Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (9): 2010071.doi: 10.3866/PKU.WHXB202010071
Special Issue: Fuel Cells
• REVIEW • Previous Articles Next Articles
Jujia Zhang, Jin Zhang, Haining Wang, Yan Xiang, Shanfu Lu()
Received:
2020-10-29
Accepted:
2020-12-01
Published:
2020-12-07
Contact:
Shanfu Lu
E-mail:lusf@buaa.edu.cn
Supported by:
Jujia Zhang, Jin Zhang, Haining Wang, Yan Xiang, Shanfu Lu. Advancement in Distribution and Control Strategy of Phosphoric Acid in Membrane Electrode Assembly of High-Temperature Polymer Electrolyte Membrane Fuel Cells[J].Acta Phys. -Chim. Sin., 2021, 37(9): 2010071.
Fig 1
(a) Power density measured at a cell voltage of 0.6 V, as a function of CO content in H2 fuel at different temperatures; (b) SO2 tolerance at cathode side of HT-PEM fuel cell at 160 ℃, compared to LT-PEM fuel cell at 80 ℃. Adapted from (a) J. Hydrogen Energy, Elsevier Publisher 8 and (b) Prog. Polym. Sci, Elsevier Publisher 9."
Fig 2
(a) Raman spectra of pristine (black line) and 6 h doped (pink line) AB-PBI; (b) confocal Raman mapping of AB-PBI membranes with different doping times; (c) chemical structure of PBI, and the proton transfer along acid PBI-acid. Adapted from (a) and (b) J. Power Sources, Elsevier Publisher 45, (c) J. Electrochem. Soc, IOP Publisher 49."
Table 1
The regulations and optimization strategies of polymer electrolyte membranes."
Membranes | Phosphoric acid doping level (PA molecules per repeat unit) | Tensile stress (MPa) | Acid retention capability (%) | Proton conductivity (mS?cm?1) | References |
SiO2/Cross-linked PBI | 23.1 | 15.0 ± 4.0 | 57 | 199@160 ℃ | |
α-ZrP/ABPBI | 6.5 | 36.0 ± 3.0 | – | 49@180 ℃ | |
C3N4/PES-PVP | 6.1 | 6.0 | – | 120@180 ℃ | |
HPW/PES-PVP | 6.6 | 2.1 | – | 144@160 ℃ | |
carbon dots/PES-PVP | 146 a | 11.9 ± 1.5 | – | 86@180 ℃ | |
TDAP-PSU | 186.4 a | 2.1 | – | 46@160 ℃ | |
P-g-V-3.82 | 220.3 a | 7.94 | – | 127@160 ℃ | |
1,2,3-triazole-functionalized PSU | 5.0 | 13.0 | – | 27.3@140 ℃ | |
g-PBI-20 | 22.1 | 6.5 | – | 154@160 ℃ | |
PPT | 159.9 a | 12.0±0.3 | 82 | 96@180 ℃ | |
ABPBI/IL@SNR | 3.4 | - | 67% | 48@180 ℃ | |
PBI-SC-5 | 6.8 | 8±0.4 | 82 | 78@160 ℃ |
Table 2
The regulations and optimization strategies of catalyst layer."
Catalyst | Fabrication method | Binder | Addition | Phosphoric acid content (mg?cm?2) | Gas flow of anode and cathode (L?min?1) | Current density at 0.6 V@160 ℃ (mA?cm?2) | References |
40% (w) Pt/C | Coating | Phosphonated polysulfones | – | – | 0.2/0.2 H2/O2 | ~140 | |
40% (w) Pt/C | Spraying | PBI | – | 1.125 | 0.134/0.4 H2/Air | ~100 | |
40% (w) Pt/C | Spraying | PBI | – | 0.225 | 0.134/0.4 H2/Air | ~130 | |
48.3% (w) PtCo/C | Spraying | PTFE | – | 3 | 0.3/1 H2/Air | ~410 | |
40% (w) Pt/C | Ultrasonic Spraying | PTFE | CNT | – | 0.10/0.40 H2/O2 | 492 | |
40% (w) Pt/C | Spraying | PTFE | Zirconium hydrogen phosphate | – | 0.5/1 H2/Air | 400 | |
20% Pt/C | Ultrasonic Spraying | PTFE | – | – | λ(H2) : λ(O2) = 1.4:2 | ~200 | |
20% (w) Pt/C | Coating | PTFE | – | – | λ(H2) : λ(O2) = 1.4:2 | ~200 | |
40% (w) Pt/C | Spraying | PVDF/PBI | – | 0.81 | 0.2/0.2 H2/O2 | ~340 | |
40% (w) Pt/C | Spraying | PVDF/PBI | – | 0.13 | 0.2/0.2 H2/O2 | ~120 |
Fig 6
(a) Distribution of the local thickness of phosphoric acid invading the catalyst layer cracks for capillary pressures; (b) top-view SEM images of catalyst layer with different fabrication methods; (c) top-view SEM images of catalyst layer with and without CNT addition and the HT-PEMFC performance and stability at 1.5 A?cm?2 and 160 ℃. Adapted from (a) Phys. Chem. Chem. Phys, RSC Publisher 80, and (b) J. Electrochem. Soc, IOP Publisher 83."
