Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (9): 2004052.doi: 10.3866/PKU.WHXB202004052
Special Issue: Fuel Cells
• REVIEW • Previous Articles Next Articles
Yue-Jiao Zhang, Yue-Zhou Zhu, Jian-Feng Li()
Received:
2020-04-17
Accepted:
2020-05-31
Published:
2020-06-04
Contact:
Jian-Feng Li
E-mail:li@xmu.edu.cn
About author:
Jian-Feng Li, Email: li@xmu.edu.cn; Tel.: +86-592-2186192Supported by:
Yue-Jiao Zhang, Yue-Zhou Zhu, Jian-Feng Li. Application of Raman Spectroscopy in Fuel Cell[J]. Acta Phys. -Chim. Sin. 2021, 37(9), 2004052. doi: 10.3866/PKU.WHXB202004052
Fig 1
(a) An example Raman spectrum of CGO-NiO cermet in situ at 600 ℃, (b) in situ Raman monitoring of the reduction of CGO-NiO cermet and pure CGO in dry and wet (humidified to 3% H2O) hydrogen, (c) schematic illustration of the hydrogen spillover process on CGO-NiO cermet. Adapted from Fuel Cells, Wiley publisher 17"
Fig 2
(a) Raman spectra of pristine and phosphoric acid-doped PBI; (b) ratio of relative intensities versus acid doping level expressed in 1 mol∙L − 1 H3PO4 per polar group (%) for the peaks 1570 and 1000 cm − 1 for PBI/ H3PO4; (c) confocal Raman mapping of phosphoric-acid-doped AB-PBI membranes, the membrane sheets were immersed in a 120 ℃ hot phosphoric acid bath for 1 and 6 h. Adapted from J. Power Sources, Elsevier publisher 45 and J. Mater. Chem. A, RSC publisher 46."
Fig 4
Electrochemical SHINERS spectra of the ORR process on (a) Pt(111)- and (b) Pt(110)-electrode surfaces in 0.1 mol∙L−1 HClO4 solution saturated with O2 and on (c) Pt(110)-electrode surfaces in 0.1 mol∙L−1 NaClO4 solution (pH ∼ 10.3) saturated with O2; (d) polarization curves of the ORR process on three Pt(hkl) rotating-disk electrodes in saturated 0.1 mol∙L−1 HClO4 solution (scan rate: 50 mV ∙s−1, rotation rate: 1600 r∙min−1). Adapted from Nat. Energy, Springer Nature publisher 18."
Fig 5
In situ EC-SHINERS spectra of ORR on dealloyed Pt3Co nanocatalysts in 0.1 mol∙L−1 HClO4 with (a) H2O and (b) D2O solution saturated O2; in situ EC-SHINERS spectra of ORR on dealloyed Pt3Co nanocatalysts in O2 saturated 0.1 mol∙L−1 NaClO4 + 1 m mol∙L−1 NaOH with (c) H2O and (d) D2O solution. Adapted from Angew. Chem. Int. Ed., Wiley publisher 19."
1 |
Wilberforce T. ; El-Hassan Z. ; Khatib F. N. ; Al Makky A. ; Baroutaji A. ; Carton J. G. ; Olabi A. G. Int. J. Hydrogen Energy 2017, 42, 25695.
doi: 10.1016/j.ijhydene.2017.07.054 |
2 |
Wilberforce T. ; Alaswad A. ; Palumbo A. ; Dassisti M. ; Olabi A. G. Int. J. Hydrogen Energy 2016, 41, 16509.
doi: 10.1016/j.ijhydene.2016.02.057 |
3 |
Alaswad A. ; Baroutaji A. ; Achour H. ; Carton J. ; Al Makky A. ; Olabi A. G. Int. J. Hydrogen Energy 2016, 41, 16499.
doi: 10.1016/j.ijhydene.2016.03.164 |
4 |
Majlan E. H. ; Rohendi D. ; Daud W. R. W. ; Husaini T. ; Haque M. A. Renew. Sust. Energy Rev. 2018, 89, 117.
doi: 10.1016/j.rser.2018.03.007 |
5 |
Brandon N. P. ; Skinner S. ; Steele B. C. H. Ann. Rev. Mater. Res. 2003, 33, 183.
doi: 10.1146/annurev.matsci.33.022802.094122 |
6 |
Sung S. S. ; Hoffmann R. J. Am. Chem. Soc. 1985, 107, 578.
doi: 10.1021/ja00289a009 |
7 |
Anderson A. B. Electrochim. Acta 2002, 47, 3759.
