Acta Phys. -Chim. Sin. ›› 2022, Vol. 38 ›› Issue (2): 2007093.doi: 10.3866/PKU.WHXB202007093
Special Issue: Graphene: Functions and Applications
• REVIEW • Previous Articles Next Articles
Muqiang Jian1,2, Yingying Zhang3, Zhongfan Liu1,2,*()
Received:
2020-07-31
Accepted:
2020-08-24
Published:
2020-08-27
Contact:
Zhongfan Liu
E-mail:zfliu@pku.edu.cn
About author:
Zhongfan Liu, Email: zfliu@pku.edu.cn; Tel.: +86-10-62758600Supported by:
Muqiang Jian, Yingying Zhang, Zhongfan Liu. Graphene Fibers: Preparation, Properties, and Applications[J]. Acta Phys. -Chim. Sin. 2022, 38(2), 2007093. doi: 10.3866/PKU.WHXB202007093
Fig 1
Typical carbonaceous fibers: carbon fibers, carbon nanotube (CNT) fibers 8, and graphene fibers (GFs) 9, 11. Adapted with permission from Ref. 8. Copyright 2010, American Chemical Society. Adapted with permission from Ref. 9. Copyright 2011, Nature Publishing Group. Adapted with permission from Ref. 11. Copyright 2016, Wiley-VCH."
Table 1
Comparison of different carbonaceous fibers."
Materials | Theoretical properties | Present properties | Applications | |||||
Tensile strength/GPa | Young's modulus/GPa | Electrical conductivity/(× 106 S·m?1) | Tensile Strength/GPa | Young's modulus/GPa | Electrical conductivity/(× 106 S·m?1) | |||
Carbon fibers | > 100 | 1000 | – | 7 (T1000) | 588 (M60J) | 0.06–0.14 2 | Structural materials | |
CNT fibers | > 100 | 1000 | 100 | 9.6 12 | 397 13 | 0.03–10.9 13 | Structural-functional materials | |
Graphene fibers | ~130 | 1100 | 100 | 2.2 11 | 400 11 | 0.03–22.4 14 | Structural-functional materials |
Fig 2
Various spinning methods for GFs. (a) The knot of GF 9. Adapted with permission from Ref. 9. Copyright 2011, Nature Publishing Group. (b) Schematic illustration of wet spinning of GOFs, followed by chemical or thermal reduction to transform GOFs into GFs. (c) 50-filament GOFs extruded from the spinneret. (d) Images of ultrafine GFs 11. Adapted with permission from Ref. 11. Copyright 2016, Wiley-VCH. (e) Illustration of the dry spinning process to form a GOF 29. Adapted with permission from Ref. 29. Copyright 2017, the Royal Society of Chemistry. (f) Dry-jet wet spinning of GFs. (g) Surface morphology of GF. (h) Cross-section morphology and the schematic of GF 30. Adapted with permission from Ref. 30. Copyright 2013, American Chemical Society."
Fig 3
Fabrication of GFs through space-confined hydrothermal strategy, and film conversion, and CVD method. (a) Photograph of GF coiled around a glass rod. (b) Surface morphology of GF 31. Adapted with permission from Ref. 31. Copyright 2012, Wiley-VCH. (c) GFs with multichannels 33. Adapted with permission from Ref. 33. Copyright 2012, American Chemical Society. (d) A thin GO film being scrolled into a GOF. (e) Different morphologies of GOFs 35. Adapted with permission from Ref. 35. Copyright 2014, American Chemical Society. (f) Quartz fiber bundles before (white) and after (grey) graphene growth. (g) Morphology of GF after etching the quartz fiber 40. Adapted with permission from Ref. 40. Copyright 2020, American Chemical Society."
Table 2
Summary of the preparation methods and properties of GFs."
