Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (2): 1903055.doi: 10.3866/PKU.WHXB201903055
Special Issue: Supercapacitor
• Review • Previous Articles Next Articles
Nannan Guo,Su Zhang*(),Luxiang Wang*(
),Dianzeng Jia
Received:
2019-03-25
Accepted:
2019-05-24
Published:
2019-06-03
Contact:
Su Zhang,Luxiang Wang
E-mail:suzhangs@163.com;wangluxiangxju@163.com
Supported by:
Nannan Guo,Su Zhang,Luxiang Wang,Dianzeng Jia. Application of Plant-Based Porous Carbon for Supercapacitors[J].Acta Physico-Chimica Sinica, 2020, 36(2): 1903055.
Table 1
The texture characteristics of the plants-based porous carbons prepared by different activation methods."
Precursor | Activator | Specific surface area/(m2∙g−1) | Pore volume/ (cm3∙g−1) | Micropore surface area/(m2∙g−1) | Mesopore surface area/(m2∙g−1) | Micropore volume/(cm3∙g−1) | Mesopore Volume/(cm3∙g−1) | Reference | |
Physical activation | Bean pod | Steam | 258 | 0.21 | – | – | – | -- | |
Jatropha hull | CO2 | 1350 | 1.07 | – | – | 0.44 | 0.56 | ||
Corncob | Steam | 675 | 0.36 | – | – | – | – | ||
CO2 | 836 | 0.43 | – | – | – | – | |||
Date stone | Steam | 635 | 0.72 | – | – | – | – | ||
Coconut shell | CO2 | 1162 | 0.72 | – | – | 0.57 | 0.15 | ||
Steam | 1101 | 0.59 | – | – | 0.51 | 0.08 | |||
Coffee endocarp | CO2 | 1287 | 0.64 | – | – | – | – | ||
Steam | 630 | 0.35 | – | – | – | – | |||
Chemical activation | Apricot shell | KCl | 2244 | 1.44 | – | – | 0.5 | 0.94 | |
Sugar cane bagasse | ZnCl2 | 1788 | 1.74 | – | – | 0.48 | 0.33 | ||
Moringa oleifera stem | ZnCl2 | 2250 | 2.3 | 736 | 1514 | – | – | ||
Shaddock skin | ZnCl2 | 2327 | 1.56 | – | – | 0.27 | 1.29 | ||
Apricot shell | NaOH | 2335 | 0.99 | – | – | 0.80 | 0.19 | ||
Pomelo skin | NaOH | 1355 | 0.77 | 524 | 844 | 0.48 | 0.94 | ||
Cotton stalk | H3PO4 | 653 | 0.48 | 127 | 526 | 0.06 | 0.42 | ||
Lotus stalk | H3PO4 | 1434 | 1.34 | 454 | 526 | 0.31 | 1.03 | ||
Grapevine rhytidome | H3PO4 | 1607 | 1.42 | 617 | 990 | 0.48 | 0.94 | ||
Soybean oil cake | K2CO3 | 1352 | 0.68 | – | – | 0.4 | 0.28 | ||
Orange peel | K2CO3 | 1104 | 0.62 | 420 | 684 | 0.25 | 0.37 | ||
Eucalyptus sawdust | KHCO3 | 2950 | 1.6 | – | – | 1.18 | 0.28 | ||
Glucose | KHCO3 | 3050 | 2.4 | – | – | 0.96 | 1.14 | ||
Hemp stem | KOH | 3062 | 1.44 | 1600 | 456 | 0.83 | 0.27 | ||
Spruce bark | KOH | 2385 | 1.68 | 2018 | 367 | 1.28 | 0.4 | ||
Pomelo peel | KOH | 2725 | 1.28 | 2610 | 115 | 1.16 | 0.11 |
Table 2
Comparison of electrochemical performance of plants-based porous carbon materials with different porous structure."
Precursor | Specific surface area/ (m2∙g−1) | Pore Volume/ (cm3∙g−1) | Specific capacitance/ (F∙g−1) | Scan rate | Specific capacitance / (F∙g−1) | Scan rate | Unit surface area capacitance /(F∙m−2) | Rate performance | Electrolyte | Testing system | Reference | |
Tremella | 3760 | 2.15 | 284 | 1 A∙g−1 | 214 | 30 A∙g−1 | 0.076 | 0.75 | 6 mol∙L−1 KOH | Two electrode | ||
Celtuce leave | 3404 | 1.88 | 421 | 0.5 A∙g−1 | 293 | 10 A∙g-1 | 0.124 | 0.70 | 2 mol∙L-1 KOH | Three electrode | ||
271 | 0.5 A∙g−1 | 156 | 10 A∙g-1 | 0.08 | 0.58 | 2 mol∙L-1 KOH | Two electrode | |||||
Corn gluten meal | 3353 | 2.07 | 488 | 0.5 A∙g−1 | 220 | 20 A∙g−1 | 0.146 | 0.45 | 6 mol∙L−1 KOH | Three electrode | ||
298 | 0.5 A∙g−1 | 165 | 20 A∙g−1 | 0.089 | 0.55 | 6 mol∙L−1 KOH | Two electrode | |||||
Liquefied wood | 3223 | 1.686 | 247 | 0.5 A∙g−1 | 227 | 10 A∙g−1 | 0.077 | 0.92 | 1 mol∙L−1 H2SO4 | Two electrode | ||
Cabbage leaves | 3102 | 1.41 | 336 | 1 A∙g−1 | 271 | 10 A∙g−1 | 0.108 | 0.80 | 2 mol∙L−1 KOH | Three electrode | ||
Hemp stem | 3062 | 1.44 | 318 | 0.1 A∙g−1 | 193 | 50 A∙g−1 | 0.104 | 0.61 | 6 mol∙L−1 KOH | Three electrode | ||
230 | 1 A∙g−1 | 170 | 50 A∙g−1 | 0.075 | 0.74 | 6 mol∙L−1 KOH | Two electrode | |||||
Bamboo | 3061 | 1.46 | 258 | 0.1 A∙g−1 | 93 | 5 A∙g−1 | 0.084 | 0.36 | 6 mol∙L−1 KOH | Three electrode | ||
Glucose | 2760 | 1.3 | ~240 | 1 A∙g−1 | 138 | 90 A∙g−1 | 0.087 | 0.58 | 1 mol∙L−1 H2SO4 | Two electrode | ||
3050 | 2.4 | 138 | 0.2 A∙g−1 | 113 | 30 A∙g−1 | 0.041 | 0.82 | EMIM BF4 | ||||
Various pollen | 3037 | 2.27 | 185 | 1 A∙g−1 | – | – | 0.061 | – | TEABF4 | Two electrode | ||
207 | 1 A∙g−1 | – | – | 0.068 | – | EMIMBF4 | Two electrode | |||||
Eucalyptus sawdust | 2950 | 1.46 | 268 | 0.2 A∙g−1 | 132 | 100 A∙g−1 | 0.091 | 0.49 | 1 mol∙L−1 H2SO4 | Two electrode | ||
168 | 1 A∙g−1 | 128 | 60 A∙g−1 | 0.057 | 0.76 | EMIM TFSI | ||||||