doi: 10.1016/S0013-4686(02)00346-8 |
8 |
Damjanovic A. ; Dey A. ; Bockris J. O. M. Electrochim. Acta 1966, 11, 791.
doi: 10.1016/0013-4686(66)87056-1 |
9 |
Damjanovic A. ; Brusic V. Electrochim. Acta 1967, 12, 615.
doi: 10.1016/0013-4686(67)85030-8 |
10 |
Wei C. ; Rao R. R. ; Peng J. ; Huang B. ; Stephens I. E. L. ; Risch M. ; Xu Z. J. ; Shao-Horn Y. Adv. Mater. 2019, 31, 1806296.
doi: 10.1002/adma.201806296 |
11 |
Wang X. X. ; Swihart M. T. ; Wu G. Nat. Catal. 2019, 2, 578.
doi: 10.1038/s41929-019-0304-9 |
12 | Luo M. C. ; Sun Y. J. ; Qin Y. N. ; Yang Y. ; Wu D. ; Guo S. J. Acta Phys. -Chim. Sin. 2018, 34, 361. |
骆明川; 孙英俊; 秦英楠; 杨勇; 吴冬; 郭少军. 物理化学学报, 2018, 34, 361.
doi: 10.3866/PKU.WHXB201708312 |
|
13 | Chang Q. W. ; Xiao F. ; Xu Y. ; Shao M. H. Acta Phys. -Chim. Sin. 2017, 33, 9. |
常乔婉; 肖菲; 徐源; 邵敏华. 物理化学学报, 2017, 33, 9.
doi: 10.3866/PKU.WHXB201609202 |
|
14 |
Itoh T. ; Abe K. ; Dokko K. ; Mohamedi M. ; Uchida I. ; Kasuya A. J. Electrochem. Soc. 2004, 151, A2042.
doi: 10.1149/1.1812735 |
15 |
Itoh T. ; Maeda T. ; Kasuya A. Faraday Discuss. 2006, 132, 95.
doi: 10.1039/b506197k |
16 |
Pomfret M. B. ; Owrutsky J. C. ; Walker R. A. Annu. Rev. Anal. Chem. 2010, 3, 151.
doi: 10.1146/annurev.anchem.111808.073641 |
17 |
Maher R. C. ; Duboviks V. ; Offer G. J. ; Kishimoto M. ; Brandon N. P. ; Cohen L. F. Fuel Cells 2013, 13, 455.
doi: 10.1002/fuce.201200173 |
18 |
Dong J. C. ; Zhang X. G. ; Briega-Martos V. ; Jin X. ; Yang J. ; Chen S. ; Yang Z. L. ; Wu D. Y. ; Feliu J. M. ; Williams C. T. ; et al Nat. Energy 2018, 4, 60.
doi: 10.1038/s41560-018-0292-z |
19 |
Wang Y. H. ; Le J. B. ; Li W. Q. ; Wei J. ; Radjenovic P. M. ; Zhang H. ; Zhou X. S. ; Cheng J. ; Tian Z. Q. ; Li J. F. Angew. Chem. Int. Ed. 2019, 58, 16062.
doi: 10.1002/anie.201908907 |
20 |
Jeanmaire D. L. ; Van Duyne R. P. J. Electroanal. Chem. 1977, 84, 1.
doi: 10.1016/S0022-0728(77)80224-6 |
21 |
Lane L. A. ; Qian X. M. ; Nie S. M. Chem. Rev. 2015, 115, 10489.
doi: 10.1021/acs.chemrev.5b00265 |
22 |
Li J. F. ; Zhang Y. J. ; Ding S. Y. ; Panneerselvam R. ; Tian Z. Q. Chem. Rev. 2017, 117, 5002.
doi: 10.1021/acs.chemrev.6b00596 |
23 |
Nie S. ; Emory S. R. Science 1997, 275, 1102.
doi: 10.1126/science.275.5303.1102 |
24 |
Xu H. X. ; Bjerneld E. J. ; Kall M. ; Borjesson L. Phys. Rev. Lett. 1999, 83, 4357.
doi: 10.1103/PhysRevLett.83.4357 |
25 | Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Chem. Commun. 2007, 3514. doi: 10.1039/B616986D |
26 |
Li J. F. ; Huang Y. F. ; Ding Y. ; Yang Z. L. ; Li S. B. ; Zhou X. S. ; Fan F. R. ; Zhang W. ; Zhou Z. Y. ; Wu D. Y. ; et al Nature 2010, 464, 392.
