Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (9): 2009087.doi: 10.3866/PKU.WHXB202009087
Special Issue: Fuel Cells
• REVIEW • Previous Articles Next Articles
Fang Luo, Shuyuan Pan, Zehui Yang()
Received:
2020-09-27
Accepted:
2020-10-27
Published:
2020-11-04
Contact:
Zehui Yang
E-mail:yeungzehui@gmail.com
About author:
Zehui Yang, Email: yeungzehui@gmail.com. Tel.: +86-18672374372Supported by:
Fang Luo, Shuyuan Pan, Zehui Yang. Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin. 2021, 37(9), 2009087. doi: 10.3866/PKU.WHXB202009087
Fig 4
(a) Comparison of kinetic current density of various Pt(hkl) electrocatalysts tested with and without additional phosphoric acid. (b) Schematic illustration of oleylamine modified platinum surface for the oxygen reduction reaction in the presence of PA. (c) Scheme of suppression of phosphate adsorption on Pt electrocatalyst via amide modification. (d) Scheme of ionic liquid coated electrocatalyst and relatively fuel cell performance. (e) Durability results of Pt/C, ox-CNT/Pt and ox-CNT/Pt/PBI. (f) Proposed models for selective adsorption of spectator species and reactants and schematic presentation of the availability of platinum surface atoms for adsorption of O2 molecules on CN-free and CN-covered Pt(111). (g) Scheme of self-assembly of molecular barrier materials (BNSH and NSH) to the Pt surface and relatively ORR activities. (h) LSV comparison of the variation of the ink composition of additive Fl(CH2OH)2 with addition of PA. (i) Durability results of Pt/C and Pt4ZrO2/C based MEA tested under 150 ℃. (j) Chronoamperometry for the ORR on Pt microelectrode surface in PA and in PA+ATFMS electrolytes. (k) Phosphate adsorption charge densities obtained from the CVs for L-cysteine-decorated Pt polycrystalline surfaces in 0.05 mol∙L−1 H3PO4. (a, b, g) Adapted from Royal Society of Chemistry publisher 23, 29, 33. (c, e, i, j, k) Adapted from Elsevier publisher 18, 31, 35-37. (d, h) Adapted from Wiley publisher 30, 34. (f) Adapted from Macmillan Publishers 32."
Fig 5
(a) Durability results of PVPA doped MEA. (b) Polarization curves of CB/Pt, CB/PyPBI/Pt and NanoPC/PyPBI/Pt; (c) Fuel cell performance of Pt electrocatalysts deposited on various matrixes. (d) Dependence of the maximum power density on the contact angle for pristine and treated anodes. (e) Fuel cell performances of CB/Pt, CB/PVP/Pt and CNT/PVP/Pt. (f) Polarization of I–V curves of the MEAs fabricated using PyPBI/MWNTs-CB/Pt, PyPBI/MWNTs/Pt, PyPBI/CB/Pt and CB/Pt. (a) Adapted from Nature Publishing Group 41. (b) Adapted from ACS Publications publisher 42. (c, d, f) Adapted from Elsevier publisher 45, 47, 49. (e) Adapted from Royal Society of Chemistry publisher 48."
Fig 6
(a) Observable cell voltage for the tested MEA and calculated for Pt-Ni/C catalyst. (b) Density of states (DOS) near the Fermi level. (c) Polarization curves of Pt, PtNi_Ar, PtNi_H2, and PtNi. (d) Comparison of kinetic current at 0.9 V of ORR performance tested in 0.1 mol∙L−1 HClO4 and 0.1 mol∙L−1 HClO4/0.1 mol∙L−1 PA. (e) Kinetic current densities of Pt100 and PtAu alloy catalysts for the ORR at 0.8 V vs. RHE. (f) Binding energy change with respect to the charge applied to PtCu. (g) Current densities at 0.9 V during cycling of Pt100 and PtNiCu with various binders in the presence of H3PO4. (h) Mass activity of bimetal catalysts in oxygen reaction vs. specific surface area (E = 0.9 V, 15 mol∙L−1 H3PO4, 160 °С). (i) Compares cell performance under various oxygen concentrations of Pt–Co/C and Pt/C. (j) ORR polarization curves of PtNb/NbOx-C in O2-saturated 0.1 mol∙L−1 HClO4 with various amounts of H3PO4. (k) LSV curves of O-Pt-Fe@NC/C and Pt/C in 0.1 mol∙L−1 HClO4 with and without the addition of 0.2 mol∙L−1 H3PO4. (a, d, e, g, i, j) Adapted from Elsevier publisher 53, 55, 52, 57, 59, 60. (b) Adapted from Nature Publishing Group 50. (c) Adapted from Royal Society of Chemistry publisher 54. (f) Adapted from Springer publisher 56. (h) Adapted from Pleiades publisher 58. (k) Adapted from ACS Publications publisher 61."
