Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (9): 2009094.doi: 10.3866/PKU.WHXB202009094
Special Issue: Fuel Cells
• REVIEW • Previous Articles Next Articles
Jian Wang, Wei Ding(), Zidong Wei()
Received:
2020-09-29
Accepted:
2020-10-30
Published:
2020-11-06
Contact:
Wei Ding,Zidong Wei
E-mail:dingwei128@cqu.edu.cn;zdwei@cqu.edu.cn
About author:
Emails: zdwei@cqu.edu.cn (Z.W.)Supported by:
Jian Wang, Wei Ding, Zidong Wei. Performance of Polymer Electrolyte Membrane Fuel Cells at Ultra-Low Platinum Loadings[J]. Acta Phys. -Chim. Sin. 2021, 37(9), 2009094. doi: 10.3866/PKU.WHXB202009094
Fig 2
(a) TEM and (b, c) HR-TEM images of Pt concave nanocubes (d) FT pattern of the concave nanocube shown in (c) recorded along the [001] zone axis, (e, f) comparison of the electrocatalytic properties of the different catalysts (the metal loading on the glassy carbon electrode was 15.3 μg·cm-2). Adapted from Angew. Chem. Int. Ed., Wiley publisher 18."
Fig 3
Single-cell performance and long-term durability of the fabricated MEAs with Ga-PtNi/C (a), PtNi/C (b), and commercial Pt/C (c) as a cathode catalyst with Pt loading of 0.15 mg·cm-2. (d) Current density (left) and power density (right) at 0.6 V of Ga-PtNi/C, PtNi/C, and commercial Pt/C. Adapt from Nano Lett., ACS publisher 23."
Fig 6
(a–c) Atomic resolution HAADF-STEM image of Pt3Co nanoparticle and Crop of the superlattice feature; (d) fuel cell performance with a comparison with a commercial Pt/C (TEC10 V20E), cathode loading is 0.13 mg·cm-2; pressure 100 kPa air; 80 ℃; (e–g) atomic resolution HAADF-STEM image of Pt3Co nanoparticle and Crop of the superlattice feature after potential cycling for 30 000 cycles. Adapt from ACS Nano, ACS publisher 28."
Fig 10
(a) The outline of the nanowires, highlighting the rough surface of the J-PtNWs, (b) EDX spectroscopy line-scan profiles of the corresponding nanowires, (c, d) the electrocatalytic performance of different catalysts (J-PtNWs: 2.2 μg·cm-2, R-PtNWs: 2.55 μg·cm-2, Pt/C: 7.6 μg·cm-2) Adapted from Science, AAAS publisher 33."
Fig 11
(a–c) Schematics and the HAADF-STEM images of LP@PF catalysts, (d, e) H2-O2 fuel cell I–V polarization and power density of different catalysts before and after 30000 voltage cycles, (f) cathodic MA Tafel plots derived from fuel cell measurement, (g) H2-air fuel cell performances. Adapted from Science, AAAS publisher 36."
Fig 14
(a, b) Linear sweeping voltammetry and mass activity of Pt/C and (c) Pt-MoO3/C catalysts before and after SO2 poisoning in O2-saturated in 0.5 mol·L-1 H2SO4. (Pt loading: 0.1353 mg·cm-2 for Pt/C and 0.08413 mg·cm-2 for Pt-MoO3/C). Adapted from Journal of Energy Chemistry, Elsevier publisher 53."
Fig 16
(a) Schematic illustration of the bionic design of a hollow alloy catalyst, (b) H2-O2 fuel cell j–E polarization and power density of different catalysts, (c) comparison of the fuel cell lifetimes tested at 0.6 V over 130 h for the MEAs employing the different catalysts. Adapted from J. Mater. Chem. A, RSC publisher 56."
Fig 20
(a) Schematic pictures of the catalyst layer geometry made of Pt catalyst on carbon powder and Pt catalyst on VACNTs film, (b) the SEM images of Pt catalyst on VACNTs transferred onto Nafion membrane by hot press, (c) performance comparison of single PEM fuel cells fabricated fully by Pt/VACNTs 35 μg cm-2 films and commercial Johnson Matthey 40% Pt/C powder with the Pt loading of 400 μg·cm-2. Adapt from Adv. Energy Mater., Wiley publisher 66."
