Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (2): 1904007.doi: 10.3866/PKU.WHXB201904007
Special Issue: Supercapacitor
• Review • Previous Articles Next Articles
Yi Wang,Wangchen Huo,Xiaoya Yuan,Yuxin Zhang*()
Received:
2019-04-02
Accepted:
2019-05-07
Published:
2019-05-13
Contact:
Yuxin Zhang
E-mail:zhangyuxin@cqu.edu.cn
Supported by:
Yi Wang,Wangchen Huo,Xiaoya Yuan,Yuxin Zhang. Composite of Manganese Dioxide and Two-dimensional Materials Applied to Supercapacitors[J]. Acta Physico-Chimica Sinica 2020, 36(2), 1904007. doi: 10.3866/PKU.WHXB201904007
Fig 5
(A) Schematic diagram and (B) photographs of the fabrication process of flexible solid-state supercapacitors based on graphene hydrogel films. (C) Low-and (D) high-magnification SEM images of the interior microstructure of the graphene hydrogel before pressing. (E) Low- and (F) high-magnification SEM images of the interior microstructure of the graphene hydrogel film after pressing 57."
Fig 6
Design and fabrication of alternating stacked graphene-conducting polymer hybrid film for in-plane MSCs 58. (a-c) Illustration of the fabrication procedure for in-plane MSCs with interdigital fingers, including (a) transfer of LBL stacked 2D nanohybrid film onto silicon wafer, (b) masking micropattern and deposition of gold current collector, (c) oxidative etching in oxygen plasma and drop-casting electrolyte. (d, e) Cross-section SEM images of 2D nanohybrid film. "
Fig 9
(a) Digital photographs of flexible Re-PARG film. The top image exhibits the folding characteristics of the film. The bottom images illustrate the high flexibility (bending and twisting) of the film; (b) CV curves of Re-PARG film electrodes with two different bending angles of 0° and 180° at a scan rate of 5 mV∙s−1 59."
Fig 11
Electrochemical properties of RGO/β-Co(OH)2 NS composite-based electrode. (a) CV curves at different scan rates, (b) charge-discharge curves, (c) specific capacitance at different current densities, and (d) specific capacitance vs cycle number of the composite at a current density of 10 A·g−1 (inset of panel disgalvano static charge-discharge curves with time) 60."
Fig 19
(a) Galvanostatic charge-discharge curves of the ultralong α-MnO2 nanowires, the hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanowires and δ-MnO2 nanosheets. (b) Galvanostatic charge-discharge curves and (c) specific capacitance of the hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanostructure at different current densities. (d) Long-term cycle performance of the hierarchical α-MnO2 nanowires@ultrathin δ-MnO2 nanosheets core-shell nanostructure at 20 A∙g−1 84."
Fig 22
Electrochemical characterizations in 5 mol∙L−1 aqueous KOH at room temperature 91. (A) CV curves of different electrodes at a scan rate of 10 mV∙s−1. (B) CV curves at different scan rates and (C) charge-discharge curves at different current densities for the MnO2@NiO/NiMoO4 electrode. (D) The specific capacitance of different electrodes at different current densities. (E) Cycling stability and CE of the MnO2@NiO/NiMoO4 electrode at a current density of 3 A∙g−1; inset: the galvanostatic charge-discharge curve for the first ten cycles. "
Fig 31
XRD patterns, cyclic voltammograms and Galvanostatic charge/discharge properties of MnO2/MoS2 composites 106. (a) XRD patterns of MoS2, pure MnO2 and MnO2/MoS2 composites; (b) Cyclic voltammetry curves of MnO2/MoS2 composites in 1 mol∙L−1 Na2SO4 aqueous electrolyte at various current densities in the potential window of −0.2 to −0.9 V; (c) Galvanostatic charge/discharge curves of MnO2/MoS2 composites in 1 mol∙L−1 Na2SO4 aqueous electrolyte at various current densities in the potential window of −0.2 to −1 V; (d) capacitance retention of MnO2/MoS2 composites at different current density. "
1 |
Wang G. ; Zhang L. ; Zhang J. Chem. Soc. Rev. 2012, 41, 797.
doi: 10.1039/C1CS15060J |
2 |
Razaa W. ; Alib F. ; Razac N. Nano Energy 2018, 52, 441.
doi: 10.1016/j.nanoen.2018.08.013 |
3 |
Choudhary N. ; Li C. ; Moore J. ; Nagaiah N. ; Zhai L. ; Jung Y. ; Thomas J. Adv. Mater. 2017, 29, 1605336.
doi: 10.1002/adma.201605336 |
4 |
Lukatskaya M. R. ; Dunn B. ; Gogotsi Y. Nat. Commun. 2016, 7, 12647.
