Acta Physico-Chimica Sinica ›› 2020, Vol. 36 ›› Issue (9): 1912007.doi: 10.3866/PKU.WHXB201912007
Special Issue: Precise Nanosynthesis
• Article • Previous Articles Next Articles
Yamei Yang, Huijie Lun, Lasheng Long, Xiangjian Kong(), Lansun Zheng
Received:
2019-12-02
Accepted:
2020-01-08
Published:
2020-02-13
Contact:
Xiangjian Kong
E-mail:xjkong@xmu.edu.cn
Supported by:
Yamei Yang, Huijie Lun, Lasheng Long, Xiangjian Kong, Lansun Zheng. Controlled Synthesis of Lanthanide-titanium Oxo Clusters EuTi6, EuTi7 and La2Ti14[J]. Acta Physico-Chimica Sinica 2020, 36(9), 1912007. doi: 10.3866/PKU.WHXB201912007
1 |
Heuer-Jungemann A. ; Feliu N. ; Bakaimi I. ; Hamaly M. ; Alkilany A. ; Chakraborty I. ; Masood A. ; Casula M. F. ; Kostopoulou A. ; Oh E. ; et al Chem. Rev. 2019, 119, 4819.
doi: 10.1021/acs.chemrev.8b00733 |
2 |
Chen P. C. ; Liu M. H. ; Du J. S. ; Meckes B. ; Wang S. ; Lin H. X. ; Dravid V. P. ; Wolverton C. ; Mirkin C. A Science 2019, 363, 959.
doi: 10.1126/science.aav4302 |
3 | Gong L. J. ; Xie J. N. ; Zhu S. ; Gu Z. J. ; Zhao Y. L Acta Phys.-Chim. Sin. 2018, 34, 140. |
龚林吉; 谢佳妮; 朱双; 谷战军; 赵宇亮. 物理化学学报, 2018, 34, 140.
doi: 10.3866/PKU.WHXB201707174 |
|
4 |
Soldevila-Barreda J. J. ; Metzler-Nolte N Chem. Rev 2019, 119, 829.
doi: 10.1021/acs.chemrev.8b00493 |
5 |
Yang T. ; Zhao Y. L. ; Tong Y. ; Jiao Z. B. ; Wei J. ; Cai J. X. ; Han X. D. ; Chen D. ; Hu A. ; Kai J. J Science 2018, 362, 933.
doi: 10.1126/science.aas8815 |
6 |
Sun M. ; Xu L. ; Qu A. ; Zhao P. ; Hao T. ; Ma W. ; Hao C. ; Wen X. ; Colombari F. M. ; de Moura A. F. ;et al Nat. Chem 2018, 10, 821.
doi: 10.1038/s41557-018-0083-y |
7 | Bai H. ; Fan H. H. ; Zhang X. B. ; Chen Z. ; Tan W. H Acta Phys. -Chim. Sin. 2018, 34, 348. |
白华荣; 范换换; 张晓兵; 陈卓; 谭蔚泓. 物理化学学报, 2018, 34, 348.
doi: 10.3866/PKU.WHXB201708311 |
|
8 |
Puebla-Hellmann G. ; Venkatesan K. ; Mayor M. ; Lö;rtscher E Nature 2018, 559, 232.
doi: 10.1038/s41586-018-0275-z |
9 |
Yao Y. ; Huang Z. ; Xie P. ; Lacey S. D. ; Jacob R. J. ; Xie H. ; Chen F. ; Nie A. ; Pu T. ; Rehwoldt M. ; et al Science. 2018, 359, 1489.
doi: 10.1126/science.aan5412 |
10 |
Xu L. ; Liang H. W. ; Yang Y. ; Yu S. H Chem. Rev 2018, 118, 3209.
doi: 10.1021/acs.chemrev.7b00208 |
11 |
Wong A. ; Liu Q. ; Griffin S. ; Nicholls A. ; Regalbuto J. R Science 2017, 358, 1427.
doi: 10.1126/science.aao6538 |
12 |
Yan Z. H. ; Du M. H. ; Liu J. X. ; Jin S. Y. ; Wang C. ; Zhuang G. L. ; Kong X. J. ; Long L. S. ; Zheng L. S Nat. Commun 2018, 9, 3353.
doi: 10.1038/s41467-018-05659-7 |
13 |
Zheng X. Y. ; Kong X. J. ; Zheng Z. P. ; Long L. S. ; Zheng L. S Acc. Chem. Res. 2018, 51, 517.
doi: 10.1021/acs.accounts.7b00579 |
14 |
Zheng X. Y. ; Zhang H. ; Wang Z. X. ; Liu P. X. ; Du M. H. ; Han Y. Z. ; Wei R. J. ; Ouyang Z. W. ; Kong X. J. ; Zhuang G. L. ;et al Angew. Chem. Int. Ed. 2017, 56, 11457.
