Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (9): 2009035.doi: 10.3866/PKU.WHXB202009035
Special Issue: Fuel Cells
• REVIEW • Previous Articles Next Articles
Lei Huang, Shahid Zaman, Zhitong Wang, Huiting Niu, Bo You, Bao Yu Xia()
Received:
2020-09-09
Accepted:
2020-10-12
Published:
2020-10-23
Contact:
Bao Yu Xia
E-mail:byxia@hust.edu.cn
About author:
Bao Yu Xia, Email: byxia@hust.edu.cnSupported by:
Lei Huang, Shahid Zaman, Zhitong Wang, Huiting Niu, Bo You, Bao Yu Xia. Synthesis and Application of Platinum-Based Hollow Nanoframes for Direct Alcohol Fuel Cells[J]. Acta Phys. -Chim. Sin. 2021, 37(9), 2009035. doi: 10.3866/PKU.WHXB202009035
"
Synthesis method | Shape and composition of Pt-based NFs | ||
Oxidative etching | Rhombic dodecahedral PtCu | Rhombic dodecahedral PtCuNi | Cubic PtPdCu |
Octopod cubic PtCu | Five-Fold-Twinned PtCu | Concave cubic PtCu | |
Rhombic dodecahedral PtCuRh | Octahedral PtCu | Five-Fold-Twinned PtCuMn | |
Chemical etching | Rhombic dodecahedral PtNi | Vertex-Reinforced PtCuCo | Truncated octahedral PtNiAu |
Spiny rhombic dodecahedral PtCu | Vertex-Reinforced PtCuRh | Octahedral PtNi | |
Rhombic dodecahedral PtRuNi | Rhombic dodecahedral PtCuNi | Skeletal octahedral PtNi | |
Rhombic dodecahedral PtRhNi | Rhombic dodecahedral PtCo | Polyhedral PtCo | |
Core-Shell AgAuPt | Truncated octahedral PtAu | PtAu bipyramid | |
Ultra-Small PtPdRhAg | Porous Pt-Bi(OH)3 | Dendrite-Embedded PtNi | |
Galvanic replacement | Cubic PtPdCu | Triangular PtAg | |
CO etching | Tetrahexahedral PtNi |
"
Electrocatalytic reaction | Shape and composition of Pt-based NFs | ||
Oxygen reduction | Rhombic dodecahedral PtCu | Rhombic dodecahedral PtCuNi | Cubic PtPdCu |
Octopod cubic PtCu | Rhombic dodecahedral PtNi | Cubic Pt | |
Five-Fold-Twinned PtCu | Rhombic dodecahedral PtCo | Tetrahexahedral PtNi | |
Vertex-Reinforced PtCuCo | Spiny rhombic dodecahedral PtCu | Skeletal octahedral PtNi | |
Octahedral PtCu | Five-Fold-Twinned PtCuMn | Dendrite-Embedded PtNi | |
Methanol oxidation | Rhombic dodecahedral PtCuRh | Rhombic dodecahedral PtCu | Cubic PtCu |
Concave cubic PtCu | Five-Fold-Twinned PtCu | Tetrahexahedral PtNi | |
Vertex-Reinforced PtCuCo | Octahedral PtNi | Truncated octahedronal PtNiAu | |
Rhombic dodecahedral PtRuNi | Rhombic dodecahedral PtCo | Octahedral PtCu | |
Core-Shell AgAuPt | truncated octahedral PtAu | AuPt bipyramid | |
Ultra-Small PtPdRhAg | |||
Ethanol oxidation | Rhombic dodecahedral PtCuRh | Vertex-Reinforced PtCuRh | Porous Pt-Bi(OH)3 |
Rhombic dodecahedral PtRhNi |
1 |
Choi S. I. ; Shao M. ; Lu N. ; Ruditskiy A. ; Peng H. C. ; Park J. ; Guerrero S. ; Wang J. ; Kim M. J. ; Xia Y. ACS Nano 2014, 8, 10363.
doi: 10.1021/nn5036894 |
2 |
Huang L. ; Wei M. ; Hu N. ; Tsiakaras P. ; Shen P. K. Appl. Catal. B. Environ. 2019, 258, 117974.