1 |
Karuppannan M. ; Kim Y. ; Gok S. ; Lee E. ; Hwang J. Y. ; Jang J. H. ; Cho Y. H. ; Lim T. ; Sung Y. E. ; Kwon O. J. Energy Environ. Sci. 2019, 12, 2820.
doi: 10.1039/c9ee01000a |
2 |
Breitwieser M. ; Klingele M. ; Vierrath S. ; Zengerle R. ; Thiele S. Adv. Energy Mater. 2017, 8, 1701257.
doi: 10.1002/aenm.201701257 |
3 |
Aili D. ; Hansen M. K. ; Pan C. ; Li Q. ; Christensen E. ; Jensen J. O. ; Bjerrum N. J. Int. J. Hydrogen Energy 2011, 36, 6985.
doi: 10.1016/j.ijhydene.2011.03.058 |
4 |
Rosli R. E. ; Sulong A. B. ; Daud W. R. W. ; Zulkifley M. A. ; Husaini T. ; Rosli M. I. ; Majlan E. H. ; Haque M. A. Int. J. Hydrogen Energy 2017, 42, 9293.
doi: 10.1016/j.ijhydene.2016.06.211 |
5 |
Tang H. ; Geng K. ; Hu Y. ; Li N. J. Membr. Sci. 2020, 605, 118107.
doi: 10.1016/j.memsci.2020.118107 |
6 |
Teixeira F. C. ; de Sá A. I. ; Teixeira A. P. S. ; Rangel C. M. New J. Chem. 2019, 43, 15249.
doi: 10.1039/c9nj03405f |
7 |
Lu S. ; Xu X. ; Zhang J. ; Peng S. ; Liang D. ; Wang H. ; Xiang Y. Adv. Energy Mater. 2014, 4, 1400842.
doi: 10.1002/aenm.201400842 |
8 |
Cheng Y. ; Zhang J. ; Lu S. ; Kuang H. ; Bradley J. ; De Marco R. ; Aili D. ; Li Q. ; Cui C. Q. ; Jiang S. P. Int. J. Hydrogen Energy 2018, 43, 22487.
doi: 10.1016/j.ijhydene.2018.10.036 |
9 |
Li Q. ; Jensen J. O. ; Savinell R. F. ; Bjerrum N. J. Prog. Polym. Sci. 2009, 34, 449.
doi: 10.1016/j.progpolymsci.2008.12.003 |
10 |
Xu C. ; Scott K. ; Li Q. ; Yang J. ; Wu X. Fuel Cells 2013, 13, 118.
doi: 10.1002/fuce.201200149 |
11 |
Suwanmanee U. ; Saebea D. ; Hacker V. ; Assabumrungrat S. ; Arpornwichanop A. ; Authayanun S. Energy Convers. Manage. 2018, 171, 20.
doi: 10.1016/j.enconman.2018.05.068 |
12 |
Yang.J. ; Li. Q. ; Cleemann. L. N. ; Jensen. J. O. ; Pan. C. ; Bjerrum. N. J. ; He R. Adv. Energy Mater. 2013, 3, 622.
doi: 10.1002/aenm.201200710 |
13 |
Jensen J. ; Li Q. ; Pan C. ; Vestbo A. ; Mortensen K. ; Nybopetersen H. ; Lausorensen C. ; Nedergaardclausen T. ; Schramm J. ; Bjerrum N. Int. J. Hydrogen Energy 2007, 32, 1567.