Preparation | composition | Tensile Strength/MPa | Young's Modulus/GPa | Failure Strain/% | Electrical Conductivity/(S·m?1) | Thermal Conductivity/(W·m?1·K?1) | Ref. |
Wet spinning | |||||||
353 K, HI reduced | rGO | 140 | 7.7 | 5.8 | 2.5 × 104 | – | |
353 K, HI reduced | rGO | 182 | 8.7 | ~3.2 | 3.5 × 104 | – | |
493 K in vacuum | rGO | 115 ± 19 | 9.0 ± 2.1 | – | 2.8 × 102 | 1435 | |
363 K, HI reduced | rGO+Ag | – | – | – | 9.3 × 104 | – | |
353 K, HI reduced | rGO (large GO flakes) | 360.1 ± 12.7 | 12.8 ± 0.8 | – | 3.2 × 104 | – | |
353 K, HI reduced | rGO (giant GO flakes) | 501.5 | 11.2 | 6.7 | 4.1 × 104 | – | |
353 K, HI reduced | rGO | 365 | 21 | ~3.0 | 2.7 × 104 | – | |
2073 K or 3013 K | rGO (large and small | 1080 ± 61 | 135 ± 8 | ~1.4 | 2.21 (± 0.06) × 105 | 1290 ± 53 | |
in Ar | GO sheets) | ||||||
353 K, HI reduced | rGO + PCDO | 842.6 ± 59.4 | – | 3.5 | 2.92 × 104 | – | |
3273 K in Ar | rGO + K | – | – | – | 2.24 × 107 | – | |
3273 K in Ar | rGO | 2200 | 400 | 0.5 | 8 × 105 | – | |
1273 K in N2 | rGO + phenolic resin | 1450 | 120 | 1.8 | 8.4 × 104 | – | |
3273 K in Ar | rGO + Ca | – | – | – | Superconductive (11K) | – | |
363 K, HI reduced | rGO + PSE-AP | 740.1 | ~3.8 | – | 4.33 × 104 | – | |
HI reduced | rGO+chitosan | 743.6 | ~6.1 | – | 1.79 × 104 | – | |
1273 K in H2 | rGO+PDA | 650 | 80.3 | 0.73 | 1.32 × 105 | – | |
2773 K in Ar | rGO (microfluidics) | 1900 ± 100 | 309 ± 16 | ~0.65 | 1.04 (± 0.17) × 106 | 1575 ± 81 | |
Dry spinning | |||||||
353 K, HI reduced | rGO | 375 ± 20 | 11.6 | 9.4 | 1.32 × 104 | – | |
353 K, HI reduced | rGO | 120 | – | ~6 | 7.5 × 103 | – | |
Dry jet wet spinning | |||||||
1323 K in Ar | Graphene nanoribbons | 378 ± 5 | 36.2 ± 3.8 | 1.1 ± 0.13 | 2.85 × 104 | – | |
Hydrothermal | |||||||
1073 K in vacuum | rGO | 420 | – | ~2.4 | 1.0 × 103 | – | |
493 K, 6 h | rGO | 197 | – | 4.2 | 1.2 × 103 | – | |
493 K, 6 h | rGO/CNT | 84 | – | 3.3 | 1.02 × 104 | – | |
1473 K in Ar | rGO+PDA | 724 ± 57 | 37.1 ± 1.9 | 2.31 ± 0.7 | 6.16 (± 0.47) × 104 | – | |
Film conversion | |||||||
3073 K | rGO | 39.2 | 3.17 | 1.5 | 4.16 × 104 | – | |
3273 K in Ar | rGO | 3.9 ± 0.5 | – | ~1.3 | 3.18 × 104 | 1.90 × 102 | |
CVD | |||||||
1273 K for growth | graphene | – | – | – | 1.27 × 104 | – |
Fig 4
Various strategies to enhance the mechanical properties of GFs. (a) Schematic of the basic structure of GOFs and GFs based on the large-sized and small-sized GO. (b) Tensile strength of different GFs 61. Adapted with permission from Ref. 61. Copyright 2015, AAAS. (c) Typical stress-strain curves of GFs derived from different coagulation baths 60. Adapted with permission from Ref. 60. Copyright 2012, Wiley-VCH. (d) Schematic of high-strength GFs fabricated by a full-scale synergetic defect engineering to minimize the defects. (e) Tensile strength curves of GFs treated with different temperatures 11. Adapted with permission from Ref. 11. Copyright 2016, Wiley-VCH. (f) Schematic of phenolic carbon strengthening GFs. (g) Stress-strain curves of different GFs 65. Adapted with permission from Ref. 65. Copyright 2016, American Chemical Society. (h) Illustration of the fabrication of the GFs via sequential toughening of hydrogen (chitosan) and ionic bonding (Ca2+) 66. Adapted with permission from Ref. 66. Copyright 2018, American Chemical Society."
Fig 5
Various approaches to enhance the electrical and thermal properties of GFs. (a) Electrical conductivity of GFs annealed at different temperatures from 1573 to 3273 K 11. Adapted with permission from Ref. 11. Copyright 2016, Wiley-VCH. (b) Structural model of GF. (c) Schematic of GFs doped by dopants, the dopant molecules marked by red dots were FeCl3, Br2, or K. (d) Comparison of electrical conductivity of GFs and doped ones 77. Adapted with permission from Ref. 77. Copyright 2016, Wiley-VCH. (e) Thermal conductivity of GFs. (f) Heat transport of different GFs and copper wire 61. Adapted with permission from Ref. 61. Copyright 2015, AAAS."