doi: 10.1016/j.apcatb.2019.117974 |
3 | Li M. G. ; Xia Z. H. ; Huang Y. R. ; Tao L. ; Chao Y. G. ; Yin K. ; Yang W. X. ; Yang W. W. ; Yu Y. S. ; Guo S. J. Acta Phys. -Chim. Sin. 2020, 36, 1912049. |
李蒙刚; 夏仲泓; 黄雅荣; 陶璐; 晁玉广; 尹坤; 杨文秀; 杨微微; 于永生; 郭少军; 物理化学学报, 2020, 36, 1912049.
doi: 10.3866/PKU.WHXB201912049 |
|
4 | Lv L. ; Zhang L. Y. ; He X. B. ; Yuan H. ; Ouyang S. X. ; Zhang T. R. Acta Phys. -Chim. Sin. 2021, 37, 2007079. |
吕琳; 张立阳; 何雪冰; 原弘; 欧阳述昕; 张铁锐; 物理化学学报, 2021, 37, 2007079.
doi: 10.3866/PKU.WHXB202007079 |
|
5 | Zhang Y. J. ; Zhu Y. Z. ; Li J. F. Acta Phys. -Chim. Sin. 2021, 37, 2004052. |
张月皎; 朱越洲; 李剑锋; 物理化学学报, 2021, 37, 2004052.
doi: 10.3866/PKU.WHXB202004052 |
|
6 |
Kongkanand A. ; Mathias M. F. J. Phys. Chem. Lett. 2016, 7, 1127.
doi: 10.1021/acs.jpclett.6b00216 |
7 |
Ma S. Y. ; Li H. H. ; Hu B. C. ; Cheng X. ; Fu Q. Q. ; Yu S. H. J. Am. Chem. Soc. 2017, 139, 5890.
doi: 10.1021/jacs.7b01482 |
8 | Li K. X. ; Zhang T. L. ; Li H. Z. ; Li M. Z. ; Song Y. L. Acta Phys. -Chim. Sin. 2020, 36, 1911057. |
李凯旋; 张泰隆; 李会增; 李明珠; 宋延林; 物理化学学报, 2020, 36, 1911057.
doi: 10.3866/PKU.WHXB201911057 |
|
9 |
Kang Y. ; Snyder J. ; Chi M. ; Li D. ; More K. L. ; Markovic N. M. ; Stamenkovic V. R. Nano Lett. 2014, 14, 6361.
doi: 10.1021/nl5028205 |
10 | Tang Z. Y. Acta Phys. -Chim. Sin. 2020, 36, 2004050. |
唐智勇; 物理化学学报, 2020, 36, 2004050.
doi: 10.3866/PKU.WHXB202004050 |
|
11 |
You H. ; Yang S. ; Ding B. ; Yang H. Chem. Soc. Rev. 2013, 42, 2880.
doi: 10.1039/C2CS35319A |
12 | Shi, Y.; Lyu, Z.; Zhao, M.; Chen, R.; Nguyen, Q. N.; Xia, Y. Chem. Rev. 2020, doi: 10.1021/acs.chemrev.0c00454 |
13 |
Kwon T. ; Jun M. ; Lee K. Adv. Mater. 2020, 32, 2001345.
doi: 10.1002/adma.202001345 |
14 |
Park J. ; Kanti Kabiraz M. ; Kwon H. ; Park S. ; Baik H. ; Choi S. I. ; Lee K. ACS Nano 2017, 11, 10844.
doi: 10.1021/acsnano.7b04097 |
15 | Yang T. Y. ; Cui C. ; Rong H. P. ; Zhang J. T. ; Wang D. S. Acta Phys. -Chim. Sin. 2020, 36, 2003047. |
杨天怡; 崔铖; 戎宏盼; 张加涛; 王定胜; 物理化学学报, 2020, 36, 2003047.
doi: 10.3866/PKU.WHXB202003047 |
|
16 |
Zhang L. ; Roling L. T. ; Wang X. ; Vara M. ; Chi M. ; Liu J. ; Choi S. I. ; Park J. ; Herron J. A. ; Xie Z. ; et al Science 2015, 349, 412.
doi: 10.1126/science.aab0801 |
17 |
Nosheen F. ; Zhang Z. C. ; Zhuang J. ; Wang X. Nanoscale 2013, 5, 3660.
doi: 10.1039/C3NR00833A |
18 |
Carpenter M. K. ; Moylan T. E. ; Kukreja R. S. ; Atwan M. H. ; Tessema M. M. J. Am. Chem. Soc. 2012, 134, 8535.