doi: 10.1016/j.ijhydene.2006.10.034 |
14 |
Authayanun S. ; Saebea D. ; Patcharavorachot Y. ; Arpornwichanop A. Energy 2015, 80, 331.
doi: 10.1016/j.energy.2014.11.075 |
15 |
Chang C. P. ; Wu Y. C. ; Chen W. Y. ; Pan C. ; Su Y. C. ; Huang Y. J. ; Tseng F. G. Renew. Energy 2020, 153, 530.
doi: 10.1016/j.renene.2020.01.137 |
16 |
Sánchez D. ; Muñoz de Escalona J. M. ; Monje B. ; Chacartegui R. ; Sánchez T. J. Power Sources 2011, 196, 4355.
doi: 10.1016/j.jpowsour.2010.07.060 |
17 |
Elumalai V. ; Annapooranan R. ; Ganapathikrishnan M. ; Sangeetha D. J. Appl. Polym. Sci. 2018, 135, 45954.
doi: 10.1002/app.45954 |
18 |
Zhang C. ; Zhang L. ; Zhou W. ; Wang Y. ; Chan S. H. Electrochim. Acta 2014, 149, 271.
doi: 10.1016/j.electacta.2014.10.059 |
19 | Li, Q.; Aili, D.; Hjuler., H. A.; Jensen, J. O. High Temperature Polymer Electrolyte Membrane Fuel Cells; Springer: Cham, 2016; pp. 168–194. |
20 |
Ma W. ; Zhao C. ; Yang J. ; Ni J. ; Wang S. ; Zhang N. ; Lin H. ; Wang J. ; Zhang G. ; Li Q. ; Na H. Energy Environ. Sci. 2012, 5
doi: 10.1039/c2ee21521g |
21 |
Angioni S. ; Villa D. C. ; Barco S. D. ; Quartarone E. ; Righetti P. P. ; Tomasi C. ; Mustarelli P. J. Mater. Chem. A 2014, 2, 663.
doi: 10.1039/c3ta12200j |
22 |
Quartarone E. ; Angioni S. ; Mustarelli P. Materials (Basel) 2017, 10.
doi: 10.3390/ma10070687 |
23 |
Bose S. ; Kuila T. ; Nguyen T. X. H. ; Kim N. H. ; Lau K. T. ; Lee J. H. Prog. Polym. Sci. 2011, 36, 813.
doi: 10.1016/j.progpolymsci.2011.01.003 |
24 |
Zhang J. ; Liu J. ; Lu S. ; Zhu H. ; Aili D. ; De Marco R. ; Xiang Y. ; Forsyth M. ; Li Q. ; Jiang S. P. ACS Appl. Mater. Interfaces 2017, 9, 31922.
doi: 10.1021/acsami.7b09591 |
25 | Lu S. F. ; Peng S. K. ; Xiang Y. Acta Phys. -Chim. Sin. 2016, 32, 1859. |
卢善富; 彭思侃; 相艳. 物理化学学报, 2016, 32, 1859.
doi: 10.3866/PKU.WHXB201606022 |
|
26 |
Kim D. K. ; Kim H. ; Park H. ; Oh S. ; Ahn S. H. ; Kim H. J. ; Kim S. K. J. Power Sources 2019, 438, 227022.
doi: 10.1016/j.jpowsour.2019.227022 |
27 |
Zagoraiou E. ; Paloukis F. ; Neophytides S. G. ; Daletou M. K. Electrochim. Acta 2020, 356, 136778.
doi: 10.1016/j.electacta.2020.136778 |
28 |
Guo Z. ; Xiu R. ; Lu S. ; Xu X. ; Yang S. ; Xiang Y. J. Mater. Chem. A 2015, 3, 8847.
doi: 10.1039/c5ta00415b |
29 |
Kerres J. ; Atanasov V. Int. J. Hydrogen Energy 2015, 40, 14723.
doi: 10.1016/j.ijhydene.2015.08.054 |
30 |
Jeong Y. H. ; Jung J. H. ; Choi E. ; Han S. ; Begley A. I. ; Yoo S. J. ; Jang J. H. ; Kim H. J. ; Nam S. W. ; Lee K. Y. ; Kim J. Y. J. Power Sources 2015, 299, 480.