Fig 6
GFs for multifunctional fabrics, sensors and actuators. (a) Br2 doped GFs connecting the working lamp (220 V, 9 W) 77. Adapted with permission from Ref. 77. Copyright 2016, Wiley-VCH. (b) A thermally annealed GF fabric with porous feature. (c) Infrared picture of GF fabric heater 86. Adapted with permission from Ref. 86. Copyright 2016, Nature Publishing Group. (d) PVA/GF as a strain sensor 57. Adapted with permission from Ref. 57. Copyright 2015, American Chemical Society. (e) GFs and Pt-GFs-based humidity sensor 87. Adapted with permission from Ref. 87. Copyright 2018, Wiley-VCH. (f) Scheme for the responses of two twist GOFs suffering the wetting of acetone. (g) GOFs woven with cotton fibers for an actuator 88. Adapted with permission from Ref. 88. Copyright 2019, the Royal Society of Chemistry."
Fig 7
GFs for fiber-shaped supercapacitors and batteries. (a) Morphology of a GF covered with 3D porous network-like graphene framework (GF@3D-G). (b) Two twined GF@3D-Gs with polyelectrolyte for fiber-shaped supercapacitor32. Adapted with permission from Ref. 32. Copyright 2013, Wiley-VCH. (c) Coaxial wet-spinning process to prepare core-sheath fibers. (d) Coaxial fibers woven with cotton fibers. (e) Performance comparison of this supercapacitor with the previous fiber-shaped ones 27. Adapted with permission from Ref. 27. Copyright 2014, Nature Publishing Group. (f) Graphene@polymer core-shell fibers for high-performance wearable supercapacitors, which could light a green LED. (g) Capacitance retention of wearable supercapacitors under the bending angle of 180° 96. Adapted with permission from Ref. 96. Copyright 2017, American Chemical Society. (h) Schematic illustration of the graphene/CNT composite fiber. (i) Current density-voltage curves of wire-shaped dye-sensitized solar cells with different fibers as the counter electrodes. (j) The flexible photovoltaic textile 99. Adapted with permission from Ref. 99. Copyright 2014, Wiley-VCH."
1 | Zhu, M. F; Zhou, Z. High Performance Fiber. China Railway Publishing House: Beijing, China, 2017, p. 1. |
朱美芳, 刘哲. 高性能纤维. 北京: 中国铁道出版社, 2017: 1. | |
2 |
Xu Z. ; Gao C. Mater. Today 2015, 18, 480.
doi: 10.1016/j.mattod.2015.06.009 |
3 | Liu, Y. Q. Graphene: From Basics to Applicatons. Chemical Industry Press: Beijing, China, 2017; pp. 6-14. |
刘云圻. 石墨烯: 从基础到应用. 北京: 化学工业出版社, 2017: 6-14. | |
4 |
Jiang K. ; Li Q. ; Fan S. Nature 2002, 419, 801.
doi: 10.1038/419801a |
5 | Wang H. ; He M. ; Zhang Y. Acta Phys. -Chim. Sin. 2019, 35, 1207. |
王灏珉; 何茂帅; 张莹莹. 物理化学学报, 2019, 35, 1207.
doi: 10.3866/PKU.WHXB201811011 |
|
6 | Xia K. L. ; Jian M. Q. ; Zhang Y. Y. Acta Phys. -Chim. Sin. 2016, 32, 2427. |
夏凯伦; 蹇木强; 张莹莹. 物理化学学报, 2016, 32, 2427.
doi: 10.3866/PKU.WHXB201607261 |
|
7 | Zhang S. ; Zhang N. ; Zhang J. Acta Phys. -Chim. Sin. 2020, 36, 1907021. |
张树辰; 张娜; 张锦. 物理化学学报, 2020, 36, 1907021.
doi: 10.3866/PKU.WHXB201907021 |
|
8 |
Liu K. ; Sun Y. ; Lin X. ; Zhou R. ; Wang J. ; Fan S. ; Jiang K. ACS Nano 2010, 4, 5827.
doi: 10.1021/nn1017318 |
9 |
Xu Z. ; Gao C. Nat. Commun. 2011, 2, 571.