doi: 10.1002/anie.201705697 |
15 |
Fang W. H. ; Zhang L. ; Zhang J. Chem. Soc. Rev 2018, 47, 404.
doi: 10.1039/C7CS00511C |
16 |
Fang W. H. ; Zhang L. ; Zhang J Dalton Trans 2017, 46, 803.
doi: 10.1039/c6dt04474c |
17 |
Fan X. ; Wang J. H. ; Wu K. F. ; Zhang L. ; Zhang J Angew. Chem. Int. Ed 2019, 58, 1320.
doi: 10.1002/anie.201809961 |
18 |
Zhang G. ; Liu C. Y. ; Long D. L. ; Cronin L. ; Tung C. H. ; Wang Y J. Am. Chem. Soc. 2016, 138, 11097.
doi: 10.1021/jacs.6b06290 |
19 |
Lin Y. ; Zhu Y. F. ; Chen Z. H. ; Liu F. H. ; Zhao L. ; Su Z. M Inorg. Chem. Commun 2014, 40, 22.
doi: 10.1016/j.inoche.2013.11.023 |
20 |
Ding Q. R. ; Liu J. X. ; Narayanam N. ; Zhang L. ; Zhang J Dalton Trans 2017, 46, 16000.
doi: 10.1039/c7dt03470a |
21 |
Zhao C. ; Han Y.-Z. ; Dai S. ; Chen X. ; Yan J. ; Zhang W. ; Su H. ; Lin S. ; Tang Z. ; Teo B. K. ;et al Angew. Chem. Int. Ed. 2017, 56, 16252.
doi: 10.1002/anie.201709096 |
22 |
Hong Z. F. ; Xu S. H. ; Yan Z. H. ; Lu D. F. ; Kong X. J. ; Long L. S. ; Zheng L. S Cryst. Growth Design 2018, 18, 4864.
doi: 10.1021/acs.cgd.8b00904 |
23 |
Liu J. X. ; Gao M. Y. ; Fang W. H. ; Zhang L. ; Zhang J Angew. Chem. Int. Ed. 2016, 55, 5160.
doi: 10.1002/anie.201510455 |
24 |
Fang W. H. ; Zhang L. ; Zhang J J. Am. Chem. Soc. 2016, 138, 7480.
doi: 10.1021/jacs.6b03489 |
25 |
Yang S. ; Su H. C. ; Hou J. L. ; Luo W. ; Zou D. H. ; Zhu Q. Y. ; Dai J Dalton Trans 2017, 46, 9639.
doi: 10.1039/c7dt01603d |
26 |
Lu D. F. ; Kong X. J. ; Lu T. B. ; Long L. S. ; Zheng L. S Inorg. Chem 2017, 56, 1057.
doi: 10.1021/acs.inorgchem.6b03072 |
27 |
Luo W. ; Hou J. L. ; Zou D. H. ; Cui L. N. ; Zhu Q. Y. ; Dai J. New J. Chem. 2018, 42, 11629.
doi: 10.1039/C8NJ02247J |
28 |
Westin G. ; Norrestam R. ; Nygren M. ; Wijk M J. Solid State Chem. 1998, 135, 149.
doi: 10.1006/jssc.1997.7616 |
29 |
Hubert-Pfalzgraf L. G. ; Abada V. ; Vaissermann J Polyhedron 1999, 18, 3497.
doi: 10.1016/50277-5387[99]00281-8 |
30 |
Jupa M. ; Kickelbick G. ; Schubert U Eur. J. Inorg. Chem. 2004, 2004, 1835.
doi: 10.1002/ejic.200300694 |
31 |
Zhang G. L. ; Wang S. ; Hou J. L. ; Mo C. J. ; Que C. J. ; Zhu Q. Y. ; Dai J Dalton. Trans 2016, 45, 17681.
doi: 10.1039/C6DT03034C |
32 |
Luo W. ; Zou D. H. ; Yang S. ; Cui L. N. ; Liu P. Y. ; Zhu Q. Y. ; Dai J Inorg. Chem 2019, 58, 14617.
doi: 10.1021/acs.inorgchem.9b02290 |
33 |
Li N. ; Rodriguez R. G. ; Matthews P. D. ; Luo H. K. ; Wright D. S Dalton Trans 2017, 46, 4287.
doi: 10.1039/C7DT00049A |
34 |
Liu Y. J. ; Fang W. H. ; Zhang L. ; Zhang J Coord. Chem. Rev. 2020, 404, 213099.
doi: 10.1016/j.ccr.2019.213099 |
35 |
Lv Y. ; Willkomm J. ; Leskes M. ; Steiner A. ; King T. C. ; Gan L. ; Reisner E. ; Wood P. T. ; Wright D. S Chemistry 2012, 18, 11867.
