. ; Li M. Y. ; Qiu J. S. Acta Phys. -Chim. Sin. 2019, 35 (6), 572.
doi: 10.3866/PKU.WHXB201806060 |
胡超; 穆野; 李明宇; 邱介山. 物理化学学报, 2019, 35 (6), 572.
doi: 10.3866/PKU.WHXB201806060 |
|
16 |
Liu J. ; Ye J. L. ; Pan F. ; Wang X. Y. ; Zhu Y. W. Sci. China Mater. 2019, 62 (4), 545.
doi: 10.1007/s40843-018-9309-x |
刘杰; 叶江林; 潘飞; 王向阳; 朱彦武. 中国科学材料科学, 2019, 62 (4), 545.
doi: 10.1007/s40843-018-9309-x |
|
17 |
Xie G. S. ; Hao F. ; Lu K. F. ; Zhang J. Battery Bimonthly 2017, 47 (6), 370.
doi: 10.19535/j.1001-1579.2017.06.014 |
谢观水; 郝凡; 路凯峰; 张坚. 电池, 2017, 47 (6), 370.
doi: 10.19535/j.1001-1579.2017.06.014 |
|
18 |
Shi Z. Q. ; Niu Y. F. ; Duan J. ; Wang J. ; Zhang J. J. Tianjin Polytech.c Univ. 2018, 37 (3), 49.
doi: 10.3969/j.issn.1671-024x.2018.03.009 |
时志强; 牛永芳; 段建; 王静; 张进. 天津工业大学学报, 2018, 37 (3), 49.
doi: 10.3969/j.issn.1671-024x.2018.03.009 |
|
19 | Wu K. ; Xu S. Z. ; Zhou X. J. ; Wu H. X. J. Electrochem. 2013, 19 (4), 361. |
吴坤; 许思哲; 周雪皎; 吴海霞. 电化学, 2013, 19 (4), 361. | |
20 |
Ding Z. C. ; Zhang L. ; Liu J. Sci. China Chem. 2018, 48 (8), 902.
doi: 10.13208/j.electrochem.2013.04.004 |
丁自成; 张璐; 刘俊. 中国科学:化学, 2018, 48 (8), 902.
doi: 10.13208/j.electrochem.2013.04.004 |
|
21 |
Liu H. ; Ye T. ; Mao C. Angew. Chem. Int. Ed. 2007, 46 (34), 6473.
doi: 10.1002/anie.200701271 |
22 |
Dong Y. ; Zhou N. ; Lin X. ; Lin J. ; Chi Y. ; Chen G. Chem. Mater. 2010, 22 (21), 5895.
doi: 10.1021/cm1018844 |
23 |
Liu R. ; Wu D. ; Liu S. ; Koynov K. ; Knoll W. ; Li Q. Angew. Chem. Int. Ed. 2009, 48 (25), 4598.
doi: 10.1002/anie.200900652 |
24 |
Pan D. ; Zhang J. ; Li Z. ; Wu M. Adv. Mater. 2010, 22 (6), 734.
doi: 10.1002/adma.200902825 |
25 |
Pan D. ; Guo L. ; Zhang J. ; Xi C. ; Xue Q. ; Huang H. ; Li J. ; Zhang Z. ; Yu W. ; Chen Z. ; et al J. Mater. Chem. 2012, 22 (8), 3314.
doi: 10.1039/c2jm16005f |
26 |
Lu J. ; Yan M. ; Ge L. ; Ge S. ; Wang S. ; Yan J. ; Yu J. Biosens. Bioelectron. 2013, 47, 271.
doi: 10.1016/j.bios.2013.03.039 |
27 |
Zhou J. G. ; Booker C. ; Li R. Y. ; Zhou X. T. ; Sham T. -K. ; Sun X. L. ; Ding Z. F. J. Am. Chem. Soc. 2007, 129 (4), 744.
doi: 10.1021/ja0669070 |
28 |
Peng J. ; Gao W. ; Gupta B. K. ; Liu Z. ; Romero-Aburto R. ; Ge L. ; Song L. ; Alemany L. B. ; Zhan X. ; Gao G. ; et al Nano Lett. 2012, 12 (2), 844.
doi: 10.1021/nl2038979 |
29 |
Bourlinos A. B. ; Stassinopoulos A. ; Anglos D. ; Zboril R. ; Karakassides M. ; Giannelis E. P. Small 2008, 4 (4), 455.