doi: 10.1038/ncomms12647 |
5 |
Huang M. ; Li F. ; Dong F. ; Zhang Y. X. ; Zhang L. L. J. Mater. Chem. A 2015, 3, 21380.
doi: 10.1039/c5ta05523g |
6 |
Zhang X. ; Yu P. ; Zhang H. ; Zhang D. ; Sun X. ; Ma Y. Electrochim. Acta. 2013, 89, 523.
doi: 10.1016/j.electacta |
7 |
Shi X. ; Zheng S. ; Wu Z. S. ; Bao X. J. Energy Chem. 2018, 27 (1), 25.
doi: 10.1016/j.jechem.2017.09.034 |
8 |
Wei L. ; Li Z. ; Deng Y. ; Yang Q. H. ; Kang F. Energy Storage Materials 2016, 2, 107.
doi: 10.1016/j.ensm.2015.10.002 |
9 |
Dong Y. ; Wu Z. S. ; Ren W. ; Cheng H. M. ; Bao X. Sci. Bull. 2017, 62, 724.
doi: 10.1016/j.scib.2017.04.010 |
10 |
Tan C. ; Cao X. ; Wu X. J. Chem. Rev. 2017, 117, 6225.
doi: 10.1021/acs.chemrev.6b00558 |
11 |
Tang J. ; Hua Q. ; Yuan J. ; Zhang J. ; Zhao Y. Mater. Rep. 2017, 31, 26.
doi: 10.11896/j.issn.1005-023X.2017.09.003 |
唐捷; 华青松; 元金石; 张健敏; 赵玉玲. 材料导报, 2017, 31, 26.
doi: 10.11896/j.issn.1005-023X.2017.09.003 |
|
12 |
Zhai T. ; Lu X. ; Wang F. ; Xia H. ; Tong Y. Nanoscale Horiz. 2016, 1, 109.
doi: 10.1039/c5nh00048c |
13 |
Lv Z. ; Luo Y. ; Tang Y. Adv. Mater. 2017, 30 (2), 1704531.
doi: 10.1002/adma.201704531 |
14 |
Shao Y. ; El-Kady M. F. ; Wang L. J. Chem. Soc. Rev. 2015, 44, 3639.
doi: 10.1039/c4cs00316k |
15 |
Wang X. ; Lu X. ; Liu B. ; Chen D. ; Tong Y. ; Shen G. Adv. Mater. 2014, 26, 4763.
doi: 10.1002/adma.201400910 |
16 |
Chen T. ; Dai L. J. Mater. Chem. A 2014, 2, 10756.
doi: 10.1039/c4ta00567h |
17 |
Huang W. ; Li J. ; Xu Y. Mater. Rep. 2018, 32, 2555.
doi: 10.11896/j.issn.1005-023X.2018.15.004 |
黄文欣; 李军; 徐云鹤. 材料导报, 2018, 32, 2555.
doi: 10.11896/j.issn.1005-023X.2018.15.004 |
|
18 |
Singu B. S. ; Yoon K. R. Electrochim. Acta 2017, 231, 749.
doi: 10.1016/j.electacta.2017.01.182 |
19 |
Zhang J. ; Yang X. ; He Y. J. Mater. Chem. A 2016, 4, 9088.
doi: 10.1039/C6TA02989B |
20 |
Guo X. ; Wang T. ; Zheng T. X. ; Xu C. ; Zhang J. ; Zhang Y. X. J. Mater. Chem. A 2018, 6, 24717.
doi: 10.1039/C8TA07869F |
21 |
Tang Y. ; Zhu J. F. ; Yang C. H. ; Wang F. J. Alloys Compd. 2016, 685, 194.
doi: 10.1016/j.jallcom.2016.05.221 |
22 | Lee, H. Y.; Goodenough, J. B. 1999, 144, 220. doi: 10.1006/jssc.1998.8128 |
23 |
Li H. ; Zhang X. ; Ding R. ; Qi L. ; Wang H. Electrochim. Acta 2013, 108, 497.
doi: 10.1016/j.electacta.2013.07.066 |
24 |
Wang J. G. ; Kang F. ; Wei B. Prog. Mater Sci. 2015, 74, 51.
doi: 10.1016/j.pmatsci.2015.04.003 |
25 |
Wei W. ; Cui X. ; Chen W. ; Ivey D. G. Chem. Soc. Rev. 2011, 40 (3), 1697.
doi: 10.1039/c0cs00127a |
26 |
Tanggarnjanavalukul C. ; Phattharasupakun N. ; Kongpatpanich K. ; Sawangphruk M. Nanoscale 2017, 9 (36), 13630.