doi: 10.1038/ncomms1583 |
10 | Cheng Y. ; Wang K. ; Qi Y. ; Liu Z. Acta Phys. -Chim. Sin. 2021, 37, 2006046. |
程熠; 王坤; 亓月; 刘忠范. 物理化学学报, 2021, 37, 2006046.
doi: 10.3866/PKU.WHXB202006046 |
|
11 |
Xu Z. ; Liu Y. ; Zhao X. ; Peng L. ; Sun H. ; Xu Y. ; Ren X. ; Jin C. ; Xu P. ; Wang M. ; et al Adv. Mater. 2016, 28, 6449.
doi: 10.1002/adma.201506426 |
12 |
Xu W. ; Chen Y. ; Zhan H. ; Wang J. N. Nano Lett. 2016, 16, 946.
doi: 10.1021/acs.nanolett.5b03863 |
13 |
Zhang X. ; Lu W. ; Zhou G. ; Li Q. Adv. Mater. 2020, 32, e1902028.
doi: 10.1002/adma.201902028 |
14 |
Fang B. ; Chang D. ; Xu Z. ; Gao C. Adv. Mater. 2020, 32, e1902664.
doi: 10.1002/adma.201902664 |
15 |
Meng F. ; Lu W. ; Li Q. ; Byun J. H. ; Oh Y. ; Chou T. W. Adv. Mater. 2015, 27, 5113.
doi: 10.1002/adma.201501126 |
16 |
Xu T. ; Zhang Z. ; Qu L. Adv. Mater. 2020, 32, e1901979.
doi: 10.1002/adma.201901979 |
17 |
Liu Y. ; Xu Z. ; Gao W. ; Cheng Z. ; Gao C. Adv. Mater. 2017, 29, 1606794.
doi: 10.1002/adma.201606794 |
18 |
Li Z. ; Liu Z. ; Sun H. ; Gao C. Chem. Rev. 2015, 115, 7046.
doi: 10.1021/acs.chemrev.5b00102 |
19 |
Xu Z. ; Peng L. ; Liu Y. ; Liu Z. ; Sun H. ; Gao W. ; Gao C. Chem. Mater. 2016, 29, 319.
doi: 10.1021/acs.chemmater.6b02882 |
20 |
Yu G.H. ; Han Q. ; Qu L. T. Chin. J. Polym. Sci. 2019, 37, 535.
doi: 10.1007/s10118-019-2245-9 |
21 |
Kou L. ; Liu Y. ; Zhang C. ; Shao L. ; Tian Z. ; Deng Z. ; Gao C. Nano-Micro Lett. 2017, 9, 51.
doi: 10.1007/s40820-017-0151-7 |
22 |
Chen L. ; Liu Y. ; Zhao Y. ; Chen N. ; Qu L. Nanotechnology 2016, 27, 032001.
doi: 10.1088/0957-4484/27/3/032001 |
23 |
Cheng H. ; Hu C. ; Zhao Y. ; Qu L. NPG Asia Mater. 2014, 6, e113.
doi: 10.1038/am.2014.48 |
24 |
Yin F. ; Hu J. ; Hong Z. ; Wang H. ; Liu G. ; Shen J. ; Wang H. L. ; Zhang K. Q. RSC Adv. 2020, 10, 5722.
doi: 10.1039/c9ra10823h |
25 |
Xu Z. ; Gao C. ACS Nano 2011, 5, 2908.
doi: 10.1021/nn200069w |
26 |
Zhao Y. ; Jiang C. ; Hu C. ; Dong Z. ; Xue J. ; Meng Y. ; Zheng N. ; Chen P. ; Qu L. ACS Nano 2013, 7, 2406.
doi: 10.1021/nn305674a |
27 |
Kou L. ; Huang T. ; Zheng B. ; Han Y. ; Zhao X. ; Gopalsamy K. ; Sun H. ; Gao C. Nat. Commun. 2014, 5, 3754.
doi: 10.1038/ncomms4754 |
28 | Liu, Y. J. High Performance Graphene Fiber. Ph. D. Thesis, Zhejiang University, Hangzhou, 2017. |
刘英军. 高性能石墨烯纤维[D]. 杭州: 浙江大学, 2017. | |
29 |
Tian Q. ; Xu Z. ; Liu Y. ; Fang B. ; Peng L. ; Xi J. ; Li Z. ; Gao C. Nanoscale 2017, 9, 12335.