doi: 10.1002/smll.200700578 |
30 |
Dong Y. ; Shao J. ; Chen C. ; Li H. ; Wang R. ; Chi Y. ; Lin X. ; Chen G. Carbon 2012, 50 (12), 4738.
doi: 10.1016/j.carbon.2012.06.002 |
31 |
Yang Z. C. ; Wang M. ; Yong A. M. ; Wong S. Y. ; Zhang X. H. ; Tan H. ; Chang A. Y. ; Li X. ; Wang J. Chem. Commun. 2011, 47 (42), 11615.
doi: 10.1039/c1cc14860e |
32 |
Tang L. J. R. ; Cao X. ; Lin J. ; Jiang H. ; Li X. ; Teng K. S. ; Luk C. M. ; Zeng S. ; Hao J. ; Lau S. P. ACS Nano 2012, 6 (6), 5102.
doi: 10.1021/nn300760g |
33 |
Lu J. ; Yeo P. S. ; Gan C. K. ; Wu P. ; Loh K. P. Nat. Nanotechnol. 2011, 6 (4), 247.
doi: 10.1038/nnano.2011.30 |
34 |
Li Z. ; Qin P. ; Wang L. ; Yang C. ; Li Y. ; Chen Z. ; Pan D. ; Wu M. Electrochim. Acta 2016, 208, 260.
doi: 10.1016/j.electacta.2016.05.030 |
35 |
Wang L. ; Wang Y. ; Xu T. ; Liao H. ; Yao C. ; Liu Y. ; Li Z. ; Chen Z. ; Pan D. ; Sun L. ; et al Nat. Commun. 2014, 5 (1), 5357.
doi: 10.1038/ncomms6357 |
36 |
Randin J. P. ; Yeager E. J. Electroanal. Chem. 1972, 36 (2), 257.
doi: 10.1016/S0022-0728(72)80249-3 |
37 |
Randin J. P. ; Yeager E. J. Electroanal. Chem. 1975, 58 (2), 313.
doi: 10.1016/S0022-0728(75)80089-1 |
38 |
Chen J. ; Han Y. ; Kong X. ; Deng X. ; Park H. J. ; Guo Y. ; Jin S. ; Qi Z. ; Lee Z. ; Qiao Z. ; et al Angew. Chem. Int. Ed. 2016, 55 (44), 13822.
doi: 10.1002/anie.201605926 |
39 |
Zhu J. ; Childress A. S. ; Karakaya M. ; Dandeliya S. ; Srivastava A. ; Lin Y. ; Rao A. M. ; Podila R. Adv. Mater. 2016, 28 (33), 7185.
doi: 10.1002/adma.201602028 |
40 |
Wang H. ; Wang Y. ; Hu Z. ; Wang X. ACS Appl. Mater. Interfaces 2012, 4 (12), 6827.
doi: 10.1021/am302000z |
41 |
Liu W. W. ; Feng Y. Q. ; Yan X. B. ; Chen J. T. ; Xue Q. J. Adv. Funct. Mater. 2013, 23 (33), 4111.
doi: 10.1002/adfm.201203771 |
42 |
Liu W. ; Yan X. ; Chen J. ; Feng Y. ; Xue Q. Nanoscale 2013, 5 (13), 6053.
doi: 10.1039/c3nr01139a |
43 |
Shen B. ; Lang J. ; Guo R. ; Zhang X. ; Yan X. ACS Appl. Mater. Interfaces 2015, 7 (45), 25378.
doi: 10.1021/acsami.5b07909 |
44 |
Li Z. ; Cao L. ; Qin P. ; Liu X. ; Chen Z. ; Wang L. ; Pan D. ; Wu M. Carbon 2018, 139, 67.
doi: 10.1016/j.carbon.2018.06.042 |
45 |
Hassan M. ; Haque E. ; Reddy K. R. ; Minett A. I. ; Chen J. ; Gomes V. G. Nanoscale 2014, 6 (20), 11988.
doi: 10.1039/c4nr02365j |
46 |
Miah M. ; Bhattacharya S. ; Gupta A. ; Saha S. K. Electrochim. Acta 2016, 222, 709.
doi: 10.1016/j.electacta.2016.11.027 |
47 |
Lee K. ; Lee H. ; Shin Y. ; Yoon Y. ; Kim D. ; Lee H. Nano Energy 2016, 26, 746.