doi: 10.1039/C7NR02554H |
27 |
Zhao H. ; Dong Y. ; Jiang P. ; Wang G. ; Zhang J. ; Li K. ; Feng C. New J. Chem. 2014, 38, 1743.
doi: 10.1039/C3NJ01523H |
28 |
Li Y. ; Cao D. ; Wang Y. ; Yang S. ; Zhang D. ; Ye K. ; Cheng K. ; Yin J. ; Wang G. ; Xu Y. J. Power Sources 2015, 279, 138.
doi: 10.1016/j.jpowsour.2014.12.153 |
29 |
Wei C. ; Pang H. ; Zhang B. ; Lu Q. ; Liang S. ; Gao F. Sci. Rep. 2013, 3, 2193.
doi: 10.1038/srep02193 |
30 |
Chen C. C. ; Tsay C.Y. ; Lin H. S. ; Jheng W. D. ; Lin C. K. Mater. Chem. Phys. 2012, 137, 503.
doi: 10.1016/j.matchemphys.2012.09.047 |
31 |
Yu L. L. ; Zhu J. J. ; Zhao J. T. Eur. J. Inorg. Chem. 2013, 2013, 3719.
doi: 10.1002/ejic.201300265 |
32 |
Sun Z. ; Firdoz S. ; Yap E. Y. X. ; Li L. ; Lu X. Nanoscale 2013, 5, 4379.
doi: 10.1039/C3NR00209H |
33 |
Yang J. ; Lian L. ; Ruan H. ; Xie F. ; Wei M. Electrochim. Acta 2014, 136, 189.
doi: 10.1016/j.electacta.2014.05.074 |
34 |
Tang X. ; Liu Z.H. ; Zhang C. ; Yang Z. ; Wang Z. J. Power Sources 2009, 193, 939.
doi: 10.1016/j.jpowsour.2009.04.037 |
35 |
Zhu J. ; Shi W. ; Xiao N. ; Rui X. ; Tan H. ; Lu X. ; Hng H. H. ; Ma J. ; Yan Q. ACS Appl. Mater. Interfaces 2012, 4, 2769.
doi: 10.1021/am300388u |
36 |
Liu Z. ; Xu K. ; Sun H. ; Yin S. Small 2015, 11, 2182.
doi: 10.1002/smll.201402222 |
37 |
Zhao S. ; Liu T. ; Hou D. ; Zeng W. ; Miao B. ; Hussain S. ; Peng X. ; Javedc M. S. Appl. Surf. Sci. 2015, 356, 259.
doi: 10.1016/j.apsusc.2015.08.037 |
38 |
Yin B. ; Zhang S. ; Jiao Y. ; Liu Y. ; Qu F. ; Wu X. CrystEngComm 2014, 16 (43), 9999.
doi: 10.1039/c4ce01302f |
39 |
Bing Y. ; Zhang L. ; Mu S. ; Zhang J. Appl. Sci. 2017, 7 (5), 511.
doi: 10.3390/app7050511 |
40 |
Liu P. ; Zhu Y ; Gao X. ; Huang Y. ; Wang Y. ; Qin S. ; Zhang Y. Chem. Eng. J. 2018, 350, 79.
doi: 10.1016/j.cej.2018.05.169 |
41 |
Kalubarme R. S. ; Jadhav H. S. ; Park C. J. Electrochim. Acta 2013, 87, 457.
doi: 10.1016/j.electacta.2012.09.081 |
42 |
Shi S. ; Xu C. ; Yang C. ; Chen Y. ; Liu J. ; Kang F. Sci. Rep. 2013, 3, 2598.
doi: 10.1038/srep02598 |
43 |
Gao P. ; Metz P. ; Hey T. ; Gong Y. ; Liu D. ; Edwards D. D. Nat. Commun. 2017, 8, 14559.
doi: 10.1038/ncomms14559 |
44 |
Chen H. ; Zhang B. ; Li F. ; Kuang M. ; Huang ; Yang Y. ; Zhang Y. X. Electrochim. Acta 2016, 187, 488.
doi: 10.1016/j.electacta.2015.11.067 |
45 |
Huang M. ; Zhang Y. ; Li F. ; Zhang L. ; Ruoff R. S. ; Wen Z. ; Liu Q. Sci. Rep. 2014, 4, 3878.
doi: 10.1038/srep03878 |
46 |
Zhao B. ; Lu M. ; Wang Z. ; Jiao Z. ; Cheng L. J. Alloys Compd. 2015, 663, 180.
doi: 10.1016/j.jallcom.2015.12.018 |
47 |
Liu Q. ; Yang J. ; Wang R. ; Wang H. ; Ji S. RSC Adv. 2017, 7, 33635.