doi: 10.1016/j.jpowsour.2015.09.015 |
31 |
Lang S. ; Kazdal T. J. ; Kühl F. ; Hampe M. J. Int. J. Hydrogen Energy 2015, 40, 1163.
doi: 10.1016/j.ijhydene.2014.11.041 |
32 |
Xu X. ; Wang H. ; Lu S. ; Guo Z. ; Rao S. ; Xiu R. ; Xiang Y. J. Power Sources 2015, 286, 458.
doi: 10.1016/j.jpowsour.2015.04.028 |
33 |
Razaq M. ; Razaq A. ; Yeager E. J. Electrochem. Soc 1987, 136, 385.
doi: 10.1149/1.2096641 |
34 |
Myles T. ; Bonville L. ; Maric R. Catalysts 2017, 7, 16.
doi: 10.3390/catal7010016 |
35 |
Hu Y. ; Jiang Y. ; Jensen J. O. ; Cleemann L. N. ; Li Q. J. Power Sources 2018, 375, 77.
doi: 10.1016/j.jpowsour.2017.11.054 |
36 |
Novitski D. ; Holdcroft S. ACS Appl. Mater. Interfaces 2015, 7, 27314.
doi: 10.1021/acsami.5b08720 |
37 |
Fleige M. ; Holst-Olesen K. ; Wiberg G. K. H. ; Arenz M. Electrochim. Acta 2016, 209, 399.
doi: 10.1016/j.electacta.2016.05.048 |
38 |
Lobato J. ; Cañizares P. ; Rodrigo M. A. ; Linares J. J. ; Pinar F. J. Int. J. Hydrogen Energy 2010, 35, 1347.
doi: 10.1016/j.ijhydene.2009.11.091 |
39 |
Heider E. ; Jusys Z. ; Behm R. J. ; Jörissen L. ; Zeis R. J. Phys. Chem. C 2015, 119, 18859.
doi: 10.1021/acs.jpcc.5b03858 |
40 |
Zhou F. ; Singdeo D. ; Kær S. K. Fuel Cells 2019, 19, 2.
doi: 10.1002/fuce.201700144 |
41 |
Liu S. ; Rasinski M. ; Rahim Y. ; Zhang S. ; Wippermann K. ; Reimer U. ; Lehnert W. J. Power Sources 2019, 439, 227090.
doi: 10.1016/j.jpowsour.2019.227090 |
42 |
Yan W. M. ; Chen C. Y. ; Liang C. H. Energy 2019, 186, 115836.
doi: 10.1016/j.energy.2019.07.166 |
43 |
Matar S. ; Higier A. ; Liu H. J. Power Sources 2010, 195, 181.
doi: 10.1016/j.jpowsour.2009.06.084 |
44 |
Li R. ; Cai Y. ; Wippermann K. ; Lehnert W. J. Power Sources 2019, 434, 226718.
doi: 10.1016/j.jpowsour.2019.226718 |
45 |
Mack F. ; Heissler S. ; Laukenmann R. ; Zeis R. J. Power Sources 2014, 270, 627.
doi: 10.1016/j.jpowsour.2014.06.171 |
46 |
Zeis R. Beilstein J. Nanotechnol. 2015, 6, 68.
doi: 10.3762/bjnano.6.8 |
47 |
Vilčiauskas L. ; Tuckerman M. E. ; Bester G. ; Paddison S. J. ; Kreuer K. D. Nat. Chem. 2012, 4, 461.
doi: 10.1038/nchem.1329 |
48 |
Krueger R. A. ; Vilciauskas L. ; Melchior J. P. ; Bester G. ; Kreuer K. D. J. Phys. Chem. B 2015, 119, 15866.
doi: 10.1021/acs.jpcb.5b09684 |
49 |
Ma Y. L. ; Wainright J. S. ; Litt M. H. ; Savinell R. F. J. Electrochem. Soc. 2004, 151, A8.
doi: 10.1149/1.163003 |
50 |
Lee K. S. ; Spendelow J. S. ; Choe Y. K. ; Fujimoto C. ; Kim Y. S. Nat. Energy 2016, 1, 16120.
doi: 10.1038/nenergy.2016.120 |
51 |
Kannan A. ; Li Q. ; Cleemann L. N. ; Jensen J. O. Fuel Cells 2018, 18, 103.