Garlic skin | 2818 | 1.33 | 427 | 0.5 A∙g−1 | 315 | 50 A∙g−1 | 0.152 | 0.74 | 6 mol∙L−1 KOH | Two electrode | ||
Pomelo peel | 2725 | 1.28 | ~245 | 1 A∙g−1 | 163.2 | 20 A∙g−1 | 0.09 | 0.67 | 6 mol∙L−1 KOH | Two electrode | ||
Corn straw | 2790 | 2.04 | ~282 | 1 A∙g−1 | 205 | 100 A∙g−1 | 0.101 | 0.73 | 6 mol∙L−1 KOH | Two electrode | ||
~210 | 1 A∙g−1 | 68 | 60 A∙g−1 | 0.075 | 0.32 | 1 mol∙L−1 Na2SO4 | Two electrode | |||||
Spruce bark | 2385 | 1.68 | ~280 | 1 A∙g−1 | 249 | 10 A∙g−1 | 0.117 | 0.89 | 6 mol∙L−1 KOH | Two electrode | ||
Sugarcane bagasse | 2341 | 1.07 | 320 | 1 A∙g−1 | 264 | 100 A∙g−1 | 0.137 | 0.83 | 6 mol∙L−1 KOH | Two electrode | ||
Shaddock skin | 2327 | 1.56 | 152 | 1 A∙g−1 | 132 | 100 A∙g−1 | 0.065 | 0.87 | EMIMTFSI | Two electrode | ||
shaddock skin | 2300 | 1 | 180 | 1 A∙g−1 | – | – | 0.078 | – | 0.5 mol∙L−1 H2SO4 | Three electrode | ||
Moringa oleifera stem | 2250 | 2.5 | ~220 | 0.2 A∙g−1 | 195 | 5 A∙g−1 | 0.097 | 0.87 | 1 mol∙L−1 H2SO4 | Two electrode | ||
Clover | 2244 | 1.44 | 436 | 1 A∙g−1 | 298 | 50 A∙g−1 | 0.194 | 0.68 | 1 mol∙L−1 H2SO4 | Three electrode | ||
Soybean root | 2143 | 0.94 | 260 | 1 A∙g−1 | 225 | 20 A∙g−1 | 0.121 | 0.87 | 6 mol∙L−1 KOH | Two electrode | ||
Soybean residue | 2130 | 0.92 | 258 | 0.2 A∙g−1 | 159 | 80 A∙g−1 | 0.121 | 0.62 | 1 mol∙L−1 H2SO4 | Two electrode | ||
Tobacco rod | 2115 | 1.22 | ~224 | 1 A∙g−1 | ~148 | 15 A∙g−1 | 0.117 | 0.66 | 6 mol∙L−1 KOH | Two electrode | ||
Elm samara | 1947 | 1.33 | 310 | 1 A∙g−1 | 198 | 20 A∙g−1 | 0.159 | 0.64 | 6 mol∙L−1 KOH | Two electrode | ||
Apricot shell | 1790 | 0.96 | 268 | 0.5 A∙g−1 | 212 | 20 A∙g−1 | 0.15 | 0.79 | 1 mol∙L−1 H2SO4 | Two electrode | ||
Lignin | 1690 | 0.78 | 240 | 1 A∙g−1 | 209 | 30 A∙g−1 | 0.142 | 0.87 | 6 mol∙L−1 KOH | Two electrode | ||
Cherry calyce | 1612 | 1.2 | 303 | 1 A∙g−1 | 259 | 20 A∙g−1 | 0.188 | 0.85 | 6 mol∙L−1 KOH | Two electrode | ||
Auricularia | 1607 | 1.57 | 347 | 1 A∙g−1 | 278 | 50 A∙g−1 | 0.216 | 0.8 | 6 mol∙L−1 KOH | Three electrode | ||
Cellulose | 1535 | 0.87 | 198 | 1 A∙g−1 | 133 | 10 A∙g−1 | 0.129 | 0.67 | 6 mol∙L−1 KOH | Three electrode | ||
Algae | 1338 | 0.59 | 143 | 1 A∙g−1 | 79 | 20 A∙g−1 | 0.107 | 0.55 | 6 mol∙L−1 KOH | Two electrode | ||
Cellulose | 1326 | – | 296 | 2 mV∙s−1 | 221 | 500mV∙s−1 | 0.223 | 0.75 | 6 mol∙L−1 KOH | Three electrode | ||
Banana fiber | 1097 | – | 86 | 5 mV∙s−1 | 83 | 100 mV∙s−1 | 0.078 | 0.97 | 1 mol∙L−1 Na2SO4 | Two electrode | ||
Lotus | 1015 | 0.824 | 340 | 0.5 A∙g−1 | 240 | 20 A∙g−1 | 0.335 | 0.71 | 2 mol∙L−1 KOH | Three electrode | ||
Coffee bean | 1019 | 0.48 | 368 | 0.05 A∙g−1 | – | – | 0.361 | – | 1 mol∙L−1 H2SO4 | Three electrode | ||
Lignin | 903 | 0.53 | 247 | 1 A∙g−1 | 110 | 20 A∙g−1 | 0.274 | 0.45 | 7 mol∙L−1 KOH | Two electrode | ||
Cork | 689 | 0.75 | 242 | 0.1 A∙g−1 | 199 | 50 A∙g−1 | 0.351 | 0.82 | 6 mol∙L−1 KOH | Two electrode | ||
Comparison of electrochemical performance of other porous carbon materials with different porous structure | ||||||||||||
Activated graphene | 3290 | – | 174 | 2.1 A∙g−1 | – | – | 0.053 | – | EMIM TFSI/ EMIM BF4 | Two electrode | ||
Hierarchical carbon | 2582 | – | 410 | 5 A∙g−1 | 349 | 100 A∙g−1 | 0.159 | 0.85 | 1 mol∙L−1 H2SO4 | Three electrode | ||
Carbon nanocage | 2561 | -- | 205 | 1 A∙g−1 | 179 | 200 A∙g−1 | 0.008 | 0.87 | 6 mol∙L−1 KOH | Two electrode | ||
Porous carbon | 2000 | 0.58 | 202 | 0.2 A∙g−1 | – | – | 0.101 | – | 1 mol∙L−1 H2SO4 | Two electrode | ||
Graphene | 1435 | 4.11 | 236.8 | 1 A∙g−1 | 171 | 30 A∙g−1 | 0.217 | 0.72 | 6 mol∙L−1 KOH | Two electrode | ||
Carbon xerogel microspheres | 1133 | 0.46 | 251 | 0.125 A∙g−1 | 141 | 4 A∙g−1 | 0.222 | 0.56 | 1 mol∙L−1 H2SO4 | Three electrode | ||
Graphene | 890 | -- | 200 | 0.5 A∙g−1 | 166 | 10 A∙g−1 | 0.224 | 0.83 | 2 mol∙L−1 KOH | Two electrode | ||
Graphene/Carbon nanotube | 652 | -- | 199 | 0.5 A∙g−1 | 99 | 20 A∙g−1 | 0.305 | 0.50 | EMIM BF4 | Two electrode | ||
Graphene | 630 | 0.42 | 255 | 0.5 A∙g−1 | 100 | 30 A∙g−1 | 0.403 | 0.39 | 6 mol∙L−1 KOH | Three electrode | ||
Activated carbon | 511 | 0.25 | 164 | 0.1 mA∙cm−2 | 134 | 20 mA∙cm-2 | 0.320 | 0.82 | 30% (w) KOH | Two electrode |
Fig 3
(a) Specific surface area of porous carbons prepared by different mKOH/mcarbon ratios; Electrochemical performance comparison of plant-based porous carbons with different specific surface area: (b) specific capacitance; (c) rate performance of ultra-high specific surface area porous carbon; (d) unit surface area specific capacitance."