doi: 10.1039/C7RA06076A |
48 |
Guo W. H. ; Liu T. J. ; Jiang P. ; Zhang Z. J. J. Colloid Interface Sci. 2015, 437, 304.
doi: 10.1016/j.jcis.2014.08.060 |
49 |
Dreyer D. R. ; Ruoff R. S. ; Bielawski C. W. Angew. Chem. Int. Ed. 2010, 49 (49), 9336.
doi: 10.1002/anie.201003024 |
50 |
Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; DubonosS. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896 |
51 |
Xia J. ; Chen F. ; Li J. ; Tao N. Nature Nanotech. 2009, 4 (8), 505.
doi: 10.1038/nnano.2009.177 |
52 |
Butler S. Z. ; Hollen S. M. ; Cao L. ; Cui Y. ; Goldberger J. E. ACS Nano 2013, 7 (4), 2898.
doi: 10.1021/nn400280c |
53 |
Xu M. ; Liang T. ; Shi M. ; Chen H. Chem. Rev. 2013, 113 (5), 3766.
doi: 10.1021/cr300263a |
54 |
Chhowalla M. ; Shin H. S. ; Eda G. Nat. Chem. 2013, 263
doi: 10.1038/NCHEM.1589 |
55 |
Li X. Q. ; Chang L. ; Zhao S. L. ; Hao C. L. ; Lu C. G. ; Zhu Y. H. ; Tang Z. Y. Acta Phys. -Chim. Sin. 2017, 33 (1), 130.
doi: 10.3866/PKU.WHXB201609012 |
李雪芹; 常琳; 赵慎龙; 郝昌龙; 陆晨光; 朱以华; 唐智勇. 物理化学学报, 2017, 33 (1), 130.
doi: 10.3866/PKU.WHXB201609012 |
|
56 |
Yoo J. J. ; Balakrishnan K. ; Huang J. ; Meunier V. ; Sumpter B. G. ; Srivastava A. Nano Lett. 2011, 11 (4), 1423.
doi: 10.1021/nl200225j |
57 |
Xu Y. ; Lin Z. ; Huang X. ; Liu Y. ; Huang Y. ; Duan X. ACS Nano 2013, 7 (5), 4042.
doi: 10.1021/nn4000836 |
58 |
Wu Z. S. ; Parvez K. ; Li S. ; Yang S. ; Liu Z. ; Liu S. Adv. Mater. 2015, 27 (27), 4054.
doi: 10.1002/adma.201501643 |
59 |
Kim M. ; Lee C. ; Jang J. Adv. Funct. Mater. 2014, 24 (17), 2489.
doi: 10.1002/adfm.201303282 |
60 |
Xia X. H. ; Tu J. P. ; Zhang Y. Q. J. Phys. Chem. C 2011, 115 (45), 22662.
doi: 10.1021/jp208113j |
61 |
Wang L. ; Lin C. ; Zhang F. ; Jin J. ACS Nano 2014, 8, 3724.
doi: 10.1021/nn500386u |
62 |
Li X. ; Xu X. ; Xia F. ; Bu L. ; Qiu H. ; Chen M. Electrochim. Acta. 2014, 130, 305.
doi: 10.1016/j.electacta.2014.03.040 |
63 |
Dai X. ; Shi W. ; Cai H. ; Li R. ; Yang G. Solid State Sci. 2014, 27, 17.
doi: 10.1016/j.solidstatesciences.2013.11.003 |
64 |
Le Q. J. ; Huang M. ; Wang T. ; Liu X. Y. ; Sun L. ; Guo X. L. ; Jiang D. B. ; Wang J. ; Dong F. ; Zhang Y. X. J. Colloid Interface Sci. 2019, 544, 155.
doi: 10.1016/j.jcis.2019.02.089 |
65 |
Chan P. Y. ; Majid R. S. R. Solid State Ion. 2014, 262, 226.
doi: 10.1016/j.ssi.2013.10.005 |
66 |
Liu T. ; Shao G. J. ; Ji M. ; Wang G. J. Solid State Chem. 2014, 215, 160.
doi: 10.1016/j.jssc.2014.03.043 |
67 |
Amir F. Z. ; Pham V. H. ; Schultheis E. M. ; Dickerson J. H. Electrochim. Acta 2018, 260, 944.
doi: 10.1016/j.electacta.2017.12.071 |
68 |
Xiong C. ; Li T. ; Dang A. ; Zhao T. ; Li H. ; Lv H. J. Power Sources 2016, 306, 602.
doi: 10.1016/j.jpowsour.2015.12.056 |
69 |
Xiong C. ; Li T. ; Zhao T. ; Dang A. ; Ji X. ; Li H. Nano 2018, 13 (01), 1.