Fig 24
(a) The schematic and optical pictures of the self-made "rattle-drum"-like working electrode; (b) the three electrode testing system constructed by a "rattle- drum" working electrode, a platinum counter electrode, and a reference electrode; (c) scheme for the formation of partial/total flooding in the catalyst layer; (d, f) the test of "rattle-drum"-like working electrode. Adapt from AIChE J., Wiley publisher 71."
Fig 27
(a) Schematic illustration of directly deposited membrane, (b, c) graphs with different interface structure, the polarization curves (d) and electrochemical impedance spectroscopy (EIS)-data (e) for the direct deposited membrane MEA and a commercial NafionⓇ HP based MEA (as reference) under optimized operation conditions. Adapted from J. Mater. Chem. A, RSC publisher 80."
Fig 28
(a) Polarization data for fuel cells with low Pt-loading: 0.029 mg·cm-2 with a DMD and a conventional CCM fuel cell with N-211 membrane are compared; (b) SEM-images of cryo-fractured cross sections of DMD-MEAs with 0.029 mg·cm-2 Pt-loading. Adapted from Electrochemistry Communications, Elsevier publisher 81."
Table 1
List of the electrocatalytic performance for Pt-based catalysts in this review."
Catalysts | MA (A·mg-1)(vs. 0.9 V. RDE) | MA (A·mg-1)(vs. 0.9 V. Fuel Cell) | Current density (A/cm2) @0.67 V | Power density (W/cm2)@0.67 V | Pt utilization (g/kW @peak power density) | Operation Condition | Ref. |
Pt1-N/BP | – | – | 0.5 | 0.335 | 0.13 | H2/O2 200 kPa 80 ℃ Nafion 212 | |
Pt1.1/BPdefect | – | – | 0.3 | 0.201 | 0.09 | H2/O2 200 kPa 80 ℃ Nafion 212 | |
J-PtNWs | 13.6 | – | – | – | – | – | |
PtTe2 NSs | 2.07 | – | – | – | – | – | |
H-PtFe/C@NC | 0.993 | – | – | – | – | – | |
Pt/40Co-NC-900 | 0.255 | 0.9 | 0.603 | 0.18@Cathode | H2/Air 150 kPa 80 ℃ | ||
PtPb/Pt | 4.3 | – | – | – | – | ||
Pt3Ni | 5.7 | 0.76 | – | – | – | – | |
PtNi | 3.52 | 0.72 | – | – | 0.27 | H2/Air 30 206 kPa 80 ℃ | |
Ga-PtNi/C | 1.24 | – | 0.4 | 0.268 | 0.545@0.6 V | H2/Air 100 kPa 65 ℃ | |
LP@PF-2 | 12.36 | 1.77 (H2/O2) | 1 | 0.67 | 0.034@Cathode | H2/Air 100 kPa 80 ℃ Nafion-211 | |
Pt/Cu-SAC | – | – | 0.22 | 0.15 | 0.047@Cathode | H2/O2 70 ℃ Nafion 211 | |
PtA@FeSA-N-C | – | – | 1.15 | 0.77 | 0.099@Cathode | H2/O2 100 kPa 65 ℃ | |
PtCo@CNTs-MOF | 0.85 | – | 1.16 | 0.78 | 0.098 | H2/O2 200 kPa 80 ℃ Nafion HP | |
JM-Pt/C | – | – | 0.52 | 0.35 | 0.22 | H2/O2 100 kPa 80 ℃ Nafion-117 | |
Pt/C-DMD | – | – | 1.25 | 0.837 | 0.023 | H2/O2 300 kPa Nafion 211 | |
VACNTs@Pt | – | – | 0.86 | 0.576 | 0.034@Cathode | H2/O2 206 kPa | |
PtCo NTAs-400 | – | – | 0.9 | 0.603 | 0.069@Cathode | H2/O2 200 kPa 80 ℃ Nafion 212 |
1 | Gong, Y. Synthesis, Characterization and Performance Testing of Pt-Based Electrocatalysts for Low Temperature Pem Fuel Cells. In Chemical Engineering, Energy; ProQuest Dissertations Publishing: Ann Arbor, 2008; p. 0176. |
2 |
Nie Y. ; Li L. ; Wei Z. Chem. Soc. Rev. 2015, 44, 2168.