Table 3
Surface nitrogen and oxygen content of plant-based nitrogen-doped porous carbons."
Precursor | Activator | Reagent | O (mole fraction) | N (mole fraction) | Reference |
Hemp stem | KOH | NH3 | 17.9% | 4.4% | |
Clover | KCl | – | 6.9% | 2.6% | |
Soybean residue | KOH | – | 13.9% (w) | 1.6 %(w) | |
Tobacco rod | KOH | – | 9.8% | 1.3% | |
Wheat gluten | KOH | – | 8.5% | 1.3% | |
Algae | KOH | – | 11.8% | 0.9% | |
Soybean dreg | KOH | 12.5% | 1.9% | ||
Mushroom | KOH | – | 8.4% | 1.7% | |
Flour | KOH | – | 11.2% | 1.1% | |
Loofa sponge | KOH | – | 4.8% | 0.7% | |
Pine needle | KOH | – | – | 1.5% | |
Potato residue | ZnCl2 | – | – | 0.4% (w) | |
Honeysuckles | Pyrolysis | – | 14.4% | 2% | |
Perilla frutescens | Pyrolysis | – | 18.8% | 1.7% | |
Sugar bagasse | CaCl2 | Urea | 7.0% | 5.6% | |
Cotton fabric | Air | Melamine | 7.1% | 6.9% |
Table 4
Comparison of electrochemical performance of plant-based porous carbon materials with different pore structures."
Precursor | Specific surface area/(m2∙g−1) | Pore volume/ (cm3∙g−1) | Gravimetric capacitance/(F∙g−1) | Density/ (g∙cm−3) | Volumetric capacitance/(F∙cm−3) | Scan rate | Electrolyte | Testing system | Reference |
Elm samara | 1947 | 1.33 | 470 | 0.57 | 267 | 1 A∙g−1 | 6 mol∙L−1 KOH | Two electrode | |
Hemp stem | 3062 | 1.72 | 318 | 0.23 | 73 | 0.1 A∙g−1 | 6 mol∙L−1 KOH | Two electrode | |
Pomelo peel | 2725 | 1.28 | 342 | 0.5 | 171 | 0.2 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Celtuce leave | 3290 | 1.71 | 421 | 0.45 | 190 | 0.5 A∙g−1 | 2 mol∙L−1 KOH | Three electrode | |
Garlic skin | 2818 | 1.32 | 427 | 0.38 | 162 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Two electrode | |
Sodium lignosulfonate | 905 | 0.53 | 247 | 0.97 | 240 | 0.05 A∙g−1 | 7 mol∙L−1 KOH | Three electrode | |
Soybean | 580 | 0.41 | 425 | 1.1 | 468 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Perilla frutescens | 655 | 0.44 | 270 | 1.06 | 287 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Pomelo peel | 832 | 0.57 | 374 | 0.93 | 349 | 0.1 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Willow catkin | 997 | 0.51 | 306 | 0.99 | 303 | 0.1 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Auricularia | 1103 | 0.54 | 374 | 0.96 | 360 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Kelp | 1002 | 0.62 | 440 | 0.82 | 360 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Waxberry | 658.5 | 0.38 | -- | -- | 1320.4 | 0.1 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Jujube | 829 | 0.45 | 449 | 1.06 | 476 | 1 mV∙s−1 | 1 mol∙L−1 H2SO4 | Three electrode | |
Bacterial cellulose | 1037 | 1.04 | 261 | 0.65 | 170 | 2 mV∙s−1 | 6 mol∙L−1 KOH | Three electrode | |
Corn straw | 1413 | 0.68 | 378.9 | 0.85 | 321.1 | 0.05 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Comparison of electrochemical performance of other porous carbon materials with different pore structures | |||||||||
Activated graphene | 3290 | – | 174 | 0.59 | 100 | 1 A∙g−1 | EMIMTFSI | Two electrode | |
Hierarchical carbon | 2582 | – | 207 | 0.72 | 149 | 0.5 A∙g−1 | BMIMPF6/AN | Two electrode | |
Carbon nanocage | 2561 | – | 205 | 0.46 | 94 | 1 A∙g−1 | KOH | Two electrode | |
Graphene/Carbon nanotube | 652 | – | 199 | 1.06 | 211 | 0.5 A∙g−1 | EMIM BF4 | Two electrode | |
Graphene | 630 | 0.42 | 255 | 0.77 | 196 | 0.5 A∙g−1 | 6 mol∙L−1 KOH | Three electrode | |
Activated carbon | 511 | 0.25 | 164 | 1.04 | 170 | 1 mA∙cm−2 | 30% KOH (w) | Two electrode | |
Carbon nanotube | – | – | 159 | 0.83 | 132 | 50 mV∙s−1 | 1 mol∙L−1 H2SO4 | Three electrode | |
Carbon nanotube | – | – | 260 | 0.5 | 130 | 0.1 A∙g−1 | EMIM BF4 | Two electrode | |
Porous graphene | – | – | 298 | 0.70 | 212 | 1 A∙g−1 | EMIM BF4 | Two electrode |
1 |
Wang J. ; Nie P. ; Ding B. ; Dong S. ; Hao X. ; Dou H. ; Zhang X. J. Mater. Chem. A 2017, 5 (6), 2411.
doi: 10.1039/C6TA08742F |
2 |
Xie K. ; Wei B. Adv. Mater. 2014, 26 (22), 3592.
doi: 10.1002/adma.201305919 |
3 |
Yan J. ; Wang Q. ; Wei T. ; Fan Z. Adv. Energy Mater. 2014, 4 (4), 1300816.
doi: 10.1002/aenm.201300816 |
4 |
El-Kady M. F. ; Strong V. ; Dubin S. ; Kaner R. B. Science 2012, 335 (6074), 1326.
doi: 10.1126/science.1216744 |
5 |
Islam M. S. ; Fisher C. A. J. Chem. Soc. Rev. 2014, 43 (1), 185.
doi: 10.1039/C3CS60199D |
6 |
Wu Z. S. ; Parvez K. ; Feng X. ; Müllen K. Nat. Commun. 2013, 4, 2487.
doi: 10.1038/ncomms3487 |
7 |
Zhu Y. ; Murali S. ; Stoller M. D. ; Ganesh K. J. ; Cai W. ; Ferreira P. J. ; Pirkle A. ; Wallace R. M. ; Cychosz K. A. ; Thommes M. ; et al Science 2011, 332 (6037), 1537.
doi: 10.1126/science.1200770 |
8 |
Weingarth D. ; Zeiger M. ; Jäckel N. ; Aslan M. ; Feng G. ; Presser V. Adv. Energy Mater. 2014, 4 (13), 1400316.
doi: 10.1002/aenm.201400316 |
9 |
Chen C. ; Yu D. ; Zhao G. ; Du B. ; Tang W. ; Sun L. ; Sun Y. ; Besenbacher F. ; Yu M. Nano Energy 2016, 27, 377.
doi: 10.1016/j.nanoen.2016.07.020 |
10 |
Li D. Y. ; Zhang J. C. ; Wang Z. Y. ; Jin X. B. Acta Phys. -Chim. Sin. 2017, 33 (11), 2245.
doi: 10.3866/PKU.WHXB201705241 |
李道琰; 张基琛; 王志勇; 金先波. 物理化学学报, 2017, 33 (11), 2245.
doi: 10.3866/PKU.WHXB201705241 |
|
11 |
Long W. ; Fang B. ; Ignaszak A. ; Wu Z. ; Wang Y. J. ; Wilkinson D. Chem. Soc. Rev. 2017, 46 (23), 7176.