doi: 10.1016/j.nanoen.2016.06.030 |
48 |
Li Q. ; Cheng H. ; Wu X. ; Wang C. F. ; Wu G. ; Chen S. J. Mater. Chem. A 2018, 6 (29), 14112.
doi: 10.1039/c8ta02124d |
49 |
Jiang L. ; Sheng L. ; Long C. ; Wei T. ; Fan Z. Adv. Energy Mater. 2015, 5 (15), 1500771.
doi: 10.1002/aenm.201500771 |
50 |
Xu Y. ; Li X. ; Hu G. ; Wu T. ; Luo Y. ; Sun L. ; Tang T. ; Wen J. ; Wang H. ; Li M. Appl. Surfurce Sci. 2017, 422, 847.
doi: 10.1016/j.apsusc.2017.05.189 |
51 |
Kumar V. B. ; Borenstein A. ; Markovsky B. ; Aurbach D. ; Gedanken A. ; Talianker M. ; Porat Z. J. Phys. Chem. C 2016, 120 (25), 13406.
doi: 10.1021/acs.jpcc.6b04045 |
52 |
Islam M. S. ; Deng Y. ; Tong L. ; Roy A. K. ; Faisal S. N. ; Hassan M. ; Minett A. I. ; Gomes V. G. Mater. Today Commun. 2017, 10, 112.
doi: 10.1016/j.mtcomm.2016.11.002 |
53 |
Li Z. ; Li Y. ; Wang L. ; Cao L. ; Liu X. ; Chen Z. ; Pan D. ; Wu M. Electrochim. Acta 2017, 235, 561.
doi: 10.1016/j.electacta.2017.03.147 |
54 |
Li Z. ; Bu F. ; Wei J. ; Yao W. ; Wang L. ; Chen Z. ; Pan D. ; Wu M. Nanoscale 2018, 10 (48), 22871.
doi: 10.1039/c8nr06986g |
55 |
Chen Q. ; Hu Y. ; Hu C. ; Cheng H. ; Zhang Z. ; Shao H. ; Qu L. Phys. Chem. Chem. Phys. 2014, 16 (36), 19307.
doi: 10.1039/c4cp02761b |
56 |
Li Z. ; Liu X. ; Wang L. ; Bu F. ; Wei J. ; Pan D. ; Wu M. Small 2018, 14 (39), e1801498.
doi: 10.1002/smll.201801498 |
57 |
Zhao X. ; Li M. ; Dong H. W. ; Liu Y. L. ; Hu H. ; Cai Y. J. ; Liang Y. R. ; Xiao X. ; Zheng M. T. ChemSusChem 2017, 10 (12), 2626.
doi: 10.1002/cssc.201700474 |
58 |
Tan W. ; Fu R. ; Ji H. ; Kong Y. ; Xu Y. ; Qin Y. Int. J. Biol. Macromol. 2018, 112, 561.
doi: 10.1016/j.ijbiomac.2018.02.014 |
59 |
Wei J. S. ; Ding C. ; Zhang P. ; Ding H. ; Niu X. Q. ; Ma Y. Y. ; Li C. ; Wang Y. G. ; Xiong H. M. Adv. Mater. 2019, 31 (5), e1806197.
doi: 10.1002/adma.201806197 |
60 |
Qing Y. ; Jiang Y. T. ; Lin H. ; Wang L. X. ; Liu A. J. ; Cao Y. L. ; Sheng R. ; Guo Y. ; Fan C. W. ; Zhang S. ; et al J. Mater. Chem. A 2019.
doi: 10.1039/C8TA11620B |
61 |
Ganganboina A. B. ; Chowdhury A. D. ; Doong R. Electrochim. Acta 2017, 245, 912.
doi: 10.1016/j.electacta.2017.06.002 |
62 |
Ganganboina A. B. ; Chowdhury A. D. ; Doong R. A. ACS Sustainable Chem. Eng. 2017, 5 (6), 4930.
doi: 10.1021/acssuschemeng.7b00329 |
63 |
Wei G. ; Du K. ; Zhao X. ; Wang Z. ; Liu M. ; Li C. ; Wang H. ; An C. ; Xing W. Nano Res. 2017, 10 (9), 3005.
doi: 10.1007/s12274-017-1516-4 |
64 |
Zhu C. ; Chao D. ; Sun J. ; Bacho I. M. ; Fan Z. ; Ng C. F. ; Xia X. ; Huang H. ; Zhang H. ; Shen Z. X. ; et al Adv. Mater. Interfaces 2015, 2 (2), 1400499.