doi: 10.1002/chin.201525299 |
3 |
Stephens I. E. L. ; Rossmeisl J. ; Chorkendorff I. Science 2016, 354, 1378.
doi: 10.1126/science.aal3303 |
4 |
Gasteiger H. A. ; Marković N. M. Science 2009, 324, 48.
doi: 10.1126/science.1172083 |
5 |
Middelman E. Fuel Cells Bull. 2002, 2002, 9.
doi: 10.1016/S1464-2859(02)11028-5 |
6 |
Lin R. ; Cai X. ; Zeng H. ; Yu Z. Adv. Mater. 2018, 30, e1705332.
doi: 10.1002/adma.201705332 |
7 |
Sui S. ; Wang X. ; Zhou X. ; Su Y. ; Riffat S. ; Liu C. J. J. Mater. Chem. A 2017, 5, 1808d.
doi: 10.1039/C6TA08580F |
8 |
Markovic N. ; Adžic R. R. ; Cahan B. D. ; Yeager E. J. Electroanal. Chem. 1994, 377, 249.
doi: 10.1016/0022-0728(94)03467-2 |
9 |
Markovic N. M. ; Gasteiger H. A. ; Ross P. N. J. Phys. Chem. 1996, 100, 6715.
doi: 10.1021/j100011a001 |
10 |
Markovic N. M. ; Gasteiger H. A. ; Ross P. N. J. Phys. Chem. 1995, 99, 3411.
doi: 10.1021/j100011a001 |
11 |
Wu J. ; Yang H. Nano Res. 2010, 4, 72.
doi: 10.1007/s12274-010-0049-x |
12 |
Wu J. ; Qi L. ; You H. ; Gross A. ; Li J. ; Yang H. J. Am. Chem. Soc. 2012, 134, 11880.
doi: 10.1021/ja303950v |
13 |
Tian N. ; Zhou Z. ; Sun S. ; Ding Y. ; Wang Z. L. Science 2007, 316, 732.
doi: 10.1126/science.1140484 |
14 |
Lee S. W. ; Chen S. ; Sheng W. ; Yabuuchi N. ; Kim Y. ; Mitani T. ; Vescovo E. ; Shaohorn Y. J. Am. Chem. Soc. 2009, 131, 15669.
doi: 10.1021/ja9025648 |
15 |
Zhou Z. ; Huang Z. ; Chen D. ; Wang Q. ; Tian N. ; Sun S. Angew. Chem. Int. Ed. 2010, 49, 411d.
doi: 10.1002/ange.200905413 |
16 |
Han N. ; Zhou Z. Y. ; Sun S. G. ; Ding Y. ; Wang Z. L. Science 2007,
doi: 10.1126/science.1140484 |
17 |
Liu S. ; Tian N. ; Xie A. Y. ; Du J. H. ; Xiao J. ; Liu L. ; Sun H. Y. ; Cheng Z. Y. ; Zhou Z. Y. ; Sun S. G. J. Am. Chem. Soc. 2016, 138, 5753.
doi: 10.1021/jacs.5b13473 |
18 |
Yu T. ; Kim D. Y. ; Zhang H. ; Xia Y. Angew. Chem. Int. Ed. 2011, 50, 2773.
doi: 10.1002/anie.201007859 |
19 | Landsman, D. A.; Luczak, F. J., Noble Metal-Chromium Alloy Catalysts and Electrochemical Cell. US Patent, US06/160517, 1982. |
20 |
Jia Q. ; Liang W. ; Bates M. K. ; Mani P. ; Lee W. ; Mukerjee S. ACS Nano 2015, 9, 387.