doi: 10.1039/C6CS00639F |
12 |
Deng J. ; Li M. ; Wang Y. Green Chem. 2016, 18 (18), 4824.
doi: 10.1039/C6GC01172A |
13 |
Field C. B. ; Behrenfeld M. J. ; Randerson J. T. ; Falkowski P. Science 1998, 281 (5374), 237.
doi: 10.1126/science.281.5374.237 |
14 |
Long C. ; Jiang L. ; Wu X. ; Jiang Y. ; Yang D. ; Wang C. ; Wei T. ; Fan Z. Carbon 2015, 93, 412.
doi: 10.1016/j.carbon.2015.05.040 |
15 |
Guo N. ; Li M. ; Wang Y. ; Sun X. ; Wang F. ; Yang R. ACS Appl. Mater. Interfaces 2016, 8 (49), 33626.
doi: 10.1021/acsami.6b11162 |
16 |
Qiu Z. ; Wang Y. ; Bi X. ; Zhou T. ; Zhou J. ; Zhao J. ; Miao Z. ; Yi W. ; Fu P. ; Zhuo S. J. Power Sources 2018, 376, 82.
doi: 10.1016/j.jpowsour.2017.11.077 |
17 |
Qiu D. ; Guo N. ; Gao A. ; Zheng L. ; Xu W. ; Li M. ; Wang F. ; Yang R. Electrochim. Acta 2019, 294, 398.
doi: 10.1016/j.electacta.2018.10.049 |
18 |
Sun L. ; Tian C. ; Li M. ; Meng X. ; Wang L. ; Wang R. ; Yin J. ; Fu H. J. Mater. Chem. A 2013, 1 (21), 6462.
doi: 10.1039/C3TA10897J |
19 |
Li Z. ; Lv W. ; Zhang C. ; Li B. ; Kang F. ; Yang Q. H. Carbon 2015, 92, 11.
doi: 10.1016/j.carbon.2015.02.054 |
20 |
Wang Y. ; Ben T. ; Qiu S. L. Chem. J. Chin. Univ. 2016, 37 (6), 1042.
doi: 10.7503/cjcu20160075 |
王昀; 贲腾; 裘式纶. 高等学校化学学报, 2016, 37 (6), 1042.
doi: 10.7503/cjcu20160075 |
|
21 | Ma Y. W. ; Xiong C. Y. ; Huang W. ; Zhao J. ; Li X. A. ; Fan Q. L. ; Huang W. Chin. J. Inorg. Chem. 2012, 28 (3), 546. |
马延文; 熊传银; 黄雯; 赵进; 李兴螯; 范曲立; 黄维. 无机化学学报, 2012, 28 (3), 546. | |
22 |
Wu. Z. Y ; Fan L. ; Tao Y. R. ; Wang W. ; Wu X. C. ; Zhao J. W. Chin. J. Inorg. Chem. 2018, 34 (7), 1249.
doi: 10.11862/CJIC.2018.166 |
武中钰; 范蕾; 陶友荣; 王伟; 吴兴才; 赵健伟. 无机化学学报, 2018, 34 (7), 1249.
doi: 10.11862/CJIC.2018.166 |
|
23 |
Guo P. ; Ji Q. ; Zhang L. ; Zhao S. ; Zhao X. Acta Phys. -Chim. Sin. 2011, 27 (12), 2836.
doi: 10.3866/PKU.WHXB20112836 |
郭培志; 季倩倩; 张丽莉; 赵善玉; 赵修松. 物理化学学报, 2011, 27 (12), 2836.
doi: 10.3866/PKU.WHXB20112836 |
|
24 |
Jiang L. ; Sheng L. ; Fan Z. Sci. China Mater. 2018, 61 (2), 133.
doi: 10.1007/s40843-017-9169-4 |
25 |
Lu H. ; Zhao X. S. Sustain. Energy Fuels 2017, 1 (6), 1265.
doi: 10.1039/C7SE00099E |
26 |
Xia W. ; Li Z. ; Xu Yin. ; Zhuang X. ; Jia S. ; Zhang J. Prog. Chem. 2016, 28 (11), 1682.
doi: 10.7536/PC160517 |
夏文; 李政; 徐银莉; 庄旭品; 贾士儒; 张健飞. 化学进展, 2016, 28 (11), 1682.
doi: 10.7536/PC160517 |
|
27 |
Wu Z. ; Zhang X. B. Acta Phys. -Chim. Sin. 2017, 33 (2), 305.
doi: 10.3866/PKU.WHXB201611012 |
吴中; 张新波. 物理化学学报, 2017, 33 (2), 305.
doi: 10.3866/PKU.WHXB201611012 |
|
28 |
Li X. Q. ; Chang L. ; Zhao S. L. ; Hao C. L. ; Lu C. G. ; Zhu Y. H. ; Tang Z. Y. Acta Phys. -Chim. Sin. 2017, 33 (1), 130.
doi: 10.3866/PKU.WHXB201609012 |
李雪芹; 常琳; 赵慎龙; 郝昌龙; 陆晨光; 朱以华; 唐智勇. 物理化学学报, 2017, 33 (1), 130.
doi: 10.3866/PKU.WHXB201609012 |
|
29 |
Isikgor F. H. ; Becer C. R. Polym. Chem. 2015, 6 (25), 4497.
doi: 10.1039/C5PY00263J |
30 |
Balat M. Energy Source Part A 2008, 30 (7), 620.
doi: 10.1080/15567030600817258 |
31 |
Mészáros E. ; Jakab E. ; Várhegyi G. ; Bourke J. ; Manley-Harris M. ; Nunoura T. ; Antal M. J. Ind. Eng. Chem. Res. 2007, 46 (18), 5943.
doi: 10.1021/ie0615842 |
32 |
Mi J. ; Wang X. R. ; Fan R. J. ; Qu W. H. ; Li W. C. Energy Fuels 2012, 26 (8), 5321.
doi: 10.1021/ef3009234 |
33 |
Wei J. ; Iglesia E. J. Catal. 2004, 224 (2), 370.
doi: 10.1016/j.jcat.2004.02.032 |
34 |
Sevilla M. ; Fuertes A. B. ; Mokaya R. Energy Environ. Sci. 2011, 4 (4), 1400.
doi: 10.1039/C0EE00347F |
35 |
Wang J. ; Kaskel S. J. Mater. Chem. 2012, 22 (45), 23710.
doi: 10.1039/C2JM34066F |
36 |
Cabal B. ; Budinova T. ; Ania C. O. ; Tsyntsarski B. ; Parra J. B. ; Petrova B. J. Hazard. Mater. 2009, 161 (2), 1150.
doi: 10.1016/j.jhazmat.2008.04.108 |
37 |
Duan X. H. ; Srinivasakannan C. ; Peng J. H. ; Zhang L. B. ; Zhang Z. Y. Fuel Process. Technol. 2011, 92 (3), 394.
doi: 10.1016/j.fuproc.2010.09.033 |
38 |
Aworn A. ; Thiravetyan P. ; Nakbanpote W. J. Anal. Appl. Pyrolysis 2008, 82 (2), 279.
doi: 10.1016/j.jaap.2008.04.007 |
39 |
Bouchelta C. ; Medjram M. S. ; Bertrand O. ; Bellat J. P. J. Anal. Appl. Pyrolysis 2008, 82 (1), 70.