doi: 10.1021/ja300756y |
19 |
Mourdikoudis S. ; Liz-Marzán L. M. Chem. Mater. 2013, 25, 1465.
doi: 10.1021/cm4000476 |
20 |
Liu H. L. ; Nosheen F. ; Wang X. Chem. Soc. Rev. 2015, 44, 3056.
doi: 10.1039/C4CS00478G |
21 |
Kong F. ; Ren Z. ; Norouzi Banis M. ; Du L. ; Zhou X. ; Chen G. ; Zhang L. ; Li J. ; Wang S. ; Li M. ; et al ACS Catal. 2020, 10, 4205.
doi: 10.1021/acscatal.9b05133 |
22 | Liu M. M. ; Yang M. M. ; Shu X. X. ; Zhang J. T. Acta Phys. -Chim. Sin. 2021, 37, 2007072. |
刘苗苗; 杨茅茂; 舒欣欣; 张进涛; 物理化学学报, 2021, 37, 2007072.
doi: 10.3866/PKU.WHXB202007072 |
|
23 |
Ding J. ; Bu L. ; Guo S. ; Zhao Z. ; Zhu E. ; Huang Y. ; Huang X. Nano Lett. 2016, 16, 2762.
doi: 10.1021/acs.nanolett.6b00471 |
24 |
Kwon T. ; Jun M. ; Kim H. Y. ; Oh A. ; Park J. ; Baik H. ; Joo S. H. ; Lee K. Adv. Funct. Mater. 2018, 28, 1706440.
doi: 10.1002/adfm.201706440 |
25 |
Park J. ; Wang H. ; Vara M. ; Xia Y. ChemSusChem 2016, 9, 2855.
doi: 10.1002/cssc.201600984 |
26 |
Wang Y. ; Chen Y. ; Nan C. ; Li L. ; Wang D. ; Peng Q. ; Li Y. Nano Res. 2014, 8, 140.
doi: 10.1007/s12274-014-0603-z |
27 |
Beermann V. ; Holtz M. E. ; Padgett E. ; de Araujo J. F. ; Muller D. A. ; Strasser P. Energy Environ. Sci. 2019, 12, 2476.
doi: 10.1039/C9EE01185D |
28 |
Cui C. ; Gan L. ; Heggen M. ; Rudi S. ; Strasser P. Nat. Mater. 2013, 12, 765.
doi: 10.1038/nmat3668 |
29 |
Zhu C. ; Du D. ; Eychmuller A. ; Lin Y. Chem. Rev. 2015, 115, 8896.
doi: 10.1021/acs.chemrev.5b00255 |
30 |
Bu L. ; Guo S. ; Zhang X. ; Shen X. ; Su D. ; Lu G. ; Zhu X. ; Yao J. ; Guo J. ; Huang X. Nat. Commun. 2016, 7, 11850.
doi: 10.1038/ncomms11850 |
31 |
Godinez-Salomon F. ; Mendoza-Cruz R. ; Arellano-Jimenez M. J. ; Jose-Yacaman M. ; Rhodes C. P. ACS Appl. Mater. Interfaces 2017, 9, 18660.
doi: 10.1021/acsami.7b00043 |
32 |
Huang X. Y. ; You L. X. ; Zhang X. F. ; Feng J. J. ; Zhang L. ; Wang A. J. Electrochim. Acta 2019, 299, 89.
doi: 10.1016/j.electacta.2019.01.002 |
33 |
Niu H. J. ; Chen H. Y. ; Wen G. L. ; Feng J. J. ; Zhang Q. L. ; Wang A. J. J. Colloid. Interface Sci. 2019, 539, 525.
doi: 10.1016/j.jcis.2018.12.066 |
34 |
Sun X. ; Huang B. ; Cui X. ; E B. ; Feng Y. ; Huang X. ChemCatChem 2018, 10, 931.
doi: 10.1002/cctc.201701768 |
35 |
Ding J. ; Zhu X. ; Bu L. ; Yao J. ; Guo J. ; Guo S. ; Huang X. Chem. Commun. 2015, 51, 9722.
doi: 10.1039/C5CC03190G |
36 |
Huang L. ; Jiang Z. ; Gong W. ; Wang Z. ; Shen P. K. J. Power Sources 2018, 406, 42.