doi: 10.1142/S1793292018500133 |
70 |
Zhao X. ; Zhang L. ; Murali S. ; Stoller M. D. ; Zhang Q. ; Zhu Y. ACS Nano 2012, 6 (6), 5404.
doi: 10.1021/nn3012916 |
71 |
Qian Y. ; Lu S. B. ; Gao F. L. J. Mater. Sci. 2011, 46, 3517.
doi: 10.1007/s10853-011-5260-y |
72 |
Cheng H. ; Long L. ; Wu J. ; Shu D. ; Kang Z. ; Zou X. Int. J. Hydrog. Energy 2014, 39 (28), 16151.
doi: 10.1016/j.ijhydene.2014.04.050 |
73 |
Feng X. ; Chen N. ; Zhang Y. ; Yan Z. ; Liu X. ; Ma Y. J. Mater. Chem. A 2014, 2 (24), 9178.
doi: 10.1039/C3TA15402E |
74 |
Naderi H. R. ; Norouzi P. ; Ganjali M. R. Appl. Surf. Sci. 2016, 366, 552.
doi: 10.1016/j.apsusc.2016.01.058 |
75 |
Yan J. ; Fan Z. ; Wei T. ; Qian W. ; Zhang M. ; Wei F. Carbon 2010, 48 (13), 3825.
doi: 10.1016/j.carbon.2010.06.047 |
76 |
Ghasemi S. ; Hosseinzadeh R. ; Jafari M. Int. J. Hydrog. Energy 2014, 48 (13), 3825.
doi: 10.1016/j.ijhydene.2014.11.072 |
77 |
Pan C. ; Gu H. ; Dong L. J. Power Sources 2016, 303, 175.
doi: 10.1016/j.jpowsour.2015.11.002 |
78 |
Huang M. ; Wang L. ; Chen S. ; Kang L. ; Lei Z. ; Shi F. RSC Adv. 2017, 7 (17), 10092.
doi: 10.1039/c6ra28117f |
79 |
Wang T. ; Sun Y. ; Zhang L. ; Li K. ; Yi Y. ; Song S. ; Li M. ; Qiao Z. A. ; Dai S. Adv. Mater. 2019, 31, 1807876.
doi: 10.1002/adma.201807876 |
80 |
Jia X. ; Wu X. ; Liu B. Dalton Trans. 2018, 47, 15506.
doi: 10.1039/C8DT03298J |
81 |
Wang H. ; Ren Q. ; Brett D. J. L. ; He G. ; Wang R. ; Key J. ; Ji S. J. Power Sources 2017, 343, 76.
doi: 10.1016/j.jpowsour.2017.01.042 |
82 |
Cao Y. ; Cui Z. ; Ji T. ; Li W. ; Xu K. ; Zou R. ; Yang J. ; Qin Z. ; Hu J. J. Alloys Compd. 2017, 725, 373.
doi: 10.1016/j.jallcom.2017.07.182 |
83 |
Liu Q. ; Yang J. ; Wang R. ; Wang H. ; Ji S. RSC Adv. 2017, 7 (53), 33635.
doi: 10.1039/C7RA06076A |
84 |
Ma Z. ; Shao G. ; Fan Y. ; Wang G. ; Song J. ; Shen D. ACS Appl. Mater. Interfaces 2016, 8 (14), 9050.
doi: 10.1021/acsami.5b11300 |
85 |
Wang S. ; Li Q. ; Pu W. ; Wu Y. ; Yang M. J. Alloys Compd 2016, 663, 148.
doi: 10.1016/j.jallcom.2015.12.040 |
86 |
Yang W. ; Gao Z. ; Ma J. ; Zhang X. ; Wang J. J. Alloys Compd. 2014, 611, 171.
doi: 10.1016/j.jallcom.2014.04.085 |
87 |
Shafi P. M. ; Dhanabal R. ; Chithambararaj A. ; Velmathi S. ; Bose A. C. ACS Sustainable Chem. Eng. 2017, 5 (6), 4757.
doi: 10.1021/acssuschemeng.7b00143 |
88 |
Xu K. ; Li W. ; Liu Q. ; Li B. ; Liu X. ; An L. ; Chen Z. ; Zou R. ; Hu J. J. Mater. Chem. A 2014, 2, 4795.
doi: 10.1039/C3TA14647B |
89 |
Kuang M. ; Liu X. Y. ; Dong F. ; Zhang Y. X. J. Mater. Chem. A 2015, 3, 21528.
doi: 10.1039/C5TA05957G |
90 |
Gao H. ; Xiang J. ; Cao Y. Nanotechnology. 2017, 28 (23), 235401.
