Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (3): 1912052.doi: 10.3866/PKU.WHXB201912052
• ARTICLE • Previous Articles Next Articles
Aidi Han, Xiaohui Yan, Junren Chen, Xiaojing Cheng, Junliang Zhang()
Received:
2019-12-23
Accepted:
2020-01-20
Published:
2020-03-05
Contact:
Junliang Zhang
E-mail:junliang.zhang@sjtu.edu.cn
About author:
Junliang Zhang, Email: junliang.zhang@sjtu.edu.cn; Tel.: +86-21-34207439Supported by:
Aidi Han, Xiaohui Yan, Junren Chen, Xiaojing Cheng, Junliang Zhang. Effects of Dispersion Solvents on Proton Conduction Behavior of Ultrathin Nafion Films in the Catalyst Layers of Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin. 2022, 38(3), 1912052. doi: 10.3866/PKU.WHXB201912052
Table 1
Dielectric constant of commonly used organic solvents and state of Nafion thin film on substrate."
Type of organic solvents | Dielectric constant | Surface tension (mN·m-1) | Nafion state in solvent | Nafion thin film state on substrate |
Butyl acetate | 5.01 | 27.55 | Precipitation | Unable to form a film because of precipitation |
Ethyl acetate | 6.02 | 26.29 | Precipitation | Unable to form a film because of precipitation |
n-butanol | 17.10 | 24.60 | Colloid | Flat film |
Isopropanol | 18.30 | 21.70 | Colloid | Flat film |
n-propanol | 22.20 | 23.78 | Colloid | Flat film |
Ethanol | 23.80 | 22.27 | Colloid | Film |
Methanol | 33.01 | 20.14 | Colloid | Film |
N-Methyl-2-pyrrolidinone | 33.70 | 33.70 | Solution | Unable to form a film because of surface tension |
Dimethyl sulfoxide | 48.90 | 43.60 | Solution | Unable to form a film because of surface tension |
Water | 78.40 | 72.75 | Solution | Unable to form a film because of surface tension |
Table 3
Hydrodynamic diameter of 0.5% (w) Nafion diluted with organic alcohol solvent."
Type of organic solvents | Dielectric constant | Viscosity (mPa·s) | Refractive index | Hydrodynamic diameter (nm) |
n-butanol | 17.10 | 2.950 | 1.3993 | 1508.59 |
Isopropanol | 18.30 | 2.370 | 1.3772 | 1233.57 |
n-propanol | 22.20 | 2.256 | 1.3862 | 445.96 |
1 | DOE Hydrogen and Fuel Cells Program Record 2016[M]. U. S. Department of Energy. 2011. |
2 |
Farhat Z. N. J. Power Sources 2004, 138 (1), 68.
doi: 10.1016/j.jpowsour.2004.05.055 |
3 |
Gasteiger H. A. ; Kocha S. S. ; Sompalli B. ; Wagner F. T. Appl. Catal. B: Environ. 2005, 56 (1-2), 9.
doi: 10.1016/j.apcatb.2004.06.021 |
4 |
Franco A. A. ; Passot S. ; Fugier P. ; Anglade C. ; Billy E. ; Guétaz L. ; Guillet L. ; Vito E. D. ; Mailley S. J. Electrochem. Soc. 2009, 156 (3), B410.
doi: 10.1149/1.3056048 |
5 |
Stamenković V. ; Schmidt T. J. ; Ross P. N. ; Marković N. M. J. Phys. Chem. B 2002, 106 (46), 11970.
doi: 10.1021/jp021182h |
6 |
Huang X. ; Zhao Z. ; Cao L. Science 2015, 348 (6240), 1230.
doi: 10.1126/science.aaa8765 |
7 |
Wu J. ; Qi L. ; You H. J. Am. Chem. Soc. 2012, 134 (29), 11880.
doi: 10.1021/ja303950v |
8 |
Chen C. ; Kang Y. ; Huo Z. Science 2014, 343 (6177), 1339.
doi: 10.1126/science.1249061 |
9 |
Mahmoud M. A. ; Tabor C. E. ; El-Sayed M. A. J. Am. Chem. Soc. 2008, 130 (14), 4590.
doi: 10.1021/ja710646t |
10 |
Shen S. ; Han A. ; Yan X. ; Chen J. ; Cheng X. ; Zhang J. J. Electrochem. Soc. 2019, 166 (12), F724.
doi: 10.1149/2.0451912jes |
11 |
Lee S. J. ; Yu T. L. ; Lin H. L. ; Liu W. H. ; Lai C. L. Polymer 2004, 45 (8), 2853.