Fig 7
(a) Free-energy diagram of the ORR on Fe/N/C catalyst, at 0.75 V vs. RHE. (b) Polarization curves of high-temperature PEMFC at 160 ℃ for Pt/C and BP-FeNC. (c) ORR activity of PANI-Fe-C and Pt/C catalysts in O2-saturated 5.0 mol∙L−1 H3PO4. (d) LSV curves of FeNC catalyst obtained before and after soaking (ex situ) in 0.1 mol∙L−1 H3PO4. (e) Fe K-edge XANES of FePhen@MOF-ArNH3 at 0.3 V vs. RHE in N2 saturated 0.1 mol∙L−1 HClO4 with and without 100 mmol∙ L−1 H3PO4 and theoretical Δμ signatures calculated by FEFF 8 of atop and fcc-inverted PO4 adsorption on Pt6 cluster. (f) Fuel cell performance of Fe-SA-G and Pt/C at 230 ℃. (g) Scheme of the effect of P doping into Fe-NC on phosphate adsorption. (a, c, e, g) Adapted from ACS Publications publisher 10, 65, 12, 67. (b, d) Adapted from Elsevier publisher 64, 66. (f) Adapted from Wiley publisher 11."
1 |
Li Q. ; Jensen J. O. ; Savinell R. F. ; Bjerrum N. J. Prog. Polym. Sci. 2009, 34, 449.
doi: 10.1016/j.progpolymsci.2008.12.003 |
2 |
Asensio J. A. ; Sánchez E. M. ; Gómez-Romero P. Chem. Soc. Rev. 2010, 39, 3210.
doi: 10.1039/B922650H |
3 |
Aili D. ; Zhang J. ; Dalsgaard Jakobsen M. T. ; Zhu H. ; Yang T. ; Liu J. ; Forsyth M. ; Pan C. ; Jensen J. O. ; Cleemann L. N. ; et al J. Mater. Chem. A 2016, 4, 4019.
doi: 10.1039/C6TA01562J |
4 |
Liu S. ; Rasinski M. ; Rahim Y. ; Zhang S. ; Wippermann K. ; Reimer U. ; Lehnert W. J. Power Sources 2019, 439, 227090.
doi: 10.1016/j.jpowsour.2019.227090 |
5 |
Li Q. ; He R. ; Jensen J. O. ; Bjerrum N. J. Fuel Cells 2004, 4, 147.
doi: 10.1002/fuce.200400020 |
6 |
Araya S. S. ; Zhou F. ; Liso V. ; Sahlin S. L. ; Vang J. R. ; Thomas S. ; Gao X. ; Jeppesen C. ; Kær S. K. Int. J. Hydrogen Energy 2016, 41, 21310.
doi: 10.1016/j.ijhydene.2016.09.024 |
7 |
Singdeo D. ; Dey T. ; Gaikwad S. ; Andreasen S. J. ; Ghosh P. C. Appl. Energy 2017, 195, 13.
doi: 10.1016/j.apenergy.2017.03.022 |
8 |
Bai H. ; Peng H. ; Xiang Y. ; Zhang J. ; Wang H. ; Lu S. ; Zhuang L. J. Power Sources 2019, 443, 227219.
doi: 10.1016/j.jpowsour.2019.227219 |
9 |
Yu S. ; Benicewicz B. C. Macromolecules 2009, 42, 8640.
doi: 10.1021/ma9015664 |
10 |
Holst-Olesen K. ; Reda M. ; Hansen H. A. ; Vegge T. ; Arenz M. ACS Catal. 2018, 8, 7104.
doi: 10.1021/acscatal.8b01584 |
11 |
Cheng Y. ; He S. ; Lu S. ; Veder J. P. ; Johannessen B. ; Thomsen L. ; Saunders M. ; Becker T. ; De Marco R. ; Li Q. ; et al Adv. Sci. 2019, 6, 1802066.
doi: 10.1002/advs.201802066 |
12 |
Strickland K. ; Pavlicek R. ; Miner E. ; Jia Q. ; Zoller I. ; Ghoshal S. ; Liang W. ; Mukerjee S. ACS Catal. 2018, 8, 3833.