doi: 10.1016/j.jpowsour.2018.10.041 |
37 |
Ye W. ; Chen S. ; Ye M. ; Ren C. ; Ma J. ; Long R. ; Wang C. ; Yang J. ; Song L. ; Xiong Y. Nano Energy 2017, 39, 532.
doi: 10.1016/j.nanoen.2017.07.025 |
38 |
Luo S. ; Tang M. ; Shen P. K. ; Ye S. Adv. Mater. 2017, 29, 1601687.
doi: 10.1002/adma.201601687 |
39 |
Zhang Z. ; Luo Z. ; Chen B. ; Wei C. ; Zhao J. ; Chen J. ; Zhang X. ; Lai Z. ; Fan Z. ; Tan C. ; et al Adv. Mater. 2016, 28, 8712.
doi: 10.1002/adma.201603075 |
40 |
Luo S. ; Shen P. K. ACS Nano 2017, 11, 11946.
doi: 10.1021/acsnano.6b04458 |
41 |
Wang Z. ; Huang L. ; Tian Z. Q. ; Shen P. K. J. Mater. Chem. A 2019, 7, 18619.
doi: 10.1039/C9TA06119C |
42 |
Zhu G. ; Liu J. ; Li S. ; Zuo Y. ; Li D. ; Han H. ACS Appl. Energy Mater. 2019, 2, 2862.
doi: 10.1021/acsaem.9b00205 |
43 |
Qin Y. ; Zhang W. ; Guo K. ; Liu X. ; Liu J. ; Liang X. ; Wang X. ; Gao D. ; Gan L. ; Zhu Y. ; et al Adv. Funct. Mater. 2020, 30, 1910107.
doi: 10.1002/adfm.201910107 |
44 |
Becknell N. ; Kang Y. ; Chen C. ; Resasco J. ; Kornienko N. ; Guo J. ; Markovic N. M. ; Somorjai G. A. ; Stamenkovic V. R. ; Yang P. J. Am. Chem. Soc. 2015, 137, 15817.
doi: 10.1021/jacs.5b09639 |
45 |
Chen C. ; Kang Y. ; Huo Z. ; Zhu Z. ; Huang W. ; Xin H. L. ; Snyder J. D. ; Li D. ; Herron J. A. ; Mavrikakis M. ; Chi M. ; et al Science 2014, 343, 1339.
doi: 10.1126/science.1249061 |
46 |
Chen S. ; Niu Z. ; Xie C. ; Gao M. ; Lai M. ; Li M. ; Yang P. ACS Nano 2018, 12, 8697.
doi: 10.1021/acsnano.8b04674 |
47 |
Becknell N. ; Son Y. ; Kim D. ; Li D. ; Yu Y. ; Niu Z. ; Lei T. ; Sneed B. T. ; More K. L. ; Markovic N. M. ; et al J. Am. Chem. Soc. 2017, 139, 11678.
doi: 10.1021/jacs.7b05584 |
48 |
Wu Y. ; Wang D. ; Zhou G. ; Yu R. ; Chen C. ; Li Y. J. Am. Chem. Soc. 2014, 136, 11594.
doi: 10.1021/ja5058532 |
49 |
Lyu L. M. ; Kao Y. C. ; Cullen D. A. ; Sneed B. T. ; Chuang Y. C. ; Kuo C. H. Chem. Mater. 2017, 29, 5681.
doi: 10.1021/acs.chemmater.7b01550 |
50 |
Wang K. ; Du H. ; Sriphathoorat R. ; Shen P. K. Adv. Mater. 2018, 30, e1804074.
doi: 10.1002/adma.201804074 |
51 |
Ren F. ; Wang Z. ; Luo L. ; Lu H. ; Zhou G. ; Huang W. ; Hong X. ; Wu Y. ; Li Y. Chem. Eur. J. 2015, 21, 13181.
doi: 10.1002/chem.201501923 |
52 |
Shang C. ; Guo Y. ; Wang E. J. Mater. Chem. A 2019, 7, 2547.
doi: 10.1039/C9TA00191C |
53 |
Oh A. ; Baik H. ; Choi D. S. ; Cheon J. Y. ; Kim B. ; Kim H. ; Kwon S. J. ; Joo S. H. ; Jung Y. ; Lee K. ACS Nano 2015, 9, 2856.