doi: 10.1088/1361-6528/aa6f89 |
91 |
Chu Y. ; Xiong S. ; Li B. ; Qian Y. ; Xi B. ChemElectroChem 2016, 3, 1.
doi: 10.1002/celc.201600146 |
92 |
Min S. ; Zhao C. ; Zhang Z. ; Wang K. ; Chen G. ; Qian X. ; Guo Z. RSC Adv. 2015, 5 (77), 62571.
doi: 10.1039/C5RA10842J |
93 |
Wang Z. ; Wang F. ; Tu J. ; Cao D. ; An X. ; Ye Y. Mater. Lett. 2016, 171, 10.
doi: 10.1016/j.matlet.2016.02.050 |
94 |
Shen J. ; Li X. ; Wan L ; Liang K. ; Tay B. K. ; Kong L. B. ; Yan X. ACS Appl. Mater. Interfaces 2017, 9 (1), 668.
doi: 10.1021/acsami.6b12370 |
95 |
Xi Y. ; Wei G. ; Li J. ; Liu X. ; Pang M. ; Yang Y. ; Ji Y. ; Izotov V. Y. ; Guo Q. ; Han W. Electrochim. Acta 2017, 233, 26.
doi: 10.1016/j.electacta.2017.02.038 |
96 |
Wang Y. ; Wang Y. ; Jiang L. J. Appl. Electrochem. 2018, 48 (5), 495.
doi: 10.1007/s10800-018-1183-5 |
97 |
Diao Z. P. ; Zhang Y. X. ; Hao X. D. ; Wen Z. Q. Ceram. Int. 2014, 40, 2115.
doi: 10.1016/j.ceramint.2013.07.127 |
98 |
Gu T. H. ; Gunjakar J. L. ; Kim I. Y. ; Patil S. B. ; Lee J. M. ; Jin X. ; Lee N. S. ; Hwang S. J. Small 2015, 11, 3921.
doi: 10.1002/smll.201500286 |
99 |
Wang Y. ; Dong S. ; Wu X. ; Li M. J. Electrochem. Soc. 2017, 164, H56.
doi: 10.1149/2.0861702jes |
100 |
Zheng W. ; Sun S. ; Xu Y. ; Yu R. ; Li H. J. Alloys Compd. 2018, 768, 240.
doi: 10.1016/j.jallcom.2018.07.168 |
101 |
Quan W. ; Jiang C. ; Wang S. ; Li Y. ; Zhang Z. ; Tang Z. Electrochim. Acta 2017, 247, 1072.
doi: 10.1016/j.electacta.2017.07.010 |
102 |
Soon J. M. ; Loh K. P. Electrochem. Solid-State Lett. 2007, 10, 250.
doi: 10.1149/1.2778851 |
103 |
Zhou J. ; Fang G. Z. ; Pan A. Q. ; Liang S. Q. ACS Appl. Mater. Interfaces 2016, 8, 33681.
doi: 10.1021/acsami.6b11811 |
104 |
Zheng N. F. ; Bu X. H. ; Feng P. Y. Nature 2003, 426, 428.
doi: 10.1002/chin.200407009 |
105 |
Liao X. ; Zhao Y. ; Wang J. ; Yang W. ; Xu L. ; Tian X. Nano Research 2017, 247, 1072.
doi: 10.1007/s12274-017-1826-6 |
106 |
Yang Y. ; Chuan X. Acta Geolog. Sin. (English Edition). 2017, 91 (supp. 1), 170.
doi: 10.1111/1755-6724.13241 |
107 |
Naguib M. ; Mashtalir O. ; Carle J. ; Presser V. ; Lu J. ; Hultman L. ; Gogotsi Y. ; Barsoum M. W. ACS Nano 2012, 6, 1322.
doi: 10.1021/nn204153h |
108 |
Naguib M. ; Mochalin V. N. ; Barsoum M. W. ; Gogotsi Y. Adv. Mater. 2014, 26, 992.
doi: 10.1002/chin.201417232 |
109 |
Kim S. J. ; Naguib M. ; Zhao M. ; Zhang C. ; Jung H. T. ; Barsoum M. W. ; Gogotsi Y. Electrochim. Acta 2015, 163, 246.
doi: 10.1016/j.electacta.2015.02.132 |
110 |
Xie Y. ; Dall'Agnese Y. ; Naguib M. ; Gogotsi Y. ; Barsoum M. W. ; Zhuang H. L. ; Kent P. R. C. ACS Nano 2014, 8, 9606.
doi: 10.1021/nn503921j |
111 |
Rakhi R. B. ; Ahmed B. ; Anjum D. ; Alshareef H. N. ACS Appl. Mater. Interfaces 2016, 8 (29), 18806.