doi: 10.1002/admi.201400499 |
65 |
Yin X. ; Chen H. ; Zhi C. ; Sun W. ; Lv L. P. ; Wang Y. Small 2018, 14 (22), e1800589.
doi: 10.1002/smll.201800589 |
66 |
Zhang W. ; Xu T. ; Liu Z. ; Wu N. L. ; Wei M. Chem. Commun. 2018, 54 (12), 1413.
doi: 10.1039/c7cc09406j |
67 |
Chao D. ; Zhu C. ; Xia X. ; Liu J. ; Zhang X. ; Wang J. ; Liang P. ; Lin J. ; Zhang H. ; Shen Z. X. ; et al Nano Lett. 2015, 15 (1), 565.
doi: 10.1021/nl504038s |
68 |
Deng G. ; Chao D. ; Guo Y. ; Chen Z. ; Wang H. ; Savilov S. V. ; Lin J. ; Shen Z. X. Energy Storage Mater. 2016, 5, 198.
doi: 10.1016/j.ensm.2016.07.007 |
69 |
Zhu Y. ; Ji X. ; Pan C. ; Sun Q. ; Song W. ; Fang L. ; Chen Q. ; Banks C. E. Energy Environ. Sci. 2013, 6 (12), 3665.
doi: 10.1039/c3ee41776j |
70 |
Lv H. ; Gao X. ; Xu Q. ; Liu H. ; Wang Y. G. ; Xia Y. ACS Appl. Mater. Interfaces 2017, 9 (46), 40394.
doi: 10.1021/acsami.7b14761 |
71 |
Jia H. ; Cai Y. ; Lin J. ; Liang H. ; Qi J. ; Cao J. ; Feng J. ; Fei W. Adv. Sci. 2018, 5 (5), 1700887.
doi: 10.1002/advs.201700887 |
72 |
Zhu Y. ; Wu Z. ; Jing M. ; Hou H. ; Yang Y. ; Zhang Y. ; Yang X. ; Song W. ; Jia X. ; Ji X. J. Mater. Chem. A 2015, 3 (2), 866.
doi: 10.1039/c4ta05507a |
73 |
Wei J. S. ; Ding H. ; Zhang P. ; Song Y. F. ; Chen J. ; Wang Y. G. ; Xiong H. M. Small 2016, 12 (43), 5927.
doi: 10.1002/smll.201602164 |
74 |
Mondal S. ; Rana U. ; Malik S. Chem. Commun. 2015, 51 (62), 12365.
doi: 10.1039/c5cc03981a |
75 |
Ghosh T. ; Ghosh R. ; Basak U. ; Majumdar S. ; Ball R. ; Mandal D. ; Nandi A. K. ; Chatterjee D. P. J. Mater. Chem. A 2018, 6 (15), 6476.
doi: 10.1039/c7ta11050b |
76 |
Zhao Z. ; Xie Y. J. Power Sources 2017, 337, 54.
doi: 10.1016/j.jpowsour.2016.10.110 |
77 |
Jian X. ; Li J. ; Yang H. ; Cao L. ; Zhang E. ; Liang Z. H. Carbon 2017, 114, 533.
doi: 10.1016/j.carbon.2016.12.033 |
78 |
Zhang X. ; Wang J. ; Liu J. ; Wu J. ; Chen H. ; Bi H. Carbon 2017, 115, 134.
doi: 10.1016/j.carbon.2017.01.005 |
79 |
De B. ; Kuila T. ; Kim N. H. ; Lee J. H. Carbon 2017, 122, 247.
doi: 10.1016/j.carbon.2017.06.076 |
80 |
Unnikrishnan B. ; Wu C. W. ; Chen I. W. P. ; Chang H. T. ; Lin C. H. ; Huang C. C. ACS Sustainable Chem. Eng. 2016, 4 (6), 3008.
doi: 10.1021/acssuschemeng.5b01700 |
81 |
Lv H. ; Yuan Y. ; Xu Q. ; Liu H. ; Wang Y. G. ; Xia Y. J. Power Sources 2018, 398, 167.
doi: 10.1016/j.jpowsour.2018.07.059 |
82 |
Chen G. ; Wu S. ; Hui L. ; Zhao Y. ; Ye J. ; Tan Z. ; Zeng W. ; Tao Z. ; Yang L. ; Zhu Y. Sci. Rep. 2016, 6, 19028.