doi: 10.1021/acscatal.8b00390 |
13 |
Kodama K. ; Motobayashi K. ; Shinohara A. ; Hasegawa N. ; Kudo K. ; Jinnouchi R. ; Osawa M. ; Morimoto Y. ACS Catal. 2018, 8, 694.
doi: 10.1021/acscatal.7b03571 |
14 |
Bahlakeh G. ; Hasani-Sadrabadi M. M. ; Emami S. H. ; Eslami S. N. S. ; Dashtimoghadam E. ; Shokrgozar M. A. ; Jacob K. I. J. Membr. Sci. 2017, 535, 221.
doi: 10.1016/j.memsci.2017.04.045 |
15 |
Hu Y. ; Jiang Y. ; Jensen J. O. ; Cleemann L. N. ; Li Q. J. Power Sources 2018, 375, 77.
doi: 10.1016/j.jpowsour.2017.11.054 |
16 |
Kaserer S. ; Caldwell K. M. ; Ramaker D. E. ; Roth C. J. Phys. Chem. C 2013, 117, 6210.
doi: 10.1021/jp311924q |
17 |
Mamtani K. ; Jain D. ; Zemlyanov D. ; Celik G. ; Luthman J. ; Renkes G. ; Co A. C. ; Ozkan U. S. ACS Catal. 2016, 6, 7249.
doi: 10.1021/acscatal.6b01786 |
18 |
Li Y. ; Jiang L. ; Wang S. ; Sun G. Chin. J. Catal. 2016, 37, 1134.
doi: 10.1016/S1872-2067(16)62472-5 |
19 |
Stamenkovic V. R. ; Fowler B. ; Mun B. S. ; Wang G. ; Ross P. N. ; Lucas C. A. ; Marković N. M. Science 2007, 315, 493.
doi: 10.1126/science.1135941 |
20 |
Greeley J. ; Stephens I. E. L. ; Bondarenko A. S. ; Johansson T. P. ; Hansen H. A. ; Jaramillo T. F. ; Rossmeisl J. ; Chorkendorff I. ; Nørskov J. K. Nat. Chem. 2009, 1, 552.
doi: 10.1038/nchem.367 |
21 |
Srivastava R. ; Mani P. ; Hahn N. ; Strasser P. Angew. Chem. Int. Ed. 2007, 46, 8988.
doi: 10.1002/anie.200703331 |
22 | Yang T. Y. ; Cui C. ; Rong H. P. ; Zhang J. T. ; Wang D. S. Acta Phys. -Chim. Sin. 2020, 36, 2003047. |
杨天怡; 崔铖; 戎宏盼; 张加涛; 王定胜. 物理化学学报, 2020, 36, 2003047.
doi: 10.3866/PKU.WHXB202003047 |
|
23 |
He Q. ; Yang X. ; Chen W. ; Mukerjee S. ; Koel B. ; Chen S. Phy. Chem. Chem. Phy. 2010, 12, 12544.
doi: 10.1039/C0CP00433B |
24 |
Li D. ; Wang C. ; Tripkovic D. ; Sun S. ; Markovic N. M. ; Stamenkovic V. R. ACS Catal. 2012, 2, 1358.
doi: 10.1021/cs300219j |
25 |
Wang C. ; Daimon H. ; Lee Y. ; Kim J. ; Sun S. J. Am. Chem. Soc. 2007, 129, 6974.
doi: 10.1021/ja070440r |
26 |
Peng Z. ; You H. ; Yang H. ACS Nano 2010, 4, 1501.
doi: 10.1021/nn9016795 |
27 |
Zhang J. ; Fang J. J. Am. Chem. Soc. 2009, 131, 18543.
doi: 10.1021/ja908245r |
28 |
Chung Y. H. ; Chung D. Y. ; Jung N. ; Sung Y. E. J. Phy. Chem. Lett. 2013, 4, 1304.
doi: 10.1021/jz400574f |
29 |
Chung Y. H. ; Kim S. J. ; Chung D. Y. ; Park H. Y. ; Sung Y. E. ; Yoo S. J. ; Jang J. H. Chem. Commun. 2015, 51, 2968.
doi: 10.1039/C4CC09019E |
30 |
Luo F. ; Zhang Q. ; Yang Z. ; Guo L. ; Yu X. ; Qu K. ; Ling Y. ; Yang J. ; Cai W. ChemCatChem 2018, 10, 5314.
doi: 10.1002/cctc.201801256 |
31 |
Zhang Q. ; Ling Y. ; Cai W. ; Yu X. ; Yang Z. Int. J. Hydrogen Energy 2017, 42, 16714.
