Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (11): 2006017.doi: 10.3866/PKU.WHXB202006017
Special Issue: Energy and Materials Chemistry
• ARTICLE • Previous Articles Next Articles
Huidong Jin1,2, Likun Xiong1,2, Xiang Zhang1,2, Yuebin Lian1,2, Si Chen1,2, Yongtao Lu1,2,*(), Zhao Deng1,2, Yang Peng1,2,*()
Received:
2020-06-09
Accepted:
2020-07-04
Published:
2020-07-13
Contact:
Yongtao Lu,Yang Peng
E-mail:sudalyt@suda.edu;ypeng@suda.edu.cn
About author:
Email: ypeng@suda.edu.cn (Y. P.)Supported by:
Huidong Jin, Likun Xiong, Xiang Zhang, Yuebin Lian, Si Chen, Yongtao Lu, Zhao Deng, Yang Peng. Cu-Based Catalyst Derived from Nitrogen-Containing Metal Organic Frameworks for Electroreduction of CO2[J]. Acta Phys. -Chim. Sin. 2021, 37(11), 2006017. doi: 10.3866/PKU.WHXB202006017
Fig 3
Performance of electrochemical CO2 reduction by Cu2O/Cu@NC-400, Cu2O/Cu@NC-600 and Cu2O/Cu@NC-800, Cu2O/Cu@C-400, Cu2O/Cu@C-600 and Cu2O/Cu@C-800 in CO2-saturated 0.1 mol∙L−1 KHCO3 electrolyte. (a) CV curves; Faradaic efficiency of (b) C2H4, (c) CH4 and (d) formate; (e) partial current density for formate; (f) faradaic efficiency of H2. "
Table 1
Performance of CO2 electrochemical reduction for Cu2O/Cu@NC and Cu2O/Cu@C annealed at different temperatures."
Sample | Max FEproduct (%) | ||
C2H4 (−1.4 V vs. RHE) | CH4 (−1.6 V vs. RHE) | Formate (−1.2 V vs. RHE) | |
Cu2O/Cu@NC-400 | 20.4% | 23.9% | 40.1% |
Cu2O/Cu@NC-600 | 16.3% | 17.4% | 57.4% |
Cu2O/Cu@NC-800 | 4.4% | 3.8% | 67.9% |
Cu2O/Cu@C-400 | 0% | 2.3% | 25.0% |
Cu2O/Cu@C-600 | 0% | 0.8% | 30.0% |
Cu2O/Cu@C-800 | 0% | 0% | 30.8% |
1 | Bai X. F. ; Chen W. ; Wang B. Y. ; Feng G. H. ; Wei W. ; Jiao Z. ; Sun Y. H. Acta Phys. -Chim. Sin. 2017, 33, 2388. |
白晓芳; 陈为; 冯光辉; 魏伟; 焦正; 孙予罕. 物理化学学报, 2017, 33, 2388.
doi: 10.3866/PKU.WHXB201706131 |
|
2 |
Costentin C. ; Robert M. ; Saveant J. M. Chem. Soc. Rev. 2013, 42, 2423.
doi: 10.1039/TF9050100085 |
3 |
Hori Y. ; Murata A. ; Takahashi R. J. Chem. Soc. Faraday. Trans. 1 1989, 85, 2309.
doi: 10.1039/F19898502309 |
4 |
Hori Y. ; Kikuchi K. ; Murata A. ; Suzuki S. Chem. Lett. 1986, 15, 897.
doi: 10.1246/cl.1986.897 |
5 |
Hori Y. ; Takahashi R. ; Yoshinami Y. ; Murata A. J. Phys. Chem. B 1997, 101, 7075.
doi: 10.1021/jp970284i |
6 |
Bagger A. ; Ju W. ; Varela A. S. ; Strasser P. ; Rossmeisl J. ChemPhysShem 2017, 18, 3266.
doi: 10.1002/cphc.201700736 |
7 |
Peterson A. A. ; Nørskov J. K. J. Phys. Chem. Lett. 2012, 3, 251.
doi: 10.1021/jz201461p |
8 |
Hansen H. A. ; Varley J. B. ; Peterson A. A. ; Norskov J. K. J. Phys. Chem. Lett. 2013, 4, 388.