doi: 10.1002/chem.201201827 |
36 |
Zheng H. ; Du M. H. ; Lin S. C. ; Tang Z. C. ; Kong X. J. ; Long L. S. ; Zheng L. S Angew. Chem. Int. Ed. 2018, 57, 10976.
doi: 10.1002/anie.201806757 |
37 |
Sheldrick G. M Acta Cryst. 2008, A64, 112.
doi: 10.1107/S0108767307043930 |
38 |
Dolomanov O. V. ; Bourhis L. J. ; Gildea R. J. ; Howard J. A. K. ; Puschmann H J. Appl. Cryst 2009, 42, 339.
doi: 10.1107/50021889808042726 |
[1] | Tao Sun, Chenxi Li, Yupeng Bao, Jun Fan, Enzhou Liu. S-Scheme MnCo2S4/g-C3N4 Heterojunction Photocatalyst for H2 Production [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212009-. |
[2] | Wenjie Zhou, Qihang Jing, Jiaxin Li, Yingzhi Chen, Guodong Hao, Lu-Ning Wang. Organic Photocatalysts for Solar Water Splitting: Molecular- and Aggregate-Level Modifications [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2211010-0. |
[3] | Aoqi Wang, Jun Chen, Pengfei Zhang, Shan Tang, Zhaochi Feng, Tingting Yao, Can Li. Relation between NiMo(O) Phase Structures and Hydrogen Evolution Activities of Water Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2301023-0. |
[4] | Yonggang Lei, Tianyu Zhao, Kim Hoong Ng, Yingzhen Zhang, Xuerui Zang, Xiao Li, Weilong Cai, Jianying Huang, Jun Hu, Yuekun Lai. Metallic Tungsten Carbide Coupled with Liquid-Phase Dye Photosensitizer for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(4): 2206006-0. |
[5] | Siran Xu, Qi Wu, Bang-An Lu, Tang Tang, Jia-Nan Zhang, Jin-Song Hu. Recent Advances and Future Prospects on Industrial Catalysts for Green Hydrogen Production in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2209001-0. |
[6] | Yue Huang, Feifei Mei, Jinfeng Zhang, Kai Dai, Graham Dawson. Construction of 1D/2D W18O49/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2108028-. |
[7] | Shanchi Liu, Kai Wang, Mengxue Yang, Zhiliang Jin. Rationally Designed Mn0.2Cd0.8S@CoAl LDH S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2109023-. |
[8] | Zhuonan Lei, Xinyi Ma, Xiaoyun Hu, Jun Fan, Enzhou Liu. Enhancement of Photocatalytic H2-Evolution Kinetics through the Dual Cocatalyst Activity of Ni2P-NiS-Decorated g-C3N4 Heterojunctions [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2110049-. |
[9] | Zhuang Xiong, Yidong Hou, Rusheng Yuan, Zhengxin Ding, Wee-Jun Ong, Sibo Wang. Hollow NiCo2S4 Nanospheres as a Cocatalyst to Support ZnIn2S4 Nanosheets for Visible-Light-Driven Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111021-. |
[10] | Ke Sun, Yongqing Zhao, Jie Yin, Jing Jin, Hanwen Liu, Pinxian Xi. Surface Modification of NiCo2O4 Nanowires using Organic Ligands for Overall Water Splitting [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107005-. |
[11] | Yan Li, Xingsheng Hu, Jingwei Huang, Lei Wang, Houde She, Qizhao Wang. Development of Iron-Based Heterogeneous Cocatalysts for Photoelectrochemical Water Oxidation [J]. Acta Phys. -Chim. Sin., 2021, 37(8): 2009022-. |
[12] | Daqiang Yan, Lin Zhang, Zupeng Chen, Weiping Xiao, Xiaofei Yang. Nickel-Based Metal-Organic Framework-Derived Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009054-. |
[13] | Zejian Wang, Jiajia Hong, Sue-Faye Ng, Wen Liu, Junjie Huang, Pengfei Chen, Wee-Jun Ong. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2011033-. |
[14] | Juanjuan Huang,Jianmei Du,Haiwei Du,Gengsheng Xu,Yupeng Yuan. Control of Nitrogen Vacancy in g-C3N4 by Heat Treatment in an Ammonia Atmosphere for Enhanced Photocatalytic Hydrogen Generation [J]. Acta Physico-Chimica Sinica, 2020, 36(7): 1905056-. |
[15] | Shangcong Sun,Xuya Zhang,Xianlong Liu,Lun Pan,Xiangwen Zhang,Jijun Zou. Design and Construction of Cocatalysts for Photocatalytic Water Splitting [J]. Acta Physico-Chimica Sinica, 2020, 36(3): 1905007-. |
|