doi: 10.1021/nn506721f |
21 |
Stephens I. E. L. ; Bondarenko A. S. ; Grønbjerg U. ; Rossmeisl J. ; Chorkendorff I. Energ. Environ. Sci. 2012, 5, 6744.
doi: 10.1039/C2EE03590A |
22 |
Kugler E. ; Boudart M. J. Catal. 1979, 59, 201.
doi: 10.1016/S0021-9517(79)80025-1 |
23 |
Lim J. ; Shin H. ; Kim M. ; Lee H. ; Lee K. S. ; Kwon Y. ; Song D. ; Oh S. ; Kim H. ; Cho E. Nano Lett. 2018, 18, 2450.
doi: 10.1021/acs.nanolett.8b00028 |
24 |
Huang X. ; Zhao Z. ; Cao L. ; Chen Y. ; Zhu E. ; Lin Z. ; Li M. ; Yan A. ; Zettl A. ; Wang Y. M. Science 2015, 348, 1230.
doi: 10.1126/science.aaa8765 |
25 |
Koh S. ; Strasser P. J. Am. Chem. Soc. 2007, 129, 42.
doi: 10.1021/ja0742784 |
26 |
Wang H. ; Xu S. ; Tsai C. ; Li Y. ; Liu C. ; Zhao J. ; Liu Y. ; Yuan H. ; Abild-Pedersen F. ; Prinz F. B. Science 2016, 354, 1031.
doi: 10.1126/science.aaf7680 |
27 |
Bu L. ; Zhang N. ; Guo S. ; Zhang X. ; Li J. ; Yao J. ; Wu T. ; Lu G. ; Ma J. Y. ; Su D. Science 2016, 354, 1410.
doi: 10.1126/science.aah6133 |
28 |
Wang X. X. ; Hwang S. ; Pan Y. T. ; Chen K. ; He Y. ; Karakalos S. ; Zhang H. ; Spendelow J. S. ; Su D. ; Wu G. Nano Lett. 2018, 18, 4163.
doi: 10.1021/acs.nanolett.8b00978 |
29 |
Wang Q. ; Wang Q. ; Chen S. ; Shi F. ; Chen K. ; Nie Y. ; Wang Y. ; Wu R. ; Li J. ; Zhang Y. ; Ding W. ; Li Y. ; Li L. ; Wei Z. Adv. Mater. 2016, 28, 10673.
doi: 10.1002/adma.201603509 |
30 |
Feng Y. ; Huang B. ; Yang C. ; Shao Q. ; Huang X. Adv. Funct. Mater. 2019, 29, 1904429.
doi: 10.1002/adfm.201904429 |
31 |
Tian X. ; Zhao X. ; Su Y. Q. ; Wang L. ; Wang H. ; Dang D. ; Chi B. ; Liu H. ; Hensen E. J. M. ; Lou X. W. Science. 2019, 366, 850.
doi: 10.1126/science.aaw7493 |
32 |
Chen C. ; Kang Y. ; Huo Z. ; Zhu Z. ; Huang W. ; Xin H. L. ; Snyder J. ; Li D. ; Herron J. A. ; Mavrikakis M. Science 2014, 343, 1339.
doi: 10.1126/science.1249061 |
33 |
Li M. ; Zhao Z. ; Cheng T. ; Fortunelli A. ; Chen C. ; Yu R. ; Zhang Q. ; Gu L. ; Merinov B. V. ; Lin Z. Science 2016, 354, 1414.
doi: 10.1126/science.aaf9050 |
34 |
Zeng X. ; Shui J. ; Liu X. ; Liu Q. ; Li Y. ; Shang J. ; Zheng L. ; Yu R. Adv. Energy Mater. 2018, 8, 1701345.
doi: 10.1002/aenm.201701345 |
35 |
Cui L. ; Li Z. ; Wang H. ; Cui L. ; Zhang J. ; Lu S. ; Xiang Y. ACS Appl. Energy Mater. 2020, 3, 3807.