doi: 10.1021/jz3021155 |
9 | Zhu Q. G. ; Sun X. F. ; Kang X. C. ; Ma J. ; Qian Q. L. ; Han B. X. Acta Phys. -Chim. Sin. 2016, 32, 261. |
朱庆宫; 孙晓甫; 康欣晨; 马珺; 钱庆利; 韩布兴. 物理化学学报, 2016, 32, 261.
doi: 10.3866/PKU.WHXB201512101 |
|
10 |
Kuhl K. P. ; Cave E. R. ; Abram D. N. ; Jaramillo T. F. Energy Environ. Sci. 2012, 5
doi: 10.1039/C2EE21234J |
11 |
Kim D. ; Kley C. S. ; Li Y. ; Yang P. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 10560.
doi: 10.1073/pnas.1711493114 |
12 | Meng Y. C. ; Kuang S. Y. ; Liu H. ; Fan Q. ; Ma X. B. ; Zhang S. Acta Phys. -Chim. Sin. 2021, 37, 2006034. |
孟怡辰; 况思宇; 刘海; 范群; 马新宾; 张生. 物理化学学报, 2021, 37, 2006034.
doi: 10.3866/PKU.WHXB202006034 |
|
13 |
Gattrell M. ; Gupta N. ; Co A. J. Electroanal. Chem. 2006, 594, 1.
doi: 10.1016/j.jelechem.2006.05.013 |
14 |
Peterson A. A. ; Abild-Pedersen F. ; Studt F. ; Rossmeisl J. ; Norskov J. K. Energy Environ. Sci. 2010, 3, 1311.
doi: 10.1039/C0EE00071J |
15 |
Baturina O. A. ; Lu Q. ; Padilla M. A. ; Xin L. ; Li W. ; Serov A. ACS Catal. 2014, 4, 3682.
doi: 10.1021/cs500537y |
16 |
Li Y. ; Cui F. ; Ross M. B. ; Kim D. ; Sun Y. ; Yang P. Nano Lett. 2017, 17, 1312.
doi: 10.1021/acs.nanolett.6b05287 |
17 |
Li Q. ; Zhu W. ; Fu J. ; Zhang H. ; Wu G. ; Sun S. Nano Energy 2016, 24, 1.
doi: 10.1016/j.nanoen.2016.03.024 |
18 | Ning H. ; Wang W. ; Mao Q. ; Zheng S. ; Yang Z. ; Zhao Q. ; Wu M. Acta Phys. -Chim. Sin. 2018, 34, 938. |
宁汇; 王文行; 毛勤虎; 郑诗瑞; 杨中学; 赵青山; 吴明铂. 物理化学学报, 2018, 34, 938.
doi: 10.3866/PKU.WHXB201801263 |
|
19 | Wang, J.; Li, Z.; Dong, C.; Feng, Y.; Yang, J.; Liu, H.; Du, X. ACS Appl. Mater. Interfaces 2019, 11, 2763. doi: 1021/acsami.8b20545 |
20 |
Ting L. R. L. ; Piqué O. ; Lim S. Y. ; Tanhaei M. ; Calle-Vallejo F. ; Yeo B. S. ACS Catal. 2020, 10, 4059.
doi: 10.1021/acscatal.9b05319 |
21 |
Li Y. C. ; Wang Z. ; Yuan T. ; Nam D. H. ; Luo M. ; Wicks J. ; Chen B. ; Li J. ; Li F. W. ; de Arguer F. P. G. ; et al J. Am. Chem. Soc. 2019, 141, 8584.
doi: 10.1021/jacs.9b02945 |
22 |
Kottakkat T. ; Klingan K. ; Jiang S. ; Jovanov Z. P. ; Davies V. H. ; El-Nagar G. A. M. ; Dau H. ; Roth C. ACS Appl. Mater. Interfaces 2019, 11, 14734.
doi: 10.1021/acsami.8b22071 |
23 | Zhang C. ; Chen Z. ; Lian Y. ; Chen Y. ; Li Q. ; Gu Y. ; Lu Y. ; Deng Z. ; Peng Y. Acta Phys. -Chim. Sin. 2019, 35, 1404. |
张楚风; 陈哲伟; 连跃斌; 陈宇杰; 李沁; 顾银冬; 陆永涛; 邓昭; 彭扬. 物理化学学报, 2019, 35, 1404.