doi: 10.1021/nn5068539 |
54 |
Gruzel G. ; Piekarz P. ; Pawlyta M. ; Donten M. ; Parlinska-Wojtan M. ACS Appl. Mater. Interfaces 2019, 11, 22352.
doi: 10.1021/acsami.9b04690 |
55 |
Chen S. ; Li M. ; Gao M. ; Jin J. ; van Spronsen M. A. ; Salmeron M. B. ; Yang P. Nano Lett. 2020, 20, 1974.
doi: 10.1021/acs.nanolett.9b05251 |
56 |
Becknell N. ; Zheng C. ; Chen C. ; Yu Y. ; Yang P. Surf. Sci. 2016, 648, 328.
doi: 10.1016/j.susc.2015.09.024 |
57 |
Yan X. ; Yu S. ; Tang Y. ; Sun D. ; Xu L. ; Xue C. Nanoscale 2018, 10, 2231.
doi: 10.1039/C7NR08899J |
58 |
Yoo S. ; Cho S. ; Kim D. ; Ih S. ; Lee S. ; Zhang L. ; Li H. ; Lee J. Y. ; Liu L. ; Park S. Nanoscale 2019, 11, 2840.
doi: 10.1039/C8NR08231F |
59 |
Fang C. ; Zhao G. ; Zhang Z. ; Ding Q. ; Yu N. ; Cui Z. ; Bi T. Chem. Eur. J. 2019, 25, 7351.
doi: 10.1002/chem.201900403 |
60 |
Saleem F. ; Ni B. ; Yong Y. ; Gu L. ; Wang X. Small 2016, 12, 5261.
doi: 10.1002/smll.201601299 |
61 |
Yuan X. ; Jiang B. ; Cao M. ; Zhang C. ; Liu X. ; Zhang Q. ; Lyu F. ; Gu L. ; Zhang Q. Nano Res. 2020, 13, 265.
doi: 10.1007/s12274-019-2609-z |
62 |
Kwon H. ; Kabiraz M. K. ; Park J. ; Oh A. ; Baik H. ; Choi S. I. ; Lee K. Nano Lett. 2018, 18, 2930.
doi: 10.1021/acs.nanolett.8b00270 |
63 |
Tsuji M. ; Hamasaki M. ; Yajima A. ; Hattori M. ; Tsuji T. ; Kawazumi H. Mater. Lett. 2014, 121, 113.
doi: 10.1016/j.matlet.2014.01.093 |
64 |
Wang C. ; Zhang L. ; Yang H. ; Pan J. ; Liu J. ; Dotse C. ; Luan Y. ; Gao R. ; Lin C. ; Zhang J. ; et al Nano Lett. 2017, 17, 2204.
doi: 10.1021/acs.nanolett.6b04731 |
65 |
Zheng Y. ; Zeng J. ; Ruditskiy A. ; Liu M. ; Xia Y. Chem. Mater. 2013, 26, 22.
doi: 10.1021/cm402023g |
66 |
Yu X. ; Li L. ; Su Y. ; Jia W. ; Dong L. ; Wang D. ; Zhao J. ; Li Y. Chem. Eur. J. 2016, 22, 4960.
doi: 10.1002/chem.201600079 |
67 |
Liao H. G. ; Zherebetskyy D. ; Xin H. ; Czarnik C. ; Ercius P. ; Elmlund H. ; Pan M. ; Wang L. W. ; Zheng H. Science 2014, 345, 916.
doi: 10.1126/science.1253149 |
68 |
Zhou J. ; Yang Y. ; Yang Y. ; Kim D. S. ; Yuan A. ; Tian X. ; Ophus C. ; Sun F. ; Schmid A. K. ; Nathanson M. ; et al Nature 2019, 570, 500.
doi: 10.1038/s41586-019-1317-x |
69 |
Wang D. ; Li Y. Adv. Mater. 2011, 23, 1044.
doi: 10.1002/adma.201003695 |
70 |
Gan L. ; Cui C. ; Heggen M. ; Dionigi F. ; Rudi S. ; Strasser P. Science 2014, 346, 1502.
doi: 10.1126/science.1261212 |
71 |
Chen M. ; Wu B. ; Yang J. ; Zheng N. Adv. Mater. 2012, 24, 862.