doi: 10.1021/acsaem.0c00255 |
36 |
Chong L. ; Wen J. ; Kubal J. ; Sen F. ; Zou J. ; Greeley J. P. ; Chan M. K. Y. ; Barkholtz H. M. ; Ding W. ; Liu D. Science 2018, 362, 1276.
doi: 10.1126/science.aau0630 |
37 |
Ao X. ; Zhang W. ; Zhao B. ; Ding Y. ; Nam G. ; Soule L. ; Abdelhafiz A. ; Wang C. ; Liu M. Energ. Environ. Sci. 2020,
doi: 10.1039/D0EE00832J |
38 |
Chen Y. ; Ji S. ; Wang Y. ; Dong J. ; Chen W. ; Li Z. ; Shen R. ; Zheng L. ; Zhuang Z. ; Wang D. ; Li Y. Angew. Chem. Int. Ed. 2017, 56, 6937.
doi: 10.1002/ange.201702473 |
39 |
Yin P. ; Yao T. ; Wu Y. ; Zheng L. ; Lin Y. ; Liu W. ; Ju H. ; Zhu J. ; Hong X. ; Deng Z. ; Zhou G. ; Wei S. ; Li Y. Angew. Chem. Int. Ed. 2016, 55, 10800.
doi: 10.1002/anie.201604802 |
40 |
Qu Y. ; Li Z. ; Chen W. ; Lin Y. ; Yuan T. ; Yang Z. ; Zhao C. ; Wang J. ; Zhao C. ; Wang X. ; Zhou F. ; Zhuang Z. ; Wu Y. ; Li Y. Nat. Catal. 2018, 1, 781.
doi: 10.1038/s41929-018-0146-x |
41 |
Wan C. ; Duan X. ; Huang Y. Adv. Energy Mater. 2020, 10, 1903815.
doi: 10.1002/aenm.201903815 |
42 |
Wei S. J. ; Li A. ; Liu J. C. ; Li Z. ; Chen W. X. ; Gong Y. ; Zhang Q.H. ; Cheong W. C. ; Wang Y. ; Zheng L. R. ; Xiao H. ; Chen C. ; Wang D. S. ; Peng Q. ; Gu L. ; Han X. D. ; Li J. ; Li Y. D. Nat. Nanotechnol. 2018, 13, 856.
doi: 10.1038/s41565-018-0197-9 |
43 |
Fu Q. ; Saltsburg H. ; Flytzani-tephanopoulos M. Science 2003, 301, 935.
doi: 10.1126/science.1085721 |
44 |
Liu J. ; Jiao M. ; Lu L. ; Barkholtz H. M. ; Li Y. ; Wang Y. ; Jiang L. ; Wu Z. ; Liu D. ; Zhuang L. ; Ma C. ; Zeng J. ; Zhang B. ; Su D. ; Song P. ; Xing W. ; Xu W. ; Wang Y. ; Jiang Z. ; Sun G. Nat. Commun. 2017, 8, 15938.
doi: 10.1038/ncomms16160 |
45 |
Liu J. ; Jiao M. ; Mei B. ; Tong Y. ; Li Y. ; Ruan M. ; Song P. ; Sun G. ; Jiang L. ; Wang Y. ; Jiang Z. ; Gu L. ; Zhou Z. ; Xu W. Angew. Chem. Int. Ed. 2019, 58, 1163.
doi: 10.1002/anie.201812423 |
46 |
Zhao J. ; Deng Q. ; Bachmatiuk A. ; Sandeep G. ; Popov A. A. ; Eckert J. ; Rummeli M. H. Science 2014, 343, 1228.
doi: 10.1126/science.1245273 |
47 |
Huang X. ; Tang S. ; Mu X. ; Dai Y. ; Chen G. ; Zhou Z. ; Ruan F. ; Yang Z. ; Zheng N. Nat. Nanotechnol. 2011, 6, 28.