doi: 10.1016/j.ijhydene.2017.05.070 |
32 |
Strmcnik D. ; Escudero-Escribano M. ; Kodama K. ; Stamenkovic V. R. ; Cuesta A. ; Marković N. M. Nat. Chem. 2010, 2, 880.
doi: 10.1038/nchem.771 |
33 |
Jeong D. C. ; Mun B. ; Lee H. ; Hwang S. J. ; Yoo S. J. ; Cho E. ; Lee Y. ; Song C. RSC Adv. 2016, 6, 60749.
doi: 10.1039/C6RA13123A |
34 |
Delikaya Ö. ; Zeyat M. ; Lentz D. ; Roth C. ChemElectroChem 2019, 6, 3892.
doi: 10.1002/celc.201900251 |
35 |
Liu G. ; Zhang H. ; Zhai Y. ; Zhang Y. ; Xu D. ; Shao Z. G. Electrochem. Commun. 2007, 9, 135.
doi: 10.1016/j.elecom.2006.08.056 |
36 |
Hong S. G. ; Kwon K. ; Lee M. J. ; Yoo D. Y. Electrochem. Commun. 2009, 11, 1124.
doi: 10.1016/j.elecom.2009.03.028 |
37 |
Jung N. ; Shin H. ; Kim M. ; Jang I. ; Kim H. J. ; Jang J. ; Kim H. ; Yoo S. Nano Energy 2015, 17, 152.
doi: 10.1016/j.nanoen.2015.08.012 |
38 |
Jeong G. ; Kim M. ; Han J. ; Kim H. J. ; Shul Y. G. ; Cho E. J. Power Sources 2016, 323, 142.
doi: 10.1016/j.jpowsour.2016.05.042 |
39 |
Mack F. ; Morawietz T. ; Hiesgen R. ; Kramer D. ; Gogel V. ; Zeis R. Int. J. Hydrogen Energy 2016, 41, 7475.
doi: 10.1016/j.ijhydene.2016.02.156 |
40 |
Liu J. ; Tang J. ; Gooding J. J. J. Mater. Chem. 2012, 22, 12435.
doi: 10.1039/C2JM31218B |
41 |
Berber M. R. ; Fujigaya T. ; Sasaki K. ; Nakashima N. Sci. Rep. 2013, 3, 1764.
doi: 10.1038/srep01764 |
42 |
Yang Z. ; Moriguchi I. ; Nakashima N. ACS Appl. Mater. Interfaces 2015, 7, 9800.
doi: 10.1021/acsami.5b01724 |
43 |
Stamatin S. N. ; Speder J. ; Dhiman R. ; Arenz M. ; Skou E. M. ACS Appl. Mater. Interfaces 2015, 7, 6153.
doi: 10.1021/am508982d |
44 |
Yin S. ; Mu S. ; Lv H. ; Cheng N. ; Pan M. ; Fu Z. Appl. Catal. B 2010, 93, 233.
doi: 10.1016/j.apcatb.2009.09.034 |
45 |
Lobato J. ; Zamora H. ; Plaza J. ; Cañizares P. ; Rodrigo M. A. Appl. Catal. B 2016, 198, 516.
doi: 10.1016/j.apcatb.2016.06.011 |
46 |
Zamora H. ; Plaza J. ; Velhac P. ; Cañizares P. ; Rodrigo M. A. ; Lobato J. Appl. Catal. B 2017, 207, 244.
doi: 10.1016/j.apcatb.2017.02.019 |
47 |
Kim D. K. ; Kim H. ; Park H. ; Oh S. ; Ahn S. H. ; Kim H. J. ; Kim S. K. J. Power Sources 2019, 438, 227022.
doi: 10.1016/j.jpowsour.2019.227022 |
48 |
Yang Z. ; Nakashima N. J. Mater. Chem. A 2015, 3, 23316.
doi: 10.1039/C5TA06735A |
49 |
Yang Z. ; Berber M. R. ; Nakashima N. Electrochim. Acta 2015, 170, 1.
doi: 10.1016/j.electacta.2015.04.122 |
50 |
Park H. Y. ; Lim D. H. ; Yoo S. J. ; Kim H. J. ; Henkensmeier D. ; Kim J. Y. ; Ham H. C. ; Jang J. H. Sci. Rep. 2017, 7, 7186.