doi: 10.1016/j.jaap.2007.12.009 |
40 |
Yang K. ; Peng J. ; Srinivasakannan C. ; Zhang L. ; Xia H. ; Duan X. Bioresour. Technol. 2010, 101 (15), 6163.
doi: 10.1016/j.biortech.2010.03.001 |
41 |
Nabais J. M. V. ; Nunes P. ; Carrott P. J. M. ; Ribeiro Carrott M. M. L. ; GarcíaA. M. ; Díaz-Díez M. A. Fuel Process. Technol. 2008, 89 (3), 262.
doi: 10.1016/j.fuproc.2007.11.030 |
42 |
Shu Y. ; Maruyama J. ; Iwasaki S. ; Maruyama S. ; Shen Y. ; Uyama H. J. Power Sources 2017, 364, 374.
doi: 10.1016/j.jpowsour.2017.08.059 |
43 |
Rufford T. E. ; Hulicova-Jurcakova D. ; Khosla K. ; Zhu Z. ; Lu G. Q. J. Power Sources 2010, 195 (3), 912.
doi: 10.1016/j.jpowsour.2009.08.048 |
44 |
Cai Y. ; Luo Y. ; Dong H. ; Zhao X. ; Xiao Y. ; Liang Y. ; Hu H. ; Liu Y. ; Zheng M. J. Power Sources 2017, 353, 260.
doi: 10.1016/j.jpowsour.2017.04.021 |
45 |
Tian W. ; Gao Q. ; Tan Y. ; Li Z. Carbon 2017, 119, 287.
doi: 10.1016/j.carbon.2017.04.050 |
46 |
Xu B. ; Chen Y. ; Wei G. ; Cao G. ; Zhang H. ; Yang Y. Mater. Chem. Phys. 2010, 124 (1), 504.
doi: 10.1016/j.matchemphys.2010.07.002 |
47 |
Foo K. Y. ; Hameed B. H. Chem. Eng. J. 2011, 173 (2), 385.
doi: 10.1016/j.cej.2011.07.073 |
48 |
Deng H. ; Zhang G. ; Xu X. ; Tao G. ; Dai J. J. Hazard. Mater. 2010, 182 (1), 217.
doi: 10.1016/j.jhazmat.2010.06.018 |
49 |
Huang L. ; Sun Y. ; Wang W. ; Yue Q. ; Yang T. Chem. Eng. J. 2011, 171 (3), 1446.
doi: 10.1016/j.cej.2011.05.041 |
50 |
Hejazifar M. ; Azizian S. ; Sarikhani H. ; Li Q. ; Zhao D. J. Anal. Appl. Pyrolysis 2011, 92 (1), 258.
doi: 10.1016/j.jaap.2011.06.007 |
51 |
Tay T. ; Ucar S. ; Karagöz S. J. Hazard. Mater. 2009, 165 (1), 481.
doi: 10.1016/j.jhazmat.2008.10.011 |
52 |
Foo K. Y. ; Hameed B. H. Bioresour. Technol. 2012, 104, 679.
doi: 10.1016/j.biortech.2011.10.005 |
53 |
Sevilla M. ; Ferrero G. A. ; Fuertes A. B. Carbon 2017, 114, 50.
doi: 10.1016/j.carbon.2016.12.010 |
54 |
Sevilla M. ; Fuertes A. B. ChemSusChem 2016, 9 (14), 1880.
doi: 10.1002/cssc.201600426 |
55 |
Wang Y. ; Yang R. ; Li M. ; Zhao Z. Ind. Crop. Prod. 2015, 65, 216.
doi: 10.1016/j.indcrop.2014.12.008 |
56 |
Sun Z. ; Zheng M. ; Hu H. ; Dong H. ; Liang Y. ; Xiao Y. ; Lei B. ; Liu Y. Chem. Eng. J. 2018, 336, 550.
doi: 10.1016/j.cej.2017.12.019 |
57 |
Liang Q. ; Ye L. ; Huang Z. H. ; Xu Q. ; Bai Y. ; Kang F. ; Yang Q. H. Nanoscale 2014, 6 (22), 13831.
doi: 10.1039/C4NR04541F |
58 |
Yu Z. L. ; Li G. C. ; Fechler N. ; Yang N. ; Ma Z. Y. ; Wang X. ; Antonietti M. ; Yu S. H. Angew. Chem. Int. Ed. 2016, 55 (47), 14623.
doi: 10.1002/anie.201605510 |
59 |
Hou J. ; Cao C. ; Idrees F. ; Ma X. ACS Nano 2015, 9 (3), 2556.
doi: 10.1021/nn506394r |
60 |
Yahya M. A. ; Al-Qodah Z. ; Ngah C. W. Z. Renewable Sustain. Energy Rev. 2015, 46, 218.
doi: 10.1016/j.rser.2015.02.051 |
61 |
Donald J. ; Ohtsuka Y. ; Xu C. Mater. Lett. 2011, 65 (4), 744.
doi: 10.1016/j.matlet.2010.11.049 |
62 |
Funke A. ; Ziegler F. Bioful Bioprod. Biorefin. 2010, 4 (2), 160.
doi: 10.1002/bbb.198 |
63 |
Titirici M. M. ; White R. J. ; Brun N. ; Budarin V. L. ; Su D. S. ; del Monte F. ; Clark J. H. ; MacLachlan M. J. Chem. Soc. Rev. 2015, 44 (1), 250.
doi: 10.1039/C4CS00232F |
64 |
Baccile N. ; Falco C. ; Titirici M. M. Green Chem. 2014, 16 (12), 4839.
doi: 10.1039/C3GC42570C |
65 |
Libra J. A. ; Ro K. S. ; Kammann C. ; Funke A. ; Berge N. D. ; Neubauer Y. ; Titirici M. M. ; Fühner C. ; Bens O. ; Kern J. R. Biofuels 2011, 2 (1), 71.
doi: 10.4155/bfs.10.81 |
66 |
Titirici M. M. ; Antonietti M. ; Baccile N. Green Chem. 2008, 10 (11), 1204.
doi: 10.1039/B807009A |
67 |
Zhao L. ; Fan L. Z. ; Zhou M. Q. ; Guan H. ; Qiao S. ; Antonietti M. ; Titirici M. M. Adv. Mater. 2010, 22 (45), 5202.
doi: 10.1002/adma.201002647 |
68 |
Kubo S. ; Tan I. ; White R. J. ; Antonietti M. ; Titirici M. M. Chem. Mater. 2010, 22 (24), 6590.
doi: 10.1021/cm102556h |
69 |
Ren Y. ; Xu Q. ; Zhang J. ; Yang H. ; Wang B. ; Yang D. ; Hu J. ; Liu Z. ACS Appl. Mater. Interfaces 2014, 6 (12), 9689.
doi: 10.1021/am502035g |
70 |
Yu Z. ; Wang X. ; Song X. ; Liu Y. ; Qiu J. Carbon 2015, 95, 852.
doi: 10.1016/j.carbon.2015.08.105 |
71 |
Wang J. ; Ding B. ; Hao X. ; Xu Y. ; Wang Y. ; Shen L. ; Dou H. ; Zhang X. Carbon 2016, 102, 255.
doi: 10.1016/j.carbon.2016.02.047 |
72 |
Chang Y. ; Antonietti M. ; Fellinger T.-P. Angew. Chem. Int. Ed. 2015, 54 (18), 5507.