doi: 10.1038/nnano.2010.235 |
48 |
Duan H. ; Yan N. ; Yu R. ; Chang C. ; Zhou G. ; Hu H. ; Rong H. ; Niu Z. ; Mao J. ; Asakura H. Nat. Commun. 2014, 5, 3093.
doi: 10.1038/ncomms4093 |
49 |
Niu J. ; Wang D. ; Qin H. ; Xiong X. ; Tan P. ; Li Y. ; Liu R. ; Lu X. ; Wu J. ; Zhang T. Nat. Commun. 2014, 5, 3313.
doi: 10.1038/ncomms4313 |
50 |
Jang K. ; Kim H. J. ; Son S. U. Chem. Mater. 2010, 22, 1273.
doi: 10.1021/cm902948v |
51 |
Jiang J. ; Ding W. ; Li W. ; Wei Z. Chem 2020, 6, 431.
doi: 10.1016/j.chempr.2019.11.003 |
52 |
Lang X. Y. ; Han G. F. ; Xiao B. B. ; Gu L. ; Yang Z. Z. ; Wen Z. ; Zhu Y. F. ; Zhao M. ; Li J. C. ; Jiang Q. Adv. Funct. Mater. 2015, 25, 230.
doi: 10.1002/adfm.201401868 |
53 |
Liu X. ; Wang H. ; Chen S. ; Qi X. ; Gao H. ; Hui Y. ; Bai Y. ; Guo L. ; Ding W. ; Wei Z. J. Energy Chem. 2014, 23, 358.
doi: 10.1016/S2095-4956(14)60158-3 |
54 |
Najam T. ; Shah S. S. A. ; Ding W. ; Jiang J. ; Jia L. ; Yao W. ; Li L. ; Wei Z. Angew. Chem. Int. Ed. 2018, 57, 15101.
doi: 10.1002/anie.201808383 |
55 |
Harzer G. S. ; SchwMmlein J. N. ; Damjanovi A. M. ; Ghosh S. ; Gasteiger H. A. J. Electrochem. Soc. 2018, 165, F3118.
doi: 10.1149/2.0161806jes |
56 |
Wang J. ; Wu G. ; Wang W. ; Xuan W. ; Jiang J. ; Wang J. ; Li L. ; Lin W. F. ; Ding W. ; Wei Z. J. Mater. Chem. A 2019, 7, 19786.
doi: 10.1039/C9TA06712D |
57 |
Yarlagadda V. ; Carpenter M. K. ; Moylan T. E. ; Kukreja R. S. ; Koestner R. ; Gu W. ; Thompson L. ; Kongkanand A. ACS Energy Lett. 2018, 3, 618d.
doi: 10.1021/acsenergylett.8b00186 |
58 |
Muzaffar T. ; Kadyk T. ; Eikerling M. Sustain. Energy Fuels 2018, 2, 1189.
doi: 10.1039/C8SE00026C |
59 |
Wang J. ; Wu G. ; Xuan W. ; Wang W. ; Ding W. ; Wei Z. Int. J. Hydrogen Energ. 2020, 45, 22649.
doi: 10.1016/j.ijhydene.2020.06.047 |
60 |
Chen S. ; Wei Z. ; Li H. ; Li L. Chem. Commun. 2010, 46, 8782.
doi: 10.1039/c0cc02802a |
61 |
Wang M. ; Rome G. ; Medina S. ; Pfeilsticker J. R. ; Kang Z. ; Pylypenko S. ; Ulsh M. ; Bender G. J. Power Sources 2020, 466, 228344.
doi: 10.1016/j.jpowsour.2020.228344 |
62 |
Wang Q. ; Eikerling M. ; Song D. ; Liu Z. ; Navessin T. ; Zhong X. ; Holdcroft S. J. Electrochem. Soc. 2005, 151, A1171.
doi: 10.1149/1.1753580 |
63 |
Yu H. ; Baricci A. ; Casalegno A. ; Guetaz L. ; Bonville L. ; Maric R. Electrochim. Acta 2017, 247, 1169.
doi: 10.1016/j.electacta.2017.06.145 |
64 |
Yu H. ; Baricci A. ; Bisello A. ; Casalegno A. ; Guetaz L. ; Bonville L. ; Maric R. Electrochim. Acta 2017, 247, 1155.