doi: 10.3866/PKU.WHXB201905030 |
|
24 |
Machan C. W. ; Chabolla S. A. ; Yin J. ; Gilson M. K. ; Tezcan F. A. ; Kubiak C. P. J. Am. Chem. Soc. 2014, 136, 14598.
doi: 10.1021/ja5085282 |
25 |
Hinogami R. ; Yotsuhashi S. ; Deguchi M. ; Zenitani Y. ; Hashiba H. ; Yamada Y. ECS Electrochem. Lett. 2012, 1, H17.
doi: 10.1149/2.001204eel |
26 |
Kumar R. S. ; Kumar S. S. ; Kulandainathan M. A. Electrochem. Commun. 2012, 25, 70.
doi: 10.1016/j.elecom.2012.09.018 |
27 |
Albo J. ; Vallejo D. ; Beobide G. ; Castillo O. ; Castano P. ; Irabien A. ChemSusChem 2017, 10, 1100.
doi: 10.1002/cssc.201600693 |
28 |
Kang X. ; Zhu Q. ; Sun X. ; Hu J. ; Zhang J. ; Liu Z. ; Han B. Chem. Sci. 2016, 7, 266.
doi: 10.1039/c5sc03291a |
29 | Liu Z. M. Acta Phys. -Chim. Sin. 2019, 35, 1307. |
刘志敏. 物理化学学报, 2019, 35, 1307.
doi: 10.3866/PKU.WHXB201908014 |
|
30 |
Hod I. ; Sampson M. D. ; Deria P. ; Kubiak C. P. ; Farha O. K. ; Hupp J. T. ACS Catal. 2015, 5, 6302.
doi: 10.1021/acscatal.5b01767 |
31 |
Kornienko N. ; Zhao Y. ; Kley C. S. ; Zhu C. ; Kim D. ; Lin S. ; Chang C. J. ; Yaghi O. M. ; Yang P. J. Am. Chem. Soc. 2015, 137, 14129.
doi: 10.1021/jacs.5b08212 |
32 |
Chen L. ; Li Y. ; Xu N. ; Zhang G. Carbon 2018, 132, 172.
doi: 10.1016/j.carbon.2018.02.051 |
33 |
Ye J. ; Johnson J. K. Catal. Sci. Tech. 2016, 6, 8392.
doi: 10.1039/c6cy01245k |
34 |
Rungtaweevoranit B. ; Baek J. ; Araujo J. R. ; Archanjo B. S. ; Choi K. M. ; Yaghi O. M. ; Somorjai G. A. Nano Lett. 2016, 16, 7645.
doi: 10.1021/acs.nanolett.6b03637 |
35 |
Diercks C. S. ; Liu Y. ; Cordova K. E. ; Yaghi O. M. Nat. Mater. 2018, 17, 301.
doi: 10.1038/s41563-018-0033-5 |
36 |
Nam D. H. ; Bushuyev O. S. ; Li J. ; De Luna P. ; Seifitokaldani A. ; Dinh C. T. ; de Arquer F. P. G. ; Wang Y. ; Liang Z. ; Proppe A. H. ; et al J. Am. Chem. Soc. 2018, 140, 11378.
doi: 10.1021/jacs.8b06407 |
37 |
Qiu Y. L. ; Zhong H. X. ; Zhang T. T. ; Xu W. B. ; Su P. P. ; Li X. F. ; Zhang H. M. ACS Appl. Mater. Interfaces 2018, 10, 2480.
doi: 10.1021/acsami.7b15255 |
38 |
Wang R. M. ; Sun X. H. ; Ould-Chikh S. ; Osadchii D. ; Bai F. ; Kapteijn F. ; Gascon J. ACS Appl. Mater. Interfaces 2018, 10, 14751.
doi: 10.1021/acsami.8b02226 |
39 |
Zhou W. ; Jia J. ; Lu J. ; Yang L. ; Hou D. ; Li G. ; Chen S. Nano Energy 2016, 28, 29.
doi: 10.1016/j.nanoen.2016.08.027 |
40 |
Huan T. N. ; Ranjbar N. ; Rousse G. ; Sougrati M. ; Zitolo A. ; Mougel V. ; Jaouen F. ; Fontecave M. ACS Catal. 2017, 7, 1520.