doi: 10.1002/fuce.201700181 |
52 |
Martin S. ; Li Q. ; Steenberg T. ; Jensen J. O. J. Power Sources 2014, 272, 559.
doi: 10.1016/j.jpowsour.2014.08.112 |
53 |
Becker H. ; Reimer U. ; Aili D. ; Cleemann L. N. ; Jensen J. O. ; Lehnert W. ; Li Q. J. Electrochem. Soc. 2018, 165, F863.
doi: 10.1149/2.1201810jes |
54 |
Eberhardt S. H. ; Marone F. ; Stampanoni M. ; Buchi F. N. ; Schmidt T. J. J. Electrochem. Soc. 2016, 162, F310.
doi: 10.1149/2.0801608jes |
55 |
Halter J. ; Thomas S. ; Kær S.K. ; Schmidt T. J. ; Büchi. F. N. J. Power Sources 2018, 399, 151.
doi: 10.1016/j.jpowsour.2018.07.090 |
56 |
Eberhardt S. H. ; Toulec M. ; Marone F. ; Stampanoni M. ; Buchi F. N. ; Schmidt T. J. J. Electrochem. Soc. 2015, 162, F310.
doi: 10.1149/2.0751503jes |
57 |
Kwon K. ; Park J. O. ; Yoo D. Y. ; Yi J. S. Electrochim. Acta 2009, 54, 6570.
doi: 10.1016/j.electacta.2009.06.031 |
58 |
Kaserer S. ; Caldwell K. M. ; Ramaker D. E. ; Roth C. J. Phys. Chem. C 2013, 117, 6210.
doi: 10.1021/jp311924q |
59 |
Li X. ; Ma H. ; Wang P. ; Liu Z. ; Peng J. ; Hu W. ; Jiang Z. ; Liu B. ACS Appl. Mater. Interfaces 2019, 11, 30735.
doi: 10.1021/acsami.9b06808 |
60 |
Rao S. S. ; Hande V. R. ; Sawant S. M. ; Praveen S. ; Rath S. K. ; Sudarshan K. ; Ratna D. ; Patri M. ACS Appl. Mater. Interfaces 2019, 11, 37013.
doi: 10.1021/acsami.9b09405 |
61 |
Hooshyari K. ; Rezania H. ; Vatanpour V. ; Salarizadeh P. ; Askari M. B. ; Beydaghi H. ; Enhessari M. J. Membr. Sci. 2020, 612, 118436.
doi: 10.1016/j.memsci.2020.118436 |
62 |
Bai H. ; Wang H. ; Zhang J. ; Wu C. ; Zhang J. ; Xiang Y. ; Lu S. J. Membr. Sci. 2018, 558, 26.
doi: 10.1016/j.memsci.2018.04.039 |
63 | Zhang, J.; Chen, S.; Bai, H.; Lu, S.; Xiang, Y.; Jiang, S. P. Int. J. Hydrogen Energy, doi: 10.1016/j.ijhydene.2020.07.082 |
64 |
Dai Y. ; Wang J. ; Tao P. ; He R. J. Colloid Interface Sci. 2019, 553, 503.
doi: 10.1016/j.jcis.2019.06.020 |
65 |
Zhang J. ; Zhang J. ; Bai H. ; Tan Q. ; Wang H. ; He B. ; Xiang Y. ; Lu S. J. Membr. Sci. 2019, 572, 496.
doi: 10.1016/j.memsci.2018.11.035 |
66 |
Bai H. ; Wang H. ; Zhang J. ; Zhang J. ; Lu S. ; Xiang Y. J. Membr. Sci. 2019, 592, 117395.
doi: 10.1016/j.memsci.2019.117395 |
67 |
Sood R. ; Donnadio A. ; Giancola S. ; Kreisz A. ; Jones D. J. ; Cavaliere S. ACS Appl. Mater. Interfaces 2016, 8, 16897.
doi: 10.1021/acsami.6b02713 |
68 |
Henkensmeier D. ; Duong N. M. H. ; Brela M. ; Dyduch K. ; Michalak A. ; Jankova K. ; Cho H. ; Jang J. H. ; Kim H. J. ; Cleemann L. N. ; Li Q. ; Jensen J. O. J. Mater. Chem. A 2015, 3, 14389.