doi: 10.1002/anie.201411685 |
73 |
Yin H. ; Lu B. ; Xu Y. ; Tang D. ; Mao X. ; Xiao W. ; Wang D. ; Alshawabkeh A. N. Environ. Sci. Technol. 2014, 48 (14), 8101.
doi: 10.1021/es501739v |
74 |
Elumeeva K. ; Fechler N. ; Fellinger T. P. ; Antonietti M. Mater. Horiz. 2014, 1 (6), 588.
doi: 10.1039/C4MH00123K |
75 |
Liu X. ; Giordano C. ; Antonietti M. Small 2014, 10 (1), 193.
doi: 10.1002/smll.201300812 |
76 |
Simon P. ; Gogotsi Y. Nat. Mater. 2008, 7, 845.
doi: 10.1038/nmat2297 |
77 |
Wang D. W. ; Li F. ; Liu M. ; Lu G. Q. ; Cheng H. M. Angew. Chem. Int. Ed. 2008, 47 (2), 373.
doi: 10.1002/anie.200702721 |
78 |
Wang Q. ; Yan J. ; Wang Y. ; Wei T. ; Zhang M. ; Jing X. ; Fan Z. Carbon 2014, 67, 119.
doi: 10.1016/j.carbon.2013.09.070 |
79 |
Huang W. ; Zhang H. ; Huang Y. ; Wang W. ; Wei S. Carbon 2011, 49 (3), 838.
doi: 10.1016/j.carbon.2010.10.025 |
80 |
Chen C. ; Zhang Y. ; Li Y. ; Dai J. ; Song J. ; Yao Y. ; Gong Y. ; Kierzewski I. ; Xie J. ; Hu L. Energy Environ. Sci. 2017, 10 (2), 538.
doi: 10.1039/C6EE03716J |
81 |
Cheng P. ; Li T. ; Yu H. ; Zhi L. ; Liu Z. ; Lei Z. J. Phys. Chem. C 2016, 120 (4), 2079.
doi: 10.1021/acs.jpcc.5b11280 |
82 |
Guo N. ; Li M. ; Wang Y. ; Sun X. ; Wang F. ; Yang R. RSC Adv. 2016, 6 (103), 101372.
doi: 10.1039/C6RA22426A |
83 |
Li H. ; Qi. C. ; Tao Y. ; Liu H. ; Wang D. ; Li F. ; Yang Q. H. ; Cheng H. M. Adv. Energy Mater. 2019, 1900079.
doi: 10.1002/aenm.201900079 |
84 |
Wang Q. ; Yan J. ; Dong Z. L. ; Qu L. T. ; Fan Z. J. Energy. Storage. Mater. 2015, 1 (42), 504.
doi: 10.1016/j.ensm.2015.09.001 |
85 |
Xu B. ; Wu F. ; Chen R. ; Cao G. P. ; Chen S. ; Zhou Z. ; Yang Y. S. Electrochem. Commun. 2008, 10 (5), 795.
doi: 10.1016/j.elecom.2008.02.033 |
86 | Xu B. ; Zhang H. ; Cao G. P. ; Zhang W. F. ; Yang Y. S. Prog. Chem. 2011, 23 (Z1), 605. |
徐斌; 张浩; 曹高萍; 张文峰; 杨裕生. 化学进展, 2011, 23 (Z1), 605. | |
87 |
Wang Q. ; Yan J. ; Fan Z. Energy Environ. Sci. 2016, 9 (3), 729.
doi: 10.1039/C5EE03109E |
88 |
Liu H. ; Song H. ; Chen X. ; Zhang S. ; Zhou J. ; Ma Z. J. Power Sources 2015, 285, 303.
doi: 10.1016/j.jpowsour.2015.03.115 |
89 |
Xu B. ; Zheng D. ; Jia M. ; Cao G. P. ; Yang Y. S. Electrochim. Acta 2013, 98, 176.
doi: 10.1016/j.electacta.2013.03.053 |
90 |
Zhu Z. H. ; Hatori H. ; Wang S. B. ; Lu G. Q. J. Phys. Chem. B 2005, 109 (35), 16744.
doi: 10.1021/jp051787o |
91 |
Zhi M. ; Xiang C. ; Li J. ; Li M. ; Wu N. Nanoscale 2013, 5 (1), 72.
doi: 10.1039/C2NR32040A |
92 |
Wang G. ; Zhang L. ; Zhang J. Chem. Soc. Rev. 2012, 41 (2), 797.
doi: 10.1039/C1CS15060J |
93 |
Wang P. ; Ye H. ; Yin Y. X. ; Chen H. ; Bian Y. B. ; Wang Z. R. ; Cao F. F. ; Guo Y. G. Adv. Mater. 2019, 31 (4), 1805134.
doi: 10.1002/adma.201805134 |
94 |
Guo N. ; Li M. ; Sun X. ; Wang F. ; Yang R. Mater. Chem. Phys. 2017, 201, 399.
doi: 10.1016/j.matchemphys.2017.08.054 |
95 |
Wang R. ; Wang P. ; Yan X. ; Lang J. ; Peng C. ; Xue Q. ACS Appl. Mater. Interfaces 2012, 4 (11), 5800.
doi: 10.1021/am302077c |
96 |
Cheng B. H. ; Tian K. ; Zeng R. J. ; Jiang H. Sustain. Energy Fuels 2017, 1 (4), 891.
doi: 10.1039/C7SE00029D |
97 |
Jin Z. ; Yan X. ; Yu Y. ; Zhao G. J. Mater. Chem. A 2014, 2 (30), 11706.
doi: 10.1039/C4TA01413H |
98 |
Wang P. ; Wang Q. ; Zhang G. ; Jiao H. ; Deng X. ; Liu L. J. Solid State Electrochem. 2016, 20 (2), 319.
doi: 10.1007/s10008-015-3042-1 |
99 |
Yang C. S. ; Jang Y. S. ; Jeong H. K. Current Applied Phys. 2014, 14 (12), 1616.
doi: 10.1016/j.cap.2014.09.021 |
100 |
Zhang L. ; Zhang F. ; Yang X. ; Leng K. ; Huang Y. ; Chen Y. Small 2013, 9 (8), 1342.
doi: 10.1002/smll.201202943 |
101 |
Zhang Q. ; Han K. ; Li S. ; Li M. ; Li J. ; Ren K. Nanoscale 2018, 10 (5), 2427.
doi: 10.1039/C7NR07158B |
102 |
Niu Q. ; Gao K. ; Tang Q. ; Wang L. ; Han L. ; Fang H. ; Zhang Y. ; Wang S. ; Wang L. Carbon 2017, 123, 290.
doi: 10.1016/j.carbon.2017.07.078 |
103 |
Falco C. ; Sieben J. M. ; Brun N. ; Sevilla M. ; vander Mauelen T. ; Morallón E. ; Cazorla-Amorós D. ; Titirici M. M. ChemSusChem 2013, 6 (2), 374.
doi: 10.1002/cssc.201200817 |
104 |
Wang C. ; Wu D. ; Wang H. ; Gao Z. ; Xu F. ; Jiang K. J. Power Sources 2017, 363, 375.
doi: 10.1016/j.jpowsour.2017.07.097 |
105 |
Ferrero G. A. ; Fuertes A. B. ; Sevilla M. Sci. Rep. 2015, 5, 16618.
doi: 10.1038/srep16618 |
106 |
Zhao Y. Q. ; Lu M. ; Tao P. Y. ; Zhang Y. J. ; Gong X. T. ; Yang Z. ; Zhang G. Q. ; Li H. L. J. Power Sources 2016, 307, 391.