doi: 10.1016/j.polymer.2004.01.076 |
12 |
Welch C. ; Labouriau A. ; Hjelm R. ; Orler B. ; Johnston C. ; Kim Y. S. ACS Macro Lett. 2012, 1 (12), 1403.
doi: 10.1021/mz3005204 |
13 |
Balu R. ; Choudhury N. R. ; Meta J. P. ; Campo L. ; Rehm C. ; Hill A. J. ; Dutta N. K. ACS Appl. Mater. Interfaces 2019, 11 (10), 9934.
doi: 10.1021/acsami.8b20645 |
14 |
Kim T. ; Yoo J. H. ; Maiyalagan T. ; Yia S. Appl. Surf. Sci. 2019, 481, 777.
doi: 10.1016/j.apsusc.2019.03.113 |
15 |
Paul D. K. ; Fraser A. ; Karan K. Electrochem. Commun. 2011, 13 (8), 774.
doi: 10.1016/j.elecom.2011.04.022 |
16 |
Modestino M. A. ; Paul D. K. ; Dishari S. ; Petrina S. A. ; Allen F. I. ; Hickner M. A. ; Karan K. ; Segalman R. A. ; Weber A. Z. Macromolecules 2013, 46 (3), 867.
doi: 10.1021/ma301999a |
17 |
Takasaki M. ; Kimura K. ; Kawaguchi K. ; Abe A. ; Katagiri G. Macromolecules 2005, 38 (14), 6031.
doi: 10.1021/ma047970h |
18 |
Kim T. ; Yoo J. H. ; Maiyalagan T. ; Yi S. Appl. Surf. Sci. 2019, 481 (1), 777.
doi: 10.1016/j.apsusc.2019.03.113 |
[1] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[2] | Jian Wang, Wei Ding, Zidong Wei. Performance of Polymer Electrolyte Membrane Fuel Cells at Ultra-Low Platinum Loadings [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009094-. |
[3] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[4] | Jujia Zhang, Jin Zhang, Haining Wang, Yan Xiang, Shanfu Lu. Advancement in Distribution and Control Strategy of Phosphoric Acid in Membrane Electrode Assembly of High-Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010071-. |
[5] | Kang YANG,Xiaorui SHUAI,Huachao YANG,Jianhua YAN,Kefa CEN. Electrochemical Performance of Activated Graphene Powder Supercapacitors Using a Room Temperature Ionic Liquid Electrolyte [J]. Acta Phys. -Chim. Sin., 2019, 35(7): 755-765. |
[6] | Wenhui CHEN,Shengli CHEN. Effect of Ink Solvents on Low-Pt Loading Proton Exchange Membrane Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 517-522. |
[7] | Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294. |
[8] | Qiao-Wan CHANG,Fei XIAO,Yuan XU,Min-Hua SHAO. Core-Shell Electrocatalysts for Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2017, 33(1): 9-17. |
[9] | Jing ZOU,Zhi-Lin FAN,Li-Sha JIANG,Dan-Hong ZHOU. Theoretical Study of the Solvent Adsorption on Ti-Peroxo Active Center in Ti-MWW Zeolite [J]. Acta Phys. -Chim. Sin., 2016, 32(4): 935-942. |
[10] | Yi YANG,Lai-Ming LUO,Juan-Juan DU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Hollow Pt-Based Nanocatalysts Synthesized through Galvanic Replacement Reaction for Application in Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2016, 32(4): 834-847. |
[11] | Hong ZHU,Ming-Chuan LUO,Ye-Zheng CAI,Zhao-Nan SUN. Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2462-2474. |
[12] | Dong ZHENG,Xiang-Ai YUAN,Jing MA. Rationalization of pH-Dependent Absorption Spectrum of o-Methyl Red in Aqueous Solutions: TD-DFT Calculation and Experiment Study [J]. Acta Phys. -Chim. Sin., 2016, 32(1): 290-300. |
[13] | Ming-Feng. SHANG,Pei-Quan. DUAN,Tian-Tian. ZHAO,Wen-Chao. TANG,Rui. LIN,Yu-Ying. HUANG,Jian-Qiang. WANG. In Situ XAFS Methods for Characterizing Catalyst Structure in Proton Exchange Membrane Fuel Cell [J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1609-1614. |
[14] | QIAN Yang, XU Jiang. Properties of Zr Nanocrystalline Coating on Ti Alloy Bipolar Plates in Simulated PEMFC Environments [J]. Acta Phys. -Chim. Sin., 2015, 31(2): 291-301. |
[15] | Mei-Ni. YANG,Rui. LIN,Ren-Jie. FAN,Tian-Tian. ZHAO,Hao. ZENG. Preparation and Application of Pt-Ni Catalysts supported on Cobalt-Polypyrrole-Carbon for Fuel Cells [J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2131-2138. |
|