doi: 10.1039/c5ta01936b |
69 |
Bu F. ; Zhang Y. ; Hong L. ; Zhao W. ; Li D. ; Li J. ; Na H. ; Zhao C. J. Membr. Sci. 2018, 545, 167.
doi: 10.1016/j.memsci.2017.09.072 |
70 |
Li X. ; Wang P. ; Liu Z. ; Peng J. ; Shi C. ; Hu W. ; Jiang Z. ; Liu B. J. Power Sources 2018, 393, 99.
doi: 10.1016/j.jpowsour.2018.05.011 |
71 |
Li N. ; Wang C. ; Lee S. Y. ; Park C. H. ; Lee Y. M. ; Guiver M. D. Angew. Chem. Int. Ed. 2011, 50, 9158.
doi: 10.1002/anie.201102057 |
72 |
Wu W. ; Li Y. ; Liu J. ; Wang J. ; He Y. ; Davey K. ; Qiao S. Z. Adv. Mater. 2018, 30, e1707516.
doi: 10.1002/adma.201707516 |
73 |
Adamski M. ; Skalski T. J. G. ; Britton B. ; Peckham T. J. ; Metzler L. ; Holdcroft S. Angew. Chem. Int. Ed. 2017, 56, 9058.
doi: 10.1002/anie.201703916 |
74 |
Bai H. ; Peng H. ; Xiang Y. ; Zhang J. ; Wang H. ; Lu S. ; Zhuang L. J. Power Sources 2019, 443, 227219.
doi: 10.1016/j.jpowsour.2019.227219 |
75 |
Lee K. S. ; Maurya S. ; Kim Y. S. ; Kreller C. R. ; Wilson M. S. ; Larsen D. ; Elangovan S. E. ; Mukundan R. Energy Environ. Sci. 2018, 11, 979.
doi: 10.1039/c7ee03595k |
76 |
Mustarelli P. ; Quartarone E. ; Grandi S. ; Carollo A. ; Magistris A. Adv. Mater. 2008, 20, 1339.
doi: 10.1002/adma.200701767 |
77 |
Zhang X. ; Fu X. ; Yang S. ; Zhang Y. ; Zhang R. ; Hu S. ; Bao X. ; Zhao F. ; Li X. ; Liu Q. J. Mater. Chem. A 2019, 7, 15288.
doi: 10.1039/c9ta03666k |
78 |
Chen H. ; Wang S. ; Liu F. ; Wang D. ; Li J. ; Mao T. ; Liu G. ; Wang X. ; Xu J. ; Wang Z. J. Membr. Sci. 2020, 596, 117722.
doi: 10.1016/j.memsci.2019.117722 |
79 |
Halter J. ; Bevilacqua N. ; Zeis R. ; Schmidt T. J. ; Büchi F. N. J. Electroanal. Chem. 2020, 859, 1572.
doi: 10.1016/j.jelechem.2020.113832 |
80 |
Halter J. ; Gloor T. ; Amoroso B. ; Schmidt T. J. ; Büchi F. N. Phys. Chem. Chem. Phys. 2019, 21, 13126.
doi: 10.1039/c9cp02149c |
81 |
Halter J. ; Marone F. ; Schmidt T. J. ; Büchi. F. N. J. Electrochem. Soc. 2018, 165, F1176.
doi: 10.1149/2.0501814jes |
82 |
Lee E. ; Kim D. H. ; Pak C. Appl. Surf. Sci. 2020, 510, 145461.
doi: 10.1016/j.apsusc.2020.145461 |
83 |
Zhang J. ; Bai H. ; Yan W. ; Zhang J. ; Wang H. ; Xiang Y. ; Lu S. J. Electrochem. Soc. 2020, 167, 114501.
doi: 10.1149/1945-7111/ab9fe0 |
84 |
Jin H. ; Nayeem M. O. G. ; Lee S. ; Matsuhisa N. ; Inoue D. ; Yokota T. ; Hashizume D. ; Someya T. ACS Nano 2019, 13, 7905.
doi: 10.1021/acsnano.9b02297 |
85 |
Xia L. ; Li X. ; Wu Y. ; Hu S. ; Liao Y. ; Huang L. ; Qing Y. ; Lu X. Chem. Eng. J. 2020, 379, 122325.