doi: 10.1016/j.jpowsour.2016.01.020 |
107 |
Guo N. ; Li M. ; Sun X. ; Wang F. ; Yang R. Green Chem. 2017, 19 (11), 2595.
doi: 10.1039/C7GC00506G |
108 |
Yu D. ; Chen C. ; Zhao G. ; Sun L. ; Du B. ; Zhang H. ; Li Z. ; Sun Y. ; Besenbacher F. ; Yu M. ChemSusChem 2018, 11 (10), 1678.
doi: 10.1002/cssc.201800202 |
109 |
Jiang L. ; Sheng L. ; Chen X. ; Wei T. ; Fan Z. J. Mater. Chem. A 2016, 4 (29), 11388.
doi: 10.1039/C6TA02570F |
110 |
Yi J. ; Qing Y. ; Wu C. ; Zeng Y. ; Wu Y. ; Lu X. ; Tong Y. J. Power Sources 2017, 351, 130.
doi: 10.1016/j.jpowsour.2017.03.036 |
111 |
Zhu B. ; Liu B. ; Qu C. ; Zhang H. ; Guo W. ; Liang Z. ; Chen F. ; Zou R. J. Mater. Chem. A 2018, 6 (4), 1523.
doi: 10.1039/C7TA09608A |
112 |
Long C. ; Qi D. ; Wei T. ; Yan J. ; Jiang L. ; Fan Z. Adv. Funct. Mater. 2014, 24 (25), 3953.
doi: 10.1002/adfm.201304269 |
113 |
Subramanian V. ; Luo C. ; Stephan A. M. ; Nahm K. S. ; Thomas S. ; Wei B. J. Phys. Chem. C 2007, 111 (20), 7527.
doi: 10.1021/jp067009t |
114 |
Lu S. Y. ; Jin M. ; Zhang Y. ; Niu Y. B. ; Gao J. C. ; Li C. M. Adv. Energy Mater. 2018, 8 (11), 1702545.
doi: 10.1002/aenm.201702545 |
115 |
Rufford T. E. ; Hulicova-Jurcakova D. ; Zhu Z. ; Lu G. Q. Electrochem. Commun. 2008, 10 (10), 1594.
doi: 10.1016/j.elecom.2008.08.022 |
116 |
Pang J. ; Zhang W. ; Zhang J. ; Cao G. ; Han M. ; Yang Y. Green Chem. 2017, 19 (16), 3916.
doi: 10.1039/C7GC01434A |
117 |
Kim T. ; Jung G. ; Yoo S. ; Suh K. S. ; Ruoff R. S. ACS Nano 2013, 7 (8), 6899- 6905.
doi: 10.1021/nn402077v |
118 |
Xu J. ; Tan Z. ; Zeng W. ; Chen G. ; Wu S. ; Zhao Y. ; Ni K. ; Tao Z. ; Ikram M. ; Ji H. ; et al Adv. Mater. 2016, 28 (26), 5222.
doi: 10.1002/adma.201600586 |
119 |
Bu Y. ; Sun T. ; Cai Y. ; Du L. ; Zhuo O. ; Yang L. ; Wu Q. ; Wang X. ; Hu Z. Adv. Mater. 2017, 29 (24), 1700470.
doi: 10.1002/adma.201700470 |
120 |
Vix-Guterl C. ; Frackowiak E. ; Jurewicz K. ; Friebe M. ; Parmentier J. ; Béguin F. Carbon 2005, 43 (6), 1293.
doi: 10.1016/j.carbon.2004.12.028 |
121 |
Yoon Y. ; Lee K. ; Baik C. ; Yoo H. ; Min M. ; Park Y. ; Lee S. ; Lee H. Adv. Mater. 2013, 25 (32), 4437.
doi: 10.1002/adma.201301230 |
122 |
Zapata-Benabithe Z. ; Carrasco-Marín F. ; de Vicente J. ; Moreno-Castilla C. Langmuir 2013, 29 (20), 6166.
doi: 10.1021/la4007422 |
123 |
Chang L. ; Stacchiola D. ; Hu Y. ACS Appl. Mater. Interfaces 2017, 9 (29), 24655- 24661.
doi: 10.1021/acsami.7b07381 |
124 |
Pham D. ; Lee T. ; Luong D. ; Yao F. ; Ghosh A. ; Le V. ; Kim T. ; Li B. ; Chang J. ; Lee Y. ACS Nano 2015, 9 (2), 2018.
doi: 10.1021/nn507079x |
125 |
Lei Z. ; Lu L. ; Zhao X. S. Energy Environ. Sci. 2012, 5 (4), 6391.
doi: 10.1039/C1EE02478G |
126 |
Hulicova-jurcakova D. ; Seredych M. ; Lu G. Q. ; Bandosz T. J. Adv. Funct. Mater. 2009, 19 (3), 438.
doi: 10.1002/adfm.200801236 |
127 |
He X. ; Ling P. ; Yu M. ; Wang X. ; Zhang X. ; Zheng M. Electrochim. Acta 2013, 105, 635.
doi: 10.1016/j.electacta.2013.05.050 |
128 |
Candelaria S. L. ; Garcia B. B. ; Liu D. W. ; Cao G. Z. J. Mater. Chem. 2012, 22, 9884.
doi: 10.1039/c2jm30923h |
129 |
Paraknowitsch J. P ; Thomas A. ; Antonietti M. J. Mater Chem. 2010, 20, 6746.
doi: 10.1039/C0JM00869A |
130 |
Xu S. W. ; Zhao Y. Q. ; Xu Y. X. ; Chen Q. H. ; Zhang G. Q. ; Xu Q. Q. ; Zhao D. D. ; Zhang X. ; Xu C. L. J. Power Sources 2018, 401, 375.
doi: 10.1016/j.jpowsour.2018.09.012 |
131 |
Li L. ; Zhou Y. ; Zhou H. ; Qu H. ; Zhang C. ; Guo M. ; Liu X. ; Zhang Q. ; Gao B. ACS Sustain. Chem. Eng. 2019, 7 (1), 1337.
doi: 10.1021/acssuschemeng.8b05022 |
132 |
Yu W. ; Wang H. ; Liu S. ; Mao N. ; Liu X. ; Shi J. ; Liu W. ; Chen S. ; Wang X. J. Mater. Chem. A 2016, 4 (16), 5973.
doi: 10.1039/C6TA01821A |
133 |
Li Z. ; Mi H. ; Bai Z. ; Ji C. ; Sun L. ; Gao S. ; Qiu J. J. Power Sources 2019, 418, 112.
doi: 10.1016/j.jpowsour.2019.02.034 |
134 |
Cheng P. ; Gao S. ; Zang P. ; Yang X. ; Bai Y. ; Xu H. ; Liu Z. ; Lei Z. Carbon 2015, 93, 315.
doi: 10.1016/j.carbon.2015.05.056 |
135 |
Wu X. ; Jiang L. ; Long C. ; Fan Z. Nano Energy 2015, 13, 527.
doi: 10.1016/j.nanoen.2015.03.013 |
136 |
Yang X. ; Li M. ; Guo N. ; Yan M. ; Yang R. ; Wang F. RSC Adv. 2016, 6 (6), 4365.
doi: 10.1039/C5RA24055G |
137 |
Zhu G. ; Ma L. ; Lv H. ; Hu Y. ; Chen T. ; Chen R. ; Liang J. ; Wang X. ; Wang Y. ; Yan C. ; et al Nanoscale 2017, 9 (3), 1237.