doi: 10.1038/s41598-017-06812-w |
51 |
Millán M. ; Zamora H. ; Rodrigo M. A. ; Lobato J. ACS Appl. Mater. Interfaces 2017, 9, 5927.
doi: 10.1021/acsami.6b13071 |
52 |
Lim J. E. ; Lee U. J. ; Ahn S. H. ; Cho E. ; Kim H. J. ; Jang J. H. ; Son H. ; Kim S. K. Appl. Catal. B 2015, 165, 495.
doi: 10.1016/j.apcatb.2014.10.042 |
53 |
Neyerlin K. C. ; Singh A. ; Chu D. J. Power Sources 2008, 176, 112.
doi: 10.1016/j.jpowsour.2007.10.030 |
54 |
Chung Y. H. ; Kim S. J. ; Chung D. Y. ; Lee M. J. ; Jang J. H. ; Sung Y. E. Phys. Chem. Chem. Phys. 2014, 16, 13726.
doi: 10.1039/C4CP00187G |
55 |
Lee K. S. ; Yoo S. J. ; Ahn D. ; Kim S. K. ; Hwang S. J. ; Sung Y. E. ; Kim H. J. ; Cho E. ; Henkensmeier D. ; Lim T. H. ; Jang J. H. Electrochim. Acta 2011, 56, 8802.
doi: 10.1016/j.electacta.2011.07.084 |
56 |
Park H. ; Kim K. M. ; Kim H. ; Kim D. K. ; Won Y. S. ; Kim S. K. Korean J. Chem. Eng. 2018, 35, 1547.
doi: 10.1007/s11814-018-0059-z |
57 |
Park H. ; Kim D. K. ; Kim H. ; Oh S. ; Jung W. S. ; Kim S. K. Appl. Surf. Sci. 2020, 510, 145444.
doi: 10.1016/j.apsusc.2020.145444 |
58 |
Zagudaeva N. M. ; Tarasevich M. R. Russ. J. Electrochem. 2010, 46, 530.
doi: 10.1134/S102319351005006X |
59 |
Mamlouk M. ; Scott K. J. Power Sources 2011, 196, 1084.
doi: 10.1016/j.jpowsour.2010.08.021 |
60 |
Hu Y. ; Shen T. ; Zhao X. ; Zhang J. ; Lu Y. ; Shen J. ; Lu S. ; Tu Z. ; Xin H. L. ; Wang D. Appl. Catal. B 2020, 279, 11937.
doi: 10.1016/j.apcatb.2020.119370 |
61 |
Ghoshal S. ; Jia Q. ; Bates M. K. ; Li J. ; Xu C. ; Gath K. ; Yang J. ; Waldecker J. ; Che H. ; Liang W. ; et al ACS Catal. 2017, 7, 4936.
doi: 10.1021/acscatal.7b01061 |
62 | Yang X. D. ; Chen C. ; Zhou Z. Y. ; Sun S. G. Acta Phys. -Chim. Sin. 2019, 35, 472. |
杨晓冬; 陈驰; 周志有; 孙世刚. 物理化学学报, 2019, 35, 472.
doi: 10.3866/PKU.WHXB201806131 |
|
63 | Wang Q. Q. ; Liu D. J. ; He X. Q. Acta Phys. -Chim. Sin. 2019, 35, 740. |
王倩倩; 刘大军; 何兴权. 物理化学学报, 2019, 35, 740.
doi: 10.3866/PKU.WHXB201809003 |
|
64 |
Hu Y. ; Jensen J. O. ; Pan C. ; Cleemann L. N. ; Shypunov I. ; Li Q. Appl. Catal. B 2018, 234, 357.
doi: 10.1016/j.apcatb.2018.03.056 |
65 |
Li Q. ; Wu G. ; Cullen D. A. ; More K. L. ; Mack N. H. ; Chung H. T. ; Zelenay P. ACS Catal. 2014, 4, 3193.
doi: 10.1021/cs500807v |
66 |
Jain D. ; Gustin V. ; Basu D. ; Gunduz S. ; Deka D. J. ; Co A. C. ; Ozkan U. S. J. Catal. 2020, 390, 150.
doi: 10.1016/j.jcat.2020.07.012 |
67 |
Najam T. ; Shah S. S. A. ; Ding W. ; Wei Z. J. Phys. Chem. C 2019, 123, 16796.
doi: 10.1021/acs.jpcc.9b03730 |
68 | Fei H. L. ; Duan X. F. Acta Phys. -Chim. Sin. 2019, 35, 559. |
费慧龙; 段镶锋. 物理化学学报, 2019, 35, 559.