doi: 10.1016/j.cej.2019.122325 |
86 |
Mack F. ; Klages M. ; Scholta J. ; Jörissen L. ; Morawietz T. ; Hiesgen R. ; Kramer D. ; Zeis R. J. Power Sources 2014, 255, 431.
doi: 10.1016/j.jpowsour.2014.01.032 |
87 |
Kim M. ; Jeong G. ; Eom K. ; Cho E. ; Ryu J. ; Kim H. J. ; Kwon H. Int. J. Hydrogen Energy 2013, 38, 12335.
doi: 10.1016/j.ijhydene.2013.07.019 |
88 |
Lin H. L. ; Wu T. J. ; Lin Y. T. ; Wu H. C. Int. J. Hydrogen Energy 2015, 40, 9400.
doi: 10.1016/j.ijhydene.2015.05.034 |
89 |
Zhang S. ; Zhang J. ; Zhu Z. ; Liu P. ; Cao F. ; Chen J. ; He Q. ; Dou M. ; Nan S. ; Lu S. J. Power Sources 2020, 473, 228616.
doi: 10.1016/j.jpowsour.2020.228616 |
90 |
Kannan A. ; Li Q. ; Cleemann L. N. ; Jensen J. O. Fuel Cells 2018, 18, 103.
doi: 10.1002/fuce.201700181 |
91 |
Kim J. H. ; Kim H. J. ; Lim T. H. ; Lee H. I. J. Power Sources 2007, 170, 275.
doi: 10.1016/j.jpowsour.2007.03.082 |
92 |
Su A. ; Ferng Y. M. ; Tsai X. Y. Int. J. Energy Res. 2013, 37, 1213.
doi: 10.1002/er.2996 |
93 |
Zhai Y. ; Zhang H. ; Zhang Y. ; Xing D. J. Power Sources 2007, 169, 259.
doi: 10.1016/j.jpowsour.2007.03.004 |
94 |
Jeong G. ; Kim M. ; Han J. ; Kim H. J. ; Shul Y. G. ; Cho E. J. Power Sources 2016, 323, 142.
doi: 10.1016/j.jpowsour.2016.05.042 |
95 |
Su H. ; Jao T. C. ; Pasupathi S. ; Bladergroen B. J. ; Linkov V. ; Pollet B. G. J. Power Sources 2014, 246, 63.
doi: 10.1016/j.jpowsour.2013.07.062 |
96 |
Lobato J. ; Rodrigo M. A. ; Linares J. J. ; Scott K. J. Power Sources 2006, 157, 284.
doi: 10.1016/j.jpowsour.2005.07.040 |
97 |
Lee W. J. ; Lee J. S. ; Park H. Y. ; Park H. S. ; Lee S. Y. ; Song K. H. ; Kim H. J. Int. J. Hydrogen Energy 2020, 45, 32825.
doi: 10.1016/j.ijhydene.2020.03.095 |
98 | Wang S. B. ; Xie X. F. ; Wang Y. W. ; Wang J. H. ; Shang Y. M. ; Li W. W. ; Fang M. Chem. Ind. Eng. Prog. 2012, 31, 343. |
王树博; 谢晓峰; 王要武; 王金海; 尚玉明; 李薇薇; 方谋. 化工进展, 2012, 31, 343.
doi: 10.16085/j.issn.1000-6613.2012.s1.022 |
|
99 |
Barron O. ; Su H. ; Linkov V. ; Pollet B. G. ; Pasupathi S. J. Power Sources 2015, 278, 718.
doi: 10.1016/j.jpowsour.2014.12.139 |
100 |
Oh H. S. ; Cho Y. ; Lee W. H. ; Kim H. J. Mater. Chem. A 2013, 1, 2578.
doi: 10.1039/c2ta00492e |
101 | Tian L. L. ; Zhang W. Q. ; Xie Z. ; Peng K. ; Ma Q. ; Xu Q. ; Pasupathi S. ; Su H. N. Acta Phys. -Chim. Sin. 2021, 37, 2009049. |
田立亮; 张玮琦; 解政; 彭凯; 马强; 徐谦; SivakumarPasupathi; 苏华能. 物理化学学报, 2021, 37, 2009049.
doi: 10.3866/PKU.WHXB20200904 |
|
102 |
Martin S. ; Li Q. ; Jensen J. O. J. Power Sources 2015, 293, 51.