doi: 10.1039/C6NR08139H |
138 |
Ma G. ; Yang Q. ; Sun K. ; Peng H. ; Ran F. ; Zhao X. ; Lei Z. Bioresour. Technol. 2015, 197, 137.
doi: 10.1016/j.biortech.2015.07.100 |
139 |
Gao S. ; Liu H. ; Geng K. ; Wei X. .Nano Energy 2015, 12, 785.
doi: 10.1016/j.nanoen.2015.02.004 |
140 |
Liu B. ; Liu Y. ; Chen H. ; Yang M. ; Li H. J. Power Sources 2017, 341, 309.
doi: 10.1016/j.jpowsour.2016.12.022 |
141 |
Liu J. ; Deng Y. ; Li X. ; Wang L. ACS Sustain. Chem. Eng. 2016, 4 (1), 177.
doi: 10.1021/acssuschemeng.5b00926 |
142 |
Chen L. ; Ji T. ; Mu L. ; Zhu J. Carbon 2017, 111, 839.
doi: 10.1016/j.carbon.2016.10.054 |
143 |
Shen W. ; Fan W. J. Mater. Chem. A 2013, 1 (4), 999.
doi: 10.1039/C2TA00028H |
144 |
Li Y. ; Zhang S. ; Song H. ; Chen X. ; Zhou J. ; Hong S Electrochim. Acta 2015, 180, 879.
doi: 10.1016/j.electacta.2015.09.039 |
145 |
Liu J. ; Li H. ; Zhang H. ; Liu Q. ; Li R. ; Li B. ; Wang J. J. Solid State Chem. 2018, 257, 64.
doi: 10.1016/j.jssc.2017.07.033 |
146 |
Wang K. ; Yan R. ; Zhao N. ; Tian X. ; Li X. ; Lei S. ; Song Y. ; Guo Q. ; Liu L. Mater. Lett. 2016, 174, 249.
doi: 10.1016/j.matlet.2016.03.063 |
147 |
Long C. ; Chen X. ; Jiang L. ; Zhi L. ; Fan Z. Nano Energy 2015, 12, 141.
doi: 10.1016/j.nanoen.2014.12.014 |
148 |
Li J. ; Liu K. ; Gao X. ; Yao B. ; Huo K. ; Cheng Y. ; Cheng X. ; Chen D. ; Wang B. ; Sun W. ; et al ACS Appl. Mater. Interfaces 2015, 7 (44), 24622.
doi: 10.1021/acsami.5b06698 |
149 |
Dong X. ; Jin H. ; Wang R. ; Zhang J. ; Feng X. ; Yan C. ; Chen S. ; Wang S. ; Wang J. ; Lu J. Adv. Energy Mater. 2018, 8 (11), 1702695.
doi: 10.1002/aenm.201702695 |
150 |
Liu X. ; Ma C. ; Li J. ; Zielinska B. ; Kalenczuk R. J. ; Chen X. ; Chu P. K. ; Tang T. ; Mijowska E. J. Power Sources 2019, 412, 1.
doi: 10.1016/j.jpowsour.2018.11.032 |
151 |
Jiang Y. ; Yan J. ; Wu X. ; Shan D. ; Zhou Q. ; Jiang L. ; Yang D. ; Fan Z. J. Power Sources 2016, 307, 190.
doi: 10.1016/j.jpowsour.2015.12.081 |
152 |
Xie Q. ; Bao R. ; Zheng A. ; Zhang Y. ; Wu S. ; Xie C. ; Zhao P. ACS Sustain. Chem. Eng. 2016, 4 (3), 1422.
doi: 10.1021/acssuschemeng.5b01417 |
153 |
Lee S. W. ; Kim B. S. ; Chen S. ; Shao-Horn Y. ; Hammond P. T. J. Am. Chem. Soc. 2008, 131 (2), 671.
doi: 10.1021/ja807059k |
154 |
Zhou Y. ; Ghaffari M. ; Lin M. ; Parsons E. M. ; Liu Y. ; Wardle B. L. ; Zhang Q. M. Electrochim. Acta 2013, 111, 608.
doi: 10.1016/j.electacta.2013.08.032 |
155 |
Xu Y. ; Lin Z. ; Zhong X. ; Huang X. ; Weiss N. O. ; Huang Y. ; Duan X. Nat. Commun. 2014, 5, 4554.
doi: 10.1038/ncomms5554 |
[1] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[2] | Linfeng Peng, Chuang Yu, Chaochao Wei, Cong Liao, Shuai Chen, Long Zhang, Shijie Cheng, Jia Xie. Recent Progress on Lithium Argyrodite Solid-State Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211034-0. |
[3] | Yanke Yu, Mengqiao Geng, Desheng Wei, Chi He. Effect of Potassium on the Performance of a CuSO4/TiO2 Catalyst Used in the Selective Catalytic Reduction of NOx by NH3 [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2206034-0. |
[4] | Yanpeng Fu, Changbao Zhu. Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209002-0. |
[5] | Yae Qi, Yongyao Xia. Electrolyte Regulation Strategies for Improving the Electrochemical Performance of Aqueous Zinc-Ion Battery Cathodes [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2205045-0. |
[6] | Yue Huang, Feifei Mei, Jinfeng Zhang, Kai Dai, Graham Dawson. Construction of 1D/2D W18O49/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2108028-. |
[7] | Yue Yang, Jiawei Zhu, Pengyan Wang, Haimi Liu, Weihao Zeng, Lei Chen, Zhixiang Chen, Shichun Mu. NH2-MIL-125 (Ti) Derived Flower-Like Fine TiO2 Nanoparticles Implanted in N-doped Porous Carbon as an Anode with High Activity and Long Cycle Life for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106002-. |
[8] | Ying Mo, Kuikui Xiao, Jianfang Wu, Hui Liu, Aiping Hu, Peng Gao, Jilei Liu. Lithium-Ion Battery Separator: Functional Modification and Characterization [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107030-. |
[9] | Chengyu Ye, Xiaofei Yu, Wencui Li, Lei He, Guangping Hao, Anhui Lu. Engineering of Bifunctional Nickel Phosphide@Ni-N-C Catalysts for Selective Electroreduction of CO2-H2O to Syngas [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2004054-. |
[10] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[11] | Zhicong Sun, Ergui Luo, Qinglei Meng, Xian Wang, Junjie Ge, Changpeng Liu, Wei Xing. High-Performance Palladium-Based Catalyst Boosted by Thin-Layered Carbon Nitride for Hydrogen Generation from Formic Acid [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 2003035-. |
[12] | Meihui Jiang, Lizhi Sheng, Chao Wang, Lili Jiang, Zhuangjun Fan. Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012085-. |
[13] | Yao Xiao, Yu Pei, Yifan Hu, Ruguang Ma, Deyi Wang, Jiacheng Wang. Co2P@P-Doped 3D Porous Carbon for Bifunctional Oxygen Electrocatalysis [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009051-. |
[14] | Hui Li, Shuangyu Liu, Tianci Yuan, Bo Wang, Peng Sheng, Li Xu, Guangyao Zhao, Huitao Bai, Xin Chen, Zhongxue Chen, Yuliang Cao. Influence of NaOH Concentration on Sodium Storage Performance of Na0.44MnO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1907049-. |
[15] | Yongli Tong, Meizhen Dai, Lei Xing, Hengqi Liu, Wanting Sun, Xiang Wu. Asymmetric Hybrid Capacitor Based on NiCo2O4 Nanosheets Electrode [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1903046-. |
|