doi: 10.3866/PKU.WHXB201809016 |
|
69 |
Najam T. ; Shah S. S. A. ; Ding W. ; Jiang J. ; Jia L. ; Yao W. ; Li L. ; Wei Z. Angew. Chem. Int. Ed. 2018, 57, 15101.
doi: 10.1002/anie.201808383 |
[1] | Chaoqiong Zhu, Ziming Cai, Peizhong Feng, Weichen Zhang, Kezhen Hui, Xiuhua Cao, Zhenxiao Fu, Xiaohui Wang. Reliability Mechanisms of the Ultrathin-Layered BaTiO3-Based BME MLCC [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2304015-. |
[2] | Xinxuan Duan, Marshet Getaye Sendeku, Daoming Zhang, Daojin Zhou, Lijun Xu, Xueqing Gao, Aibing Chen, Yun Kuang, Xiaoming Sun. Tungsten-Doped NiFe-Layered Double Hydroxides as Efficient Oxygen Evolution Catalysts [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303055-. |
[3] | Kuangyu Wang, Kai Liu, Hui Wu. Molten Alkali Metal Batteries Based on Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301009-. |
[4] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
[5] | Zheng-Min Wang, Qing-Ling Hong, Xiao-Hui Wang, Hao Huang, Yu Chen, Shu-Ni Li. RuP Nanoparticles Anchored on N-doped Graphene Aerogels for Hydrazine Oxidation-Boosted Hydrogen Production [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303028-. |
[6] | Qian Wu, Qingping Gao, Bin Shan, Wenzheng Wang, Yuping Qi, Xishi Tai, Xia Wang, Dongdong Zheng, Hong Yan, Binwu Ying, Yongsong Luo, Shengjun Sun, Qian Liu, Mohamed S. Hamdy, Xuping Sun. Recent Advances in Self-Supported Transition-Metal-Based Electrocatalysts for Seawater Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2303012-. |
[7] | Shuyi Zheng, Jia Wu, Ke Wang, Mengchen Hu, Huan Wen, Shibin Yin. Electronic Modulation of Ni-Mo-O Porous Nanorods by Co Doping for Selective Oxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Evolution [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301032-. |
[8] | Jie Wang, Guigao Liu, Qinbai Yun, Xichen Zhou, Xiaozhi Liu, Ye Chen, Hongfei Cheng, Yiyao Ge, Jingtao Huang, Zhaoning Hu, Bo Chen, Zhanxi Fan, Lin Gu, Hua Zhang. Epitaxial Growth of Unconventional 4H-Pd Based Alloy Nanostructures on 4H-Au Nanoribbons towards Highly Efficient Electrocatalytic Methanol Oxidation [J]. Acta Phys. -Chim. Sin., 2023, 39(10): 2305034-. |
[9] | Ruonan Li, Shijie Liang, Yunhua Xu, Cuifen Zhang, Zheng Tang, Baiqiao Liu, Weiwei Li. Chlorine-Substituted Double-Cable Conjugated Polymers with NearInfrared Absorption for Low Energy Loss Single-Component Organic Solar Cells [J]. Acta Phys. -Chim. Sin., 2023, (): 0-. |
[10] | Zehao Zhang, Zheng Wang, Haibo Li. Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination [J]. Acta Phys. -Chim. Sin., 2023, (): 2308020-. |
[11] | Weifeng Xia, Chengyu Ji, Rui Wang, Shilun Qiu, Qianrong Fang. Metal-Free Tetrathiafulvalene Based Covalent Organic Framework for Efficient Oxygen Evolution Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212057-0. |
[12] | Qianwei Song, Guanchao He, Huilong Fei. Photothermal Catalytic Conversion Based on Single Atom Catalysts: Fundamentals and Applications [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2212038-0. |
[13] | Meng Li, Fulin Yang, Jinfa Chang, Alex Schechter, Ligang Feng. MoP-NC Nanosphere Supported Pt Nanoparticles for Efficient Methanol Electrolysis [J]. Acta Phys. -Chim. Sin., 2023, 39(9): 2301005-0. |
[14] | Da Wang, Xiaobin Yin, Jianfang Wu, Yaqiao Luo, Siqi Shi. All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation [J]. Acta Phys. -Chim. Sin., 2023, (): 2307029-. |
[15] | Zhuo Han, Danfeng Zhang, Haixian Wang, Guorui Zheng, Ming Liu, Yanbing He. Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries [J]. Acta Phys. -Chim. Sin., 2023, (): 2307034-. |
|