doi: 10.1016/j.jpowsour.2015.05.031 |
103 |
Martin S. ; Jensen J. O. ; Li Q. ; Garcia-Ybarra P. L. ; Castillo J. L. Int. J. Hydrogen Energy 2019, 44, 28273.
doi: 10.1016/j.ijhydene.2019.09.073 |
104 |
Lobato J. ; Cañizares P. ; Ubeda D. ; Pinar F. J. ; Rodrigo M. A. Appl. Catal. B: Environ. 2011, 106, 174.
doi: 10.1016/j.apcatb.2011.05.022 |
105 |
Park H. ; Kim D. K. ; Kim H. ; Oh S. ; Jung W. S. ; Kim S. K. Appl. Surf. Sci. 2020, 510, 145444.
doi: 10.1016/j.apsusc.2020.145444 |
106 |
He Q. ; Mukerjee S. ; Zeis R. ; Parres-Esclapez S. ; Illán-Gómez M. J. ; Bueno-López A. Appl. Catal. A 2010, 381, 54.
doi: 10.1016/j.apcata.2010.03.044 |
107 |
Holst-Olesen K. ; Reda M. ; Hansen H. A. ; Vegge T. ; Arenz M. ACS Catal. 2018, 8, 7104.
doi: 10.1021/acscatal.8b01584 |
108 |
Hu Y. ; Jensen J. O. ; Pan C. ; Cleemann L. N. ; Shypunov I. ; Li Q. Appl. Catal. B: Environ. 2018, 234, 357.
doi: 10.1016/j.apcatb.2018.03.056 |
109 |
Cheng Y. ; He S. ; Lu S. ; Veder J. P. ; Johannessen B. ; Thomsen L. ; Saunders M. ; Becker T. ; De Marco R. ; Li Q. ; et al Adv. Sci. 2019, 6, 1802066.
doi: 10.1002/advs.201802066 |
[1] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[2] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[3] | Tonghui Cui, Hangyue Li, Zewei Lyu, Yige Wang, Minfang Han, Zaihong Sun, Kaihua Sun. Identification of Electrode Process in Large-Size Solid Oxide Fuel Cell [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2011009-. |
[4] | Aidi Han, Xiaohui Yan, Junren Chen, Xiaojing Cheng, Junliang Zhang. Effects of Dispersion Solvents on Proton Conduction Behavior of Ultrathin Nafion Films in the Catalyst Layers of Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912052-. |
[5] | Yue-Jiao Zhang, Yue-Zhou Zhu, Jian-Feng Li. Application of Raman Spectroscopy in Fuel Cell [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2004052-. |
[6] | Mengting Li, Xingqun Zheng, Li Li, Zidong Wei. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054-. |
[7] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-. |
[8] | Yufei Bao, Ligang Feng. Formic Acid Electro-Oxidation Catalyzed by PdNi/Graphene Aerogel [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2008031-. |
[9] | Lei Huang, Shahid Zaman, Zhitong Wang, Huiting Niu, Bo You, Bao Yu Xia. Synthesis and Application of Platinum-Based Hollow Nanoframes for Direct Alcohol Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009035-. |
[10] | Liliang Tian, Weiqi Zhang, Zheng Xie, Kai Peng, Qiang Ma, Qian Xu, Sivakumar Pasupathi, Huaneng Su. Enhanced Performance and Durability of High-Temperature Polymer Electrolyte Membrane Fuel Cell by Incorporating Covalent Organic Framework into Catalyst Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009049-. |
[11] | Fang Luo, Shuyuan Pan, Zehui Yang. Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009087-. |
[12] | Jian Wang, Wei Ding, Zidong Wei. Performance of Polymer Electrolyte Membrane Fuel Cells at Ultra-Low Platinum Loadings [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009094-. |
[13] | Yanrong Xue, Xingdong Wang, Xiangqian Zhang, Jinjie Fang, Zhiyuan Xu, Yufeng Zhang, Xuerui Liu, Mengyuan Liu, Wei Zhu, Zhongbin Zhuang. Cost-Effective Hydrogen Oxidation Reaction Catalysts for Hydroxide Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009103-. |
[14] | Liang Ding, Tang Tang, Jin-Song Hu. Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010048-. |
[15] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
|