doi: 10.1021/acscatal.6b03353 |
41 |
Ju W. ; Bagger A. ; Hao G. P. ; Varela A. S. ; Sinev I. ; Bon V. ; Roldan Cuenya B. ; Kaskel S. ; Rossmeisl J. ; Strasser P. Nat. Commun. 2017, 8, 944.
doi: 10.1038/s41467-017-01035-z |
42 |
Cheng Y. S. ; Chu X. P. ; Ling M. ; Li N. ; Wu K. L. ; Wu F. H. ; Li H. ; Yuan G. ; Wei X. W. Catal. Sci. Tech. 2019, 9, 5668.
doi: 10.1039/C9CY01131E |
43 |
Rostamnia S. ; Alamgholiloo H. ; Liu X. J. Colloid Interface Sci. 2016, 469, 310.
doi: 10.1016/j.jcis.2016.02.021 |
44 |
Wang R. ; Wang K. ; Wang Z. ; Song H. ; Wang H. ; Ji S. J. Power Sources 2015, 297, 295.
doi: 10.1016/j.jpowsour.2015.07.107 |
45 |
Zhao K. ; Liu Y. ; Quan X. ; Chen S. ; Yu H. ACS Appl. Mater. Interfaces 2017, 9, 5302.
doi: 10.1021/acsami.6b15402 |
46 |
Han X. ; He X. ; Sun L. ; Han X. ; Zhan W. ; Xu J. ; Wang X. ; Chen J. ACS Catal. 2018, 8, 4.
doi: 10.1021/acscatal.7b04219 |
47 |
Han X. ; He X. ; Wang F. ; Chen J. ; Xu J. ; Wang X. ; Han X. J. Mater. Chem. A 2017, 5, 10220.
doi: 10.1039/c7ta01909b |
48 |
Ishizuka S. ; Kato S. ; Maruyama T. ; Akimoto K. Jpn. J. Appl. Phys. 2001, 40, 2765.
doi: 10.1143/JJAP.40.2765 |
49 |
Zheng Y. ; Cheng P. ; Xu J. ; Han J. ; Wang D. ; Hao C. ; Alanagh H. R. ; Long C. ; Shi X. ; Tang Z. Nanoscale 2019, 11, 4911.
doi: 10.1039/c8nr10236h |
50 |
Zhang L. S. ; Liang X. Q. ; Song W. G. ; Wu Z. Y. Phys. Chem. Chem. Phys. 2010, 12, 12055.
doi: 10.1039/c0cp00789g |
51 |
Zhong H. X. ; Wang J. ; Zhang Y. W. ; Xu W. L. ; Xing W. ; Xu D. ; Zhang Y. F. ; Zhang X. B. Angew. Chem. Int. Ed. 2014, 53, 14235.
doi: 10.1002/anie.201408990 |
52 |
Nie X. ; Luo W. ; Janik M. J. ; Asthagiri A. J. Catal. 2014, 312, 108.
doi: 10.1016/j.jcat.2014.01.013 |
53 |
Sharma P. P. ; Wu J. ; Yadav R. M. ; Liu M. ; Wright C. J. ; Tiwary C. S. ; Yakobson B. I. ; Lou J. ; Ajayan P. M. ; Zhou X. D. Angew. Chem. Int. Ed. 2015, 54, 13701.
doi: 10.1002/anie.201506062 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2 [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212053-0. |
[3] | Ji-Chao Wang, Xiu Qiao, Weina Shi, Jing He, Jun Chen, Wanqing Zhang. S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2210003-. |
[4] | Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2211051-. |
[5] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[6] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
[7] | Jintao Dong, Sainan Ji, Yi Zhang, Mengxia Ji, Bin Wang, Yingjie Li, Zhigang Chen, Jiexiang Xia, Huaming Li. Construction of Z-Scheme MnO2/BiOBr Heterojunction for Photocatalytic Ciprofloxacin Removal and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212011-. |
[8] | Yutong Wan, Fan Fang, Ruixue Sun, Jie Zhang, Kun Chang. Metal Oxide Semiconductors for Photothermal Catalytic CO2 Hydrogenation Reactions: Recent Progress and Perspectives [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212042-. |
[9] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[10] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[11] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[12] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[13] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[14] | Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009033-. |
[15] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-. |
|