doi: 10.1038/srep19028 |
83 |
Tan Z. ; Ni K. ; Chen G. ; Zeng W. ; Tao Z. ; Ikram M. ; Zhang Q. ; Wang H. ; Sun L. ; Zhu X. ; et al Adv. Mater. 2017, 29 (8), 1603414.
doi: 10.1002/adma.201603414 |
84 |
Strauss V. ; Marsh K. ; Kowal M. D. ; El-Kady M. ; Kaner R. B. Adv. Mater. 2018, 30 (8), 1704449.
doi: 10.1002/adma.201704449 |
85 |
Zhang S. ; Zhu J. ; Qing Y. ; Fan C. ; Wang L. ; Huang Y. ; Sheng R. ; Guo Y. ; Wang T. ; Pan Y. ; et al Mater. Today Energy 2017, 6, 36.
doi: 10.1016/j.mtener.2017.08.003 |
86 |
Zhang S. ; Zhu J. ; Qing Y. ; Wang L. ; Zhao J. ; Li J. ; Tian W. ; Jia D. ; Fan Z. Adv. Funct. Mater. 2018, 28 (52), 1805898.
doi: 10.1002/adfm.201805898 |
[1] | Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2 [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212053-0. |
[2] | Xinshuo Zhao, Haiyan Qiu, Yi Shao, Panjie Wang, Shilong Yu, Hai Li, Yubin Zhou, Zhan Zhou, Lufang Ma, Chaoliang Tan. Silver Nanoparticle-Modified 2D MOF Nanosheets for Photothermally Enhanced Silver Ion Release Antibacterial Treatment [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211043-0. |
[3] | Ru Wang, Zhikang Liu, Chao Yan, Long Qie, Yunhui Huang. Interface Strengthening of Composite Current Collectors for High-Safety Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2203043-0. |
[4] | Jing Kong, Jingui Zhang, Sufen Zhang, Juqun Xi, Ming Shen. Performance Improvement and Antibacterial Mechanism of BiOI/ZnO Nanocomposites as Antibacterial Agent under Visible Light [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212039-. |
[5] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[6] | Siying Zhu, Huiyang Li, Zhongli Hu, Qiaobao Zhang, Jinbao Zhao, Li Zhang. Research Progresses on Structural Optimization and Interfacial Modification of Silicon Monoxide Anode for Lithium-Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2103052-. |
[7] | Jingsong Peng, Qunfeng Cheng. Nacre-Inspired Graphene-based Multifunctional Nanocomposites [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2005006-. |
[8] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[9] | Xinrun Yu, Jun Ma, Chunbo Mou, Guanglei Cui. Percolation Structure Design of Organic-inorganic Composite Electrolyte with High Lithium-Ion Conductivity [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912061-. |
[10] | Meihui Jiang, Lizhi Sheng, Chao Wang, Lili Jiang, Zhuangjun Fan. Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012085-. |
[11] | Jian Wang, Bo Yin, Tian Gao, Xingyi Wang, Wang Li, Xingxing Hong, Zhuqing Wang, Haiyong He. Reduced Graphene Oxide Modified Few-Layer Exfoliated Graphite to Enhance the Stability of the Negative Electrode of a Graphite-Based Potassium Ion Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012088-. |
[12] | Mengdi Zhang, Bei Chen, Mingbo Wu. Research Progress in Graphene as Sulfur Hosts in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2101001-. |
[13] | Jian Yang, Chen Lei, Xiang Liu, Jian Zhang, Yudie Sun, Cheng Zhang, Mingfu Ye, Kui Zhang. Versatile Performance of a Cationic Surfactant Derived from Carbon Quantum Dots [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2111030-. |
[14] | Runlin Fan, Yuhang Peng, Hao Tian, Junsheng Zheng, Pingwen Ming, Cunman Zhang. Graphite-Filled Composite Bipolar Plates for Fuel Cells: Material, Structure, and Performance [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009095-. |
[15] | Xiaoqing Jia, Xiaoyu Bai, Zhezhe Ji, Yi Li, Yan Sun, Xueyue Mi, Sihui Zhan. Insight into the Effective Removal of Ciprofloxacin Using a Two-Dimensional Layered NiO/g-C3N4 Composite in Fe-Free Photo-Electro-Fenton System [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2010042-. |
|