doi: 10.1038/nature08907 |
27 |
Li J. F. ; Tian X. D. ; Li S. B. ; Anema J. R. ; Yang Z. L. ; Ding Y. ; Wu Y. F. ; Zeng Y. M. ; Chen Q. Z. ; Ren B. ; et al Nat. Protoc. 2013, 8, 52.
doi: 10.1038/nprot.2012.141 |
28 | Zhang, H.; Duan, S.; Radjenovic, P. M.; Tian, Z. Q.; Li, J. F. Acc. Chem. Res. 2020, doi: 10.1021/acs.accounts.9b00545 |
29 | Wei, J.; Qin, S. N.; Liu, J. L.; Ruan, X. Y.; Guan, Z.; Yan, H.; Wei, D. Y.; Zhang, H.; Cheng, J.; Xu, H.; et al. Angew. Chem. Int. Ed. 2020, doi: 10.1002/anie.202000426 |
30 |
Li C. Y. ; Le J. B. ; Wang Y. H. ; Chen S. ; Yang Z. L. ; Li J. F. ; Cheng J. ; Tian Z. Q. Nat. Mater. 2019, 18, 697.
doi: 10.1038/s41563-019-0356-x |
31 |
Wang C. ; Chen X. ; Chen T. M. ; Wei J. ; Qin S. N. ; Zheng J. F. ; Zhang H. ; Tian Z. Q. ; Li J. F. ChemCatChem 2020, 12, 75.
doi: 10.1002/cctc.201901747 |
32 |
Wang Y. H. ; Wei J. ; Radjenovic P. ; Tian Z. Q. ; Li J. F. Anal. Chem. 2019, 91, 1675.
doi: 10.1021/acs.analchem.8b05499 |
33 |
Jiang S. P. Int. J. Hydrogen Energy 2019, 44, 7448.
doi: 10.1016/j.ijhydene.2019.01.212 |
34 |
Fan L. ; Zhu B. ; Su P.C. ; He C. Nano Energy 2018, 45, 148.
doi: 10.1016/j.nanoen.2017.12.044 |
35 |
Abdalla A. M. ; Hossain S. ; Azad A. T. ; Petra P. M. I. ; Begum F. ; Eriksson S. G. ; Azad A. K. Renew. Sust. Energy Rev. 2018, 82, 353.
doi: 10.1016/j.rser.2017.09.046 |
36 |
Hossain S. ; Abdalla A. M. ; Jamain S. N. B. ; Zaini J. H. ; Azad A. K. Renew. Sust. Energy Rev. 2017, 79, 750.
doi: 10.1016/j.rser.2017.05.147 |
37 |
da Silva F. S. ; de Souza T. M. Int. J. Hydrogen Energy 2017, 42, 26020.
doi: 10.1016/j.ijhydene.2017.08.105 |
38 |
Gorte R. J. ; Vohs J. M. Annu. Rev. Chem. Biomol. 2011, 2, 9.
doi: 10.1146/annurev-chembioeng-061010-114148 |
39 |
Shaikh S. P. S. ; Muchtar A. ; Somalu M. R. Renew. Sust. Energy Rev. 2015, 51, 1.
doi: 10.1016/j.rser.2015.05.069 |
40 |
Connor P. A. ; Yue X. ; Savaniu C. D. ; Price R. ; Triantafyllou G. ; Cassidy M. ; Kerherve G. ; Payne D. J. ; Maher R. C. ; Cohen L. F. ; et al Adv. Energy Mater. 2018, 8, 1800120.
doi: 10.1002/aenm.201800120 |
41 |
Rosli R. E. ; Sulong A. B. ; Daud W. R. W. ; Zulkifley M. A. ; Husaini T. ; Rosli M. I. ; Majlan E. H. ; Haque M. A. Int. J. Hydrogen Energy 2017, 42, 9293.
doi: 10.1016/j.ijhydene.2016.06.211 |
42 |
Araya S. S. ; Zhou F. ; Liso V. ; Sahlin S. L. ; Vang J. R. ; Thomas S. ; Gao X. ; Jeppesen C. ; Kær S. K. Int. J. Hydrogen Energy 2016, 41, 21310.
doi: 10.1016/j.ijhydene.2016.09.024 |
43 |
Zhang J. ; Xie Z. ; Zhang J. ; Tang Y. ; Song C. ; Navessin T. ; Shi Z. ; Song D. ; Wang H. ; Wilkinson D. P. ; et al J. Power Sources 2006, 160, 872.
doi: 10.1016/j.jpowsour.2006.05.034 |
44 |
Zeis R. Beilstein J. Nanotech. 2015, 6, 68.