doi: 10.1021/acsami.6b04481 |
112 |
Hanmei J. ; Zegao W. ; Qian Y. ; Muhammad H. ; Zhiming W. ; Lichun D. Electrochim. Acta 2018, 8, 96.
doi: 10.1016/j.electacta.2018.08.096 |
113 |
Tang Y. ; Zhu J. F. ; Yang C. H. ; Wang F. J. Alloys Compd. 2016, 685, 194.
doi: 10.1016/j.jallcom.2016.05.221 |
114 |
Liu W. ; Wang Z. ; Su Y. ; Li Q. ; Zhao Z. ; Geng F. Adv. Energy Mater. 2017, 7 (22), 1602834.
doi: 10.1002/aenm.201602834 |
115 |
Yuan W. ; Cheng L. ; Zhang B. ; Wu H. Ceramics International. 2018, 44 (14), 17539.
doi: 10.1016/j.ceramint.2018.06.086 |
116 |
Xu J. ; Wang Y. ; Zhan J. ; Cao S. ; Zhang G. ; Xue H. ; Xu Q. ; Pang H. J. Mater. Chem. A. 2018, 6, 17329.
doi: 10.1039/c8ta05976d |
117 |
Zhang H. ; Wu L. J. Electrochem. Soc. 2018, 165 (11), A2815.
doi: 10.1149/2.1131811jes |
118 |
Zhao K. ; Xu Z. ; He Z. ; Ye G. ; Gan Q. ; Zhou Z. ; Liu S. J. Mater. Sci. 2018, 53, 13111.
doi: 10.1007/s10853-018-2562-3 |
119 | Xie D. ; Zhang Y. ; Chen J. ; Mei Y. ; Lian P. New Chem. Mater. 2017, 45, 23. |
谢丹艳; 张燕; 陈江; 梅毅; 廉培超. 化工新型材料, 2017, 45, 23. | |
120 |
Kavil J. ; Anjana P. M. ; Periya P. ; Rakhi R. B. Sustainable Energy & Fuels 2018, 2, 2244.
doi: 10.1039/C8SE00279G |
121 |
Sun S. ; Guo L. ; Chang X. ; Yu Y. ; Zhai X. Mater. Lett. 2019, 236, 558.
doi: 10.1016/j.matlet.2018.11.001 |
122 |
Shan Q. Y. ; Guo X. L. ; Dong F. ; Zhang Y. X. Mater. Lett. 2017, 202, 103.
doi: 10.1016/j.matlet.2017.05.061 |
123 |
Choi I. Y. ; Lee J. ; Ahn H. ; Lee J. ; Choi H. C. ; Park M. J. Angew. Chem. Int. Ed. 2015, 54 (36), 10497.
doi: 10.1002/anie.201503332 |
124 |
Ma Y. ; Li B. ; Yang S. Mater. Chem. Front. 2017, 2 (3), 456.
doi: 10.1039/C7QM00548B |
125 |
Yang B. ; Hao C. ; Wen F. ACS Appl. Mater. Interfaces 2017, 9 (51), 44478.
doi: 10.1021/acsami.7b13572 |
126 |
Hao C. ; Yang B. ; Wen F. ; Xiang J. ; Li L. ; Wang W. Adv. Mater. 2016, 28 (16), 3194.
doi: 10.1002/adma.201505730 |
127 |
Liu Z. F. Acta Phys. -Chim. Sin. 2016, 32 (4), 817.
doi: 10.3866/PKU.WHXB201603152 |
刘忠范. 物理化学学报, 2016, 32 (4), 817.
doi: 10.3866/PKU.WHXB201603152 |
|
128 |
Sajedi-Moghaddam A. ; Mayorga-Martinez C. C. ; Sofer Z. ; Bouša D. ; Saievar-Iranizad E. ; Pumera M. J. Phys. Chem. C 2017, 121, 20532.