doi: 10.1016/j.electacta.2017.07.093 |
65 |
Zheng Z. ; Yang F. ; Lin C. ; Zhu F. ; Shen S. ; Wei G. ; Zhang J. J. Power Sources 2020, 451, 227729.
doi: 10.1016/j.jpowsour.2020.227729 |
66 |
Tian Z. Q. ; Lim S. ; Poh C. ; Tang z. ; Xia Z. ; Luo Z. ; Shen P. ; Chua Y. ; Feng Y. ; Shen Z. ; Lin J. Adv. Energy Mater. 2011, 1, 1205.
doi: 10.1002/aenm.201100371 |
67 |
Murata S. ; Imanishi M. ; Hasegawa S. ; Namba R. J. Power Sources 2014, 253, 104.
doi: 10.1016/j.jpowsour.2013.11.073 |
68 |
Debe M. K. J. Electrochem. Soc. 2013, 160, F522.
doi: 10.1149/2.049306jes |
69 |
Zeng Y. ; Shao Z. ; Zhang H. ; Wang Z. ; Hong S. ; Yu H. ; Yi B. Nano Energy 2017, 34, 344.
doi: 10.1016/j.nanoen.2017.02.038 |
70 |
Ji M. B. ; Wei Z. D. ; Chen S. G. ; Li L. J. Phys. Chem. C 2009, 113, 765.
doi: 10.1021/jp807773m |
71 |
Wang M. J. ; Zhao T. ; Luo W. ; Mao Z. X. ; Chen S. ; Ding W. ; Deng Y. ; Li W. ; Li J. ; Wei Z. AIChE J. 2018, 64, 2881.
doi: 10.1002/aic.16140 |
72 | Chen W. H. ; Chen S. L. Acta Phys. -Chim. Sin. 2018, 35, 517. |
陈雯慧; 陈胜利. 物理化学学报, 2018, 35, 517.
doi: 10.3866/PKU.WHXB201806011 |
|
73 |
Passos R. R. ; Paganin V. A. ; Ticianelli E. A. Electrochim. Acta 2006, 51, 5239.
doi: 10.1016/j.electacta.2006.01.044 |
74 |
Suzuki A. ; Sen U. ; Hattori T. ; Mima R. ; Nagumo R. ; Tsuboi H. ; Hatakeyama N. ; Endou A. ; Takab H. ; Williams M. ; Miyamoto A. Int. J. Hydrogen Energ. 2011, 36, 2221.
doi: 10.1016/j.ijhydene.2010.11.076 |
75 |
Lee D. ; Hwang S. Int. J. Hydrogen Energ. 2008, 33, 2790.
doi: 10.1016/j.ijhydene.2008.03.046 |
76 |
Zhao X. ; Li W. ; Fu Y. ; Manthiram A. Int. J. Hydrogen Energ. 2012, 37, 9845.
doi: 10.1016/j.ijhydene.2012.03.107 |
77 |
Passalacqua E. ; Lufrano F. ; Squadrito G. ; Patti A. ; Giorgi L. Electrochim. Acta 2002, 46, 799.
doi: 10.1016/S0013-4686(00)00679-4 |
78 |
Liu F. ; Yi B. ; Xing D. ; Yu J. ; Zhang H. J. Membrane Sci. 2003, 212, 213.
doi: 10.1016/S0376-7388(02)00503-3 |
79 |
Adachi M. ; Navessin T. ; Xie Z. ; Li F. H. ; Tanaka S. ; Holdcroft S. J. Membrane Sci. 2010, 364, 183.
doi: 10.1016/j.memsci.2010.08.011 |
80 |
Klingele M. ; Breitwieser M. ; Zengerle R. ; Thiele S. J. Mater. Chem. A 2015, 3, 11239.
doi: 10.1039/C5TA01341K |
81 |
Breitwieser M. ; Klingele M. ; Britton B. ; Holdcroft S. ; Zengerle R. ; Thiele S. Electrochem. Commun. 2015, 60, 168.