doi: 10.1002/adma.201104145 |
72 |
Xu X. ; Zhang X. ; Sun H. ; Yang Y. ; Dai X. ; Gao J. ; Li X. ; Zhang P. ; Wang H. H. ; Yu N. F. ; Sun S. G. Angew. Chem. Int. Ed. 2014, 53, 12522.
doi: 10.1002/ange.201406497 |
73 |
Jin H. ; Hong Y. ; Yoon J. ; Oh A. ; Chaudhari N. K. ; Baik H. ; Joo S. H. ; Lee K. Nano Energy 2017, 42, 17.
doi: 10.1016/j.nanoen.2017.10.033 |
74 |
Sun X. ; Jiang K. ; Zhang N. ; Guo S. ; Huang X. ACS Nano 2015, 9, 7634.
doi: 10.1021/acsnano.5b02986 |
75 |
Ahmadi M. ; Cui C. ; Mistry H. ; Strasser P. ; Cuenya B. R. ACS Nano 2015, 9, 10686.
doi: 10.1021/acsnano.5b01807 |
76 |
Hong J. W. ; Kim Y. ; Wi D. H. ; Lee S. ; Lee S. U. ; Lee Y. W. ; Choi S. I. ; Han S. W. Angew. Chem. Int. Ed. 2016, 55, 2753.
doi: 10.1002/anie.201510460 |
77 |
Saleem F. ; Zhang Z. ; Xu B. ; Xu X. ; He P. ; Wang X. J. Am. Chem. Soc. 2013, 135, 18304.
doi: 10.1021/ja4101968 |
78 |
Li Y. ; Quan F. ; Chen K. ; Chen L. ; Chen C. Catal. Today 2016, 278, 247.
doi: 10.1016/j.cattod.2016.01.047 |
79 |
Wang X. ; Vara M. ; Luo M. ; Huang H. ; Ruditskiy A. ; Park J. ; Bao S. ; Liu J. ; Howe J. ; Chi M. ; et al J. Am. Chem. Soc. 2015, 137, 15036.
doi: 10.1021/jacs.5b10059 |
80 |
Zhu J. ; Xie M. ; Chen Z. ; Lyu Z. ; Chi M. ; Jin W. ; Xia Y. Adv. Energy Mater. 2020, 10, 1904114.
doi: 10.1002/aenm.201904114 |
81 |
Luo X. ; Liu C. ; Wang X. ; Shao Q. ; Pi Y. ; Zhu T. ; Li Y. ; Huang X. Nano Lett. 2020, 20, 1967.
doi: 10.1021/acs.nanolett.9b05250 |
82 |
Huang L. ; Zhang X. ; Han Y. ; Wang Q. ; Fang Y. ; Dong S. Chem. Mater. 2017, 29, 4557.
doi: 10.1021/acs.chemmater.7b01282 |
83 |
Wang Y. ; Chen S. ; Wang X. ; Rosen A. ; Beatrez W. ; Sztaberek L. ; Tan H. ; Zhang L. ; Koenigsmann C. ; Zhao J. ACS Appl. Energy Mater. 2020, 3, 768.
doi: 10.1021/acsaem.9b01930 |
84 |
Xia B. Y. ; Wu H. B. ; Wang X. ; Lou X. W. Angew. Chem. Int. Ed. 2013, 52, 12337.
doi: 10.1002/anie.201307518 |
85 |
Zhu X. ; Huang L. ; Wei M. ; Tsiakaras P. ; Shen P. K. Appl. Catal. B. Environ. 2021, 281, 119460.
doi: 10.1016/j.apcatb.2020.119460 |
86 |
Xia B. Y. ; Wu H. B. ; Wang X. ; Lou X. W. J. Am. Chem. Soc. 2012, 134, 13934.
doi: 10.1021/ja3051662 |
87 |
Lin R. ; Cai X. ; Zeng H. ; Yu Z. Adv. Mater. 2018, 30, e1705332.
doi: 10.1002/adma.201705332 |
88 |
Liu M. ; Zhao Z. ; Duan X. ; Huang Y. Adv. Mater. 2019, 31, 1802234.
doi: 10.1002/adma.201802234 |
89 |
Liu L. ; Samjeské G. ; Takao S. ; Nagasawa K. ; Iwasawa Y. J. Power Sources 2014, 253, 1.
doi: 10.1016/j.jpowsour.2013.12.028 |
90 |
Wang D. ; Xin H. L. ; Hovden R. ; Wang H. ; Yu Y. ; Muller D. A. ; DiSalvo F. J. ; Abruna H. D. Nat. Mater. 2013, 12, 81.