doi: 10.1021/acs.jpcc.7b06958 |
129 |
Liu B. ; Liu Y. ; Chen H. ; Yang M. ; Li H. ACS Sustainable Chem. Eng. 2019, 7 (3)
doi: 10.1021/acssuschemeng.8b04817 |
[1] | Xiaoyu Wang, Yang Cheng, Guodong Xue, Ziqi Zhou, Mengze Zhao, Chaojie Ma, Jin Xie, Guangjie Yao, Hao Hong, Xu Zhou, Kaihui Liu, Zhongfan Liu. Giant Enhancement of Optical Second Harmonic Generation in Hollow-Core Fiber Integrated with GaSe Nanoflakes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2212028-0. |
[2] | Yanpeng Fu, Changbao Zhu. Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209002-0. |
[3] | Jie Wang, Guigao Liu, Qinbai Yun, Xichen Zhou, Xiaozhi Liu, Ye Chen, Hongfei Cheng, Yiyao Ge, Jingtao Huang, Zhaoning Hu, Bo Chen, Zhanxi Fan, Lin Gu, Hua Zhang. Epitaxial Growth of Unconventional 4H-Pd Based Alloy Nanostructures on 4H-Au Nanoribbons towards Highly Efficient Electrocatalytic Methanol Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2305034-. |
[4] | Changxiang Shao, Liangti Qu. Progress on Power Generation from Gas-Liquid Phase Transformation of Water [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306004-. |
[5] | Kaifeng Lin, Ding Zhong, Jiahui Shao, Kaihui Liu, Jinhuan Wang, Yonggang Zuo, Xu Zhou. Research Progress of Two-Dimensional Material Hybrid Fiber Modulators [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2306026-. |
[6] | Xiaohui Cao, Chengyi Hou, Yaogang Li, Kerui Li, Qinghong Zhang, Hongzhi Wang. MXenes-Based Functional Fibers and Their Applications in the Intelligent Wearable Field [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204058-. |
[7] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[8] | Xiaofan Shen, Xiaona Wang, Nengsheng Yu, Wei Yang, Yurong Zhou, Yanhong Shi, Yulian Wang, Lizhong Dong, Jiangtao Di, Qingwen Li. A Polypyrrole-Coated MnO2/Carbon Nanotube Film Cathode for Rechargeable Aqueous Zn-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(5): 2006059-. |
[9] | Zheng Bo, Jing Kong, Huachao Yang, Zhouwei Zheng, Pengpeng Chen, Jianhua Yan, Kefa Cen. Ultra-Low-Temperature Supercapacitor Based on Holey Graphene and Mixed-Solvent Organic Electrolyte [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005054-. |
[10] | Meihui Jiang, Lizhi Sheng, Chao Wang, Lili Jiang, Zhuangjun Fan. Graphene Film for Supercapacitors: Preparation, Foundational Unit Structure and Surface Regulation [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2012085-. |
[11] | Hui Li, Shuangyu Liu, Tianci Yuan, Bo Wang, Peng Sheng, Li Xu, Guangyao Zhao, Huitao Bai, Xin Chen, Zhongxue Chen, Yuliang Cao. Influence of NaOH Concentration on Sodium Storage Performance of Na0.44MnO2 [J]. Acta Phys. -Chim. Sin., 2021, 37(3): 1907049-. |
[12] | Cheng Chang, Wei Chen, Ye Chen, Yonghua Chen, Yu Chen, Feng Ding, Chunhai Fan, Hong Jin Fan, Zhanxi Fan, Cheng Gong, Yongji Gong, Qiyuan He, Xun Hong, Sheng Hu, Weida Hu, Wei Huang, Yuan Huang, Wei Ji, Dehui Li, Lain-Jong Li, Qiang Li, Li Lin, Chongyi Ling, Minghua Liu, Nan Liu, Zhuang Liu, Kian Ping Loh, Jianmin Ma, Feng Miao, Hailin Peng, Mingfei Shao, Li Song, Shao Su, Shuo Sun, Chaoliang Tan, Zhiyong Tang, Dingsheng Wang, Huan Wang, Jinlan Wang, Xin Wang, Xinran Wang, Andrew T. S. Wee, Zhongming Wei, Yuen Wu, Zhong-Shuai Wu, Jie Xiong, Qihua Xiong, Weigao Xu, Peng Yin, Haibo Zeng, Zhiyuan Zeng, Tianyou Zhai, Han Zhang, Hui Zhang, Qichun Zhang, Tierui Zhang, Xiang Zhang, Li-Dong Zhao, Meiting Zhao, Weijie Zhao, Yunxuan Zhao, Kai-Ge Zhou, Xing Zhou, Yu Zhou, Hongwei Zhu, Hua Zhang, Zhongfan Liu. Recent Progress on Two-Dimensional Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(12): 2108017-. |
[13] | Haifeng Que, Huaning Jiang, Xingguo Wang, Pengbo Zhai, Lingjia Meng, Peng Zhang, Yongji Gong. Utilization of the van der Waals Gap of 2D Materials [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2010051-. |
[14] | Ning Feng, Hongguang Li, Jingcheng Hao. Toward the Neutralization of Carbon Dots Prepared by Mixed Acid Reflux [J]. Acta Phys. -Chim. Sin., 2021, 37(10): 2005004-. |
[15] | Yuan Zhou, Na Han, Yanguang Li. Recent Progress on Pd-based Nanomaterials for Electrochemical CO2 Reduction [J]. Acta Physico-Chimica Sinica, 2020, 36(9): 2001041-. |
|