doi: 10.1016/j.elecom.2015.09.006 |
82 |
Omosebi A. ; Besser R. S. J. Power Sources 2013, 228, 151.
doi: 10.1016/j.jpowsour.2012.11.076 |
83 |
Chi W. S. ; Jeon Y. ; Park S. J. ; Kim J. H. ; Shul Y. G. ChemPlusChem 2014, 79, 1109.
doi: 10.1002/cplu.201402083 |
84 |
Paul M. T. Y. ; Saha M. S. ; Qi W. L. ; Stumper J. ; Gates B. D. Int. J. Hydrogen Energ. 2020, 45, 1304.
doi: 10.1016/j.ijhydene.2019.05.186 |
85 |
Omosebi A. ; Besser R. S. Fuel Cells 2017, 17, 762.
doi: 10.1002/fuce.201600183 |
[1] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[2] | Aidi Han, Xiaohui Yan, Junren Chen, Xiaojing Cheng, Junliang Zhang. Effects of Dispersion Solvents on Proton Conduction Behavior of Ultrathin Nafion Films in the Catalyst Layers of Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912052-. |
[3] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[4] | Jujia Zhang, Jin Zhang, Haining Wang, Yan Xiang, Shanfu Lu. Advancement in Distribution and Control Strategy of Phosphoric Acid in Membrane Electrode Assembly of High-Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010071-. |
[5] | Wenhui CHEN,Shengli CHEN. Effect of Ink Solvents on Low-Pt Loading Proton Exchange Membrane Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2019, 35(5): 517-522. |
[6] | Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294. |
[7] | Qiao-Wan CHANG,Fei XIAO,Yuan XU,Min-Hua SHAO. Core-Shell Electrocatalysts for Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2017, 33(1): 9-17. |
[8] | Yi YANG,Lai-Ming LUO,Juan-Juan DU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Hollow Pt-Based Nanocatalysts Synthesized through Galvanic Replacement Reaction for Application in Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2016, 32(4): 834-847. |
[9] | Hong ZHU,Ming-Chuan LUO,Ye-Zheng CAI,Zhao-Nan SUN. Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2462-2474. |
[10] | Ming-Feng. SHANG,Pei-Quan. DUAN,Tian-Tian. ZHAO,Wen-Chao. TANG,Rui. LIN,Yu-Ying. HUANG,Jian-Qiang. WANG. In Situ XAFS Methods for Characterizing Catalyst Structure in Proton Exchange Membrane Fuel Cell [J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1609-1614. |
[11] | QIAN Yang, XU Jiang. Properties of Zr Nanocrystalline Coating on Ti Alloy Bipolar Plates in Simulated PEMFC Environments [J]. Acta Phys. -Chim. Sin., 2015, 31(2): 291-301. |
[12] | Mei-Ni. YANG,Rui. LIN,Ren-Jie. FAN,Tian-Tian. ZHAO,Hao. ZENG. Preparation and Application of Pt-Ni Catalysts supported on Cobalt-Polypyrrole-Carbon for Fuel Cells [J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2131-2138. |
[13] | FAN Ren-Jie, LIN Rui, HUANG Zhen, ZHAO Tian-Tian, MA Jian-Xin. Preparation and Characterization of Pt Catalysts Supported on Cobalt-Polypyrrole-Carbon for Fuel Cells [J]. Acta Phys. -Chim. Sin., 2014, 30(7): 1259-1266. |
[14] | HAN Shuai-Yuan, YUE Bao-Hua, YAN Liu-Ming. Research Progress in the Development of High-Temperature Proton Exchange Membranes Based on Phosphonic Acid Group [J]. Acta Phys. -Chim. Sin., 2014, 30(1): 8-21. |
[15] | ZHAO Tian-Tian, LIN Rui, ZHANG Lu, CAO Chui-Hui, MA Jian-Xin. Effects of Pt Content on the Catalytic Performance of Co@Pt/C Core-Shell Structured Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2013, 29(08): 1745-1752. |
|