doi: 10.1038/nmat3458 |
91 |
Niu Z. ; Becknell N. ; Yu Y. ; Kim D. ; Chen C. ; Kornienko N. ; Somorjai G. A. ; Yang P. Nat. Mater. 2016, 15, 1188.
doi: 10.1038/nmat4724 |
92 |
Huang X. ; Zhao Z. ; Cao L. ; Chen Y. ; Zhu E. ; Lin Z. ; Li M. ; Yan A. ; Zettl A. ; Wang Y. M. ; et al Science 2015, 348, 1230.
doi: 10.1126/science.aaa8765 |
93 |
Lim B. ; Jiang M. ; Camargo P. H. C. ; Cho E. C. ; Tao J. ; Lu X. ; Zhu Y. ; Xia Y. Science 2009, 324, 1302.
doi: 10.1126/science.1170377 |
94 |
Strasser P. ; Koh S. ; Anniyev T. ; Greeley J. ; More K. ; Yu C. ; Liu Z. ; Kaya S. ; Nordlund D. ; Ogasawara H. ; et al Nat. Chem. 2010, 2, 454.
doi: 10.1038/nchem.623 |
95 |
Stamenkovic V. R. ; Fowler B. ; Mun B. S. ; Wang G. ; Ross P. N. ; Lucas C. A. ; Markovic N. M. Science 2007, 315, 493.
doi: 10.1126/science.1135941 |
96 |
Bu L. ; Zhang N. ; Guo S. ; Zhang X. ; Li J. ; Yao J. ; Wu T. ; Lu G. ; Ma J. Y. ; Su D. ; Huang X. Science 2016, 354, 1410.
doi: 10.1126/science.aah6133 |
97 |
Tian X. ; Zhao X. ; Su Y. Q. ; Wang L. ; Wang H. ; Dang D. ; Chi B. ; Liu H. ; Hensen E. J. M. ; Lou X. W. D. ; Xia B. Y. Science 2019, 366, 850.
doi: 10.1126/science.aaw7493 |
98 |
Pizzutilo E. ; Knossalla J. ; Geiger S. ; Grote J. P. ; Polymeros G. ; Baldizzone C. ; Mezzavilla S. ; Ledendecker M. ; Mingers A. ; Cherevko S. ; et al Adv. Energy Mater. 2017, 7, 1700835.
doi: 10.1002/aenm.201700835 |
99 |
Cao Y. ; Yang Y. ; Shan Y. ; Huang Z. ACS Appl. Mater. Interfaces 2016, 8, 5998.
doi: 10.1021/acsami.5b11364 |
100 |
Sneed B. T. ; Young A. P. ; Jalalpoor D. ; Golden M. C. ; Mao S. ; Jiang Y. ; Wang Y. ; Tsung C. K. ACS Nano 2014, 8, 7239.
doi: 10.1021/nn502259g |
101 |
Gunji T. ; Tanabe T. ; Jeevagan A. J. ; Usui S. ; Tsuda T. ; Kaneko S. ; Saravanan G. ; Abe H. ; Matsumoto F. J. Power Sources 2015, 273, 990.
doi: 10.1016/j.jpowsour.2014.09.182 |
102 |
Han L. ; Liu H. ; Cui P. ; Peng Z. ; Zhang S. ; Yang J. Sci. Rep. 2014, 4, 6414.
doi: 10.1038/srep06414 |
103 | Bao Y. F. ; Feng L. G. Acta Phys. -Chim. Sin. 2021, 37, 2008031. |
包玉菲; 冯立纲; 物理化学学报, 2021, 37, 2008031.
doi: 10.3866/PKU.WHXB202008031 |
|
104 |
Yang S. ; Li S. ; Song L. ; Lv Y. ; Duan Z. ; Li C. ; Praeg R. F. ; Gao D. ; Chen G. Nano Res. 2019, 12, 2881.
doi: 10.1007/s12274-019-2530-5 |
105 |
Dong J. C. ; Su M. ; Briega-Martos V. ; Li L. ; Le J. B. ; Radjenovic P. ; Zhou X. S. ; Feliu J. M. ; Tian Z. Q. ; Li J. F. J. Am. Chem. Soc. 2020, 142, 715.