doi: 10.3762/bjnano.6.8 |
45 |
Mack F. ; Heissler S. ; Laukenmann R. ; Zeis R. J. Power Sources 2014, 270, 627.
doi: 10.1016/j.jpowsour.2014.06.171 |
46 |
Daletou M. K. ; Geormezi M. ; Vogli E. ; Voyiatzis G. A. ; Neophytides S. G. J. Mater. Chem. A 2014, 2, 1117.
doi: 10.1039/C3TA13335D |
47 |
Li X. ; Lee J. P. ; Blinn K. S. ; Chen D. ; Yoo S. ; Kang B. ; Bottomley L. A. ; El-Sayed M. A. ; Park S. ; Liu M. Energy Environ. Sci. 2014, 7, 306.
doi: 10.1039/c3ee42462f |
48 |
Li X. ; Blinn K. ; Chen D. ; Liu M. Electro. Energy Rev. 2018, 1, 433.
doi: 10.1007/s41918-018-0017-9 |
49 |
Chen X. ; Liang M. M. ; Xu J. ; Sun H. L. ; Wang C. ; Wei J. ; Zhang H. ; Yang W. M. ; Yang Z. L. ; Sun J. J. ; et al Nanoscale 2020, 12, 5341.
doi: 10.1039/C9NR10304J |
50 |
Gómez-Marín A. M. ; Feliu J. M. ChemSusChem 2013, 6, 1091.
doi: 10.1002/cssc.201200847 |
51 |
Briega-Martos V. ; Herrero E. ; Feliu J. M. Electrochim. Acta 2017, 241, 497.
doi: 10.1016/j.electacta.2017.04.162 |
52 |
Dong J. C. ; Su M. ; Briega-Martos V. ; Li L. ; Le J. B. ; Radjenovic P. ; Zhou X. S. ; Feliu J. M. ; Tian Z. Q. ; Li J. F. J. Am. Chem. Soc. 2020, 142, 715.
doi: 10.1021/jacs.9b12803 |
[1] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[2] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[3] | Tonghui Cui, Hangyue Li, Zewei Lyu, Yige Wang, Minfang Han, Zaihong Sun, Kaihua Sun. Identification of Electrode Process in Large-Size Solid Oxide Fuel Cell [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2011009-. |
[4] | Aidi Han, Xiaohui Yan, Junren Chen, Xiaojing Cheng, Junliang Zhang. Effects of Dispersion Solvents on Proton Conduction Behavior of Ultrathin Nafion Films in the Catalyst Layers of Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912052-. |
[5] | Mengting Li, Xingqun Zheng, Li Li, Zidong Wei. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054-. |
[6] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-. |
[7] | Yufei Bao, Ligang Feng. Formic Acid Electro-Oxidation Catalyzed by PdNi/Graphene Aerogel [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2008031-. |
[8] | Lei Huang, Shahid Zaman, Zhitong Wang, Huiting Niu, Bo You, Bao Yu Xia. Synthesis and Application of Platinum-Based Hollow Nanoframes for Direct Alcohol Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009035-. |
[9] | Liliang Tian, Weiqi Zhang, Zheng Xie, Kai Peng, Qiang Ma, Qian Xu, Sivakumar Pasupathi, Huaneng Su. Enhanced Performance and Durability of High-Temperature Polymer Electrolyte Membrane Fuel Cell by Incorporating Covalent Organic Framework into Catalyst Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009049-. |
[10] | Fang Luo, Shuyuan Pan, Zehui Yang. Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009087-. |
[11] | Jian Wang, Wei Ding, Zidong Wei. Performance of Polymer Electrolyte Membrane Fuel Cells at Ultra-Low Platinum Loadings [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009094-. |
[12] | Yanrong Xue, Xingdong Wang, Xiangqian Zhang, Jinjie Fang, Zhiyuan Xu, Yufeng Zhang, Xuerui Liu, Mengyuan Liu, Wei Zhu, Zhongbin Zhuang. Cost-Effective Hydrogen Oxidation Reaction Catalysts for Hydroxide Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2009103-. |
[13] | Liang Ding, Tang Tang, Jin-Song Hu. Recent Progress in Proton-Exchange Membrane Fuel Cells Based on Metal-Nitrogen-Carbon Catalysts [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010048-. |
[14] | Jiashun Liang, Xuan Liu, Qing Li. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010072-. |
[15] | Jujia Zhang, Jin Zhang, Haining Wang, Yan Xiang, Shanfu Lu. Advancement in Distribution and Control Strategy of Phosphoric Acid in Membrane Electrode Assembly of High-Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2010071-. |
|