doi: 10.1021/jacs.9b12803 |
106 | Fang B. ; Feng L. G. Acta Phys. -Chim. Sin. 2020, 36, 1905023. |
方波; 冯立纲; 物理化学学报, 2020, 36, 1905023.
doi: 10.3866/PKU.WHXB201905023 |
[1] | Yanhui Yu, Peng Rao, Suyang Feng, Min Chen, Peilin Deng, Jing Li, Zhengpei Miao, Zhenye Kang, Yijun Shen, Xinlong Tian. Atomic Co Clusters for Efficient Oxygen Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210039-0. |
[2] | Chang Lan, Yuyi Chu, Shuo Wang, Changpeng Liu, Junjie Ge, Wei Xing. Research Progress of Proton-Exchange Membrane Fuel Cell Cathode Nonnoble Metal M-Nx/C-Type Oxygen Reduction Catalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210036-0. |
[3] | Yang Hu, Bin Liu, Luyao Xu, Ziqiang Dong, Yating Wu, Jie Liu, Cheng Zhong, Wenbin Hu. High-Throughput Synthesis and Screening of Pt-Based Ternary Electrocatalysts Using a Microfluidic-Based Platform [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209004-0. |
[4] | Jingwen Zhang, Hualong Ma, Jun Ma, Meixue Hu, Qihao Li, Sheng Chen, Tianshu Ning, Chuangxin Ge, Xi Liu, Li Xiao, Lin Zhuang, Yixiao Zhang, Liwei Chen. Cone Shaped Surface Array Structure on an Alkaline Polymer Electrolyte Membrane Improves Fuel Cell Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(2): 2111037-0. |
[5] | Jingxue Li, Yue Yu, Siran Xu, Wenfu Yan, Shichun Mu, Jia-Nan Zhang. Function of Electron Spin Effect in Electrocatalysts [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302049-. |
[6] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
[7] | Tonghui Cui, Hangyue Li, Zewei Lyu, Yige Wang, Minfang Han, Zaihong Sun, Kaihua Sun. Identification of Electrode Process in Large-Size Solid Oxide Fuel Cell [J]. Acta Phys. -Chim. Sin., 2022, 38(8): 2011009-. |
[8] | Baihua Cui, Yi Shi, Gen Li, Yanan Chen, Wei Chen, Yida Deng, Wenbin Hu. Challenges and Opportunities for Seawater Electrolysis: A Mini-Review on Advanced Materials in Chlorine-Involved Electrochemistry [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2106010-. |
[9] | Ke Sun, Yongqing Zhao, Jie Yin, Jing Jin, Hanwen Liu, Pinxian Xi. Surface Modification of NiCo2O4 Nanowires using Organic Ligands for Overall Water Splitting [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2107005-. |
[10] | Yuqi Wang, Miaocheng Zhang, Wei Xu, Xinyi Shen, Fei Gao, Jiale Zhu, Xiang Wan, Xiaojuan Lian, Jianguang Xu, Yi Tong. Chemical Preparation of New Ti3C2 MXene and the Performance and Mechanism of Memristor Based on MXene [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1907076-. |
[11] | Aidi Han, Xiaohui Yan, Junren Chen, Xiaojing Cheng, Junliang Zhang. Effects of Dispersion Solvents on Proton Conduction Behavior of Ultrathin Nafion Films in the Catalyst Layers of Proton Exchange Membrane Fuel Cells [J]. Acta Phys. -Chim. Sin., 2022, 38(3): 1912052-. |
[12] | Yue-Jiao Zhang, Yue-Zhou Zhu, Jian-Feng Li. Application of Raman Spectroscopy in Fuel Cell [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2004052-. |
[13] | Mengting Li, Xingqun Zheng, Li Li, Zidong Wei. Research Progress of Hydrogen Oxidation and Hydrogen Evolution Reaction Mechanism in Alkaline Media [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007054-. |
[14] | Miaomiao Liu, Maomao Yang, XinXin Shu, Jintao Zhang. Design Strategies for Carbon-Based Electrocatalysts and Application to Oxygen Reduction in Fuel Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2007072-. |
[15] | Yufei Bao, Ligang Feng. Formic Acid Electro-Oxidation Catalyzed by PdNi/Graphene Aerogel [J]. Acta Phys. -Chim. Sin., 2021, 37(9): 2008031-. |
|