doi: 10.1039/c7nr03895j |
30 |
Xiang C. ; Behabtu N. ; Liu Y. ; Chae H. G. ; Young C. C. ; Genorio B. ; Tsentalovich D. E. ; Zhang C. ; Kosynkin D. V. ; Lomeda J. R. ACS Nano 2013, 7, 1628.
doi: 10.1021/nn305506s |
31 |
Dong Z. ; Jiang C. ; Cheng H. ; Zhao Y. ; Shi G. ; Jiang L. ; Qu L. Adv. Mater. 2012, 24, 1856.
doi: 10.1002/adma.201200170 |
32 |
Meng Y. ; Zhao Y. ; Hu C. ; Cheng H. ; Hu Y. ; Zhang Z. ; Shi G. ; Qu L. Adv. Mater. 2013, 25, 2326.
doi: 10.1002/adma.201300132 |
33 |
Hu C. ; Zhao Y. ; Cheng H. ; Wang Y. ; Dong Z. ; Jiang C. ; Zhai X. ; Jiang L. ; Qu L. Nano Lett. 2012, 12, 5879.
doi: 10.1021/nl303243h |
34 |
Li X. ; Zhao T. ; Wang K. ; Yang Y. ; Wei J. ; Kang F. ; Wu D. ; Zhu H. Langmuir 2011, 27, 12164.
doi: 10.1021/la202380g |
35 |
Cruzsilva R. ; Morelosgomez A. ; Kim H. ; Jang H. ; Tristan F. ; Vegadiaz S. M. ; Rajukumar L. P. ; Elias A. L. ; Perealopez N. ; Suhr J. ACS Nano 2014, 8, 5959.
doi: 10.1021/nn501098d |
36 |
Wang R. ; Xu Z. ; Zhuang J. ; Liu Z. ; Peng L. ; Li Z. ; Liu Y. ; Gao W. ; Gao C. Adv. Electron. Mater. 2017, 3, 1600425.
doi: 10.1002/aelm.201600425 |
37 |
Zhang M. ; Atkinson K. R. ; Baughman R. H. Science 2004, 306, 1358.
doi: 10.1126/science.1104276 |
38 |
Carretero-Gonzalez J. ; Castillo-Martinez E. ; Dias-Lima M. ; Acik M. ; Rogers D. M. ; Sovich J. ; Haines C. S. ; Lepro X. ; Kozlov M. ; Zhakidov A. ; et al Adv. Mater. 2012, 24, 5695.
doi: 10.1002/adma.201201602 |
39 |
Wang H. ; Wang C. ; Jian M. ; Wang Q. ; Xia K. ; Yin Z. ; Zhang M. ; Liang X. ; Zhang Y. Nano Res. 2018, 11, 2347.
doi: 10.1007/s12274-017-1782-1 |
40 |
Cui G. ; Cheng Y. ; Liu C. ; Huang K. ; Li J. ; Wang P. ; Duan X. ; Chen K. ; Liu K. ; Liu Z. ACS Nano 2020, 14, 5938.
doi: 10.1021/acsnano.0c01298 |
41 | Chen X. D. ; Chen Z. L. ; Sun J. Y. ; Zhang Y. F. ; Liu Z. F. Acta Phys. -Chim. Sin. 2016, 32, 14. |
陈旭东; 陈召龙; 孙靖宇; 张艳锋; 刘忠范. 物理化学学报, 2016, 32, 14.
doi: 10.3866/PKU.WHXB201511133 |
|
42 | Chen Z. L. ; Gao P. ; Liu Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004. |
陈召龙; 高鹏; 刘忠范. 物理化学学报, 2020, 36, 1907004.
doi: 10.3866/PKU.WHXB201907004 |
|
43 | Liu Q. B. ; Yu C. ; He Z. Z. ; Wang J. J. ; Li J. ; Lu W. L. ; Feng Z. H. Acta Phys. -Chim. Sin. 2016, 32, 787. |
刘庆彬; 蔚翠; 何泽召; 王晶晶; 李佳; 芦伟立; 冯志红. 物理化学学报, 2016, 32, 787.
doi: 10.3866/PKU.WHXB201512183 |
|
44 | Wang K. X. ; Shi L. R. ; Wang M. Z. ; Yang H. ; Liu Z. F. ; Peng H. L. Acta Phys. -Chim. Sin. 2019, 35, 1112. |
王可心; 史刘嵘; 王铭展; 杨皓; 刘忠范; 彭海琳. 物理化学学报, 2019, 35, 1112.
doi: 10.3866/PKU.WHXB201805032 |
|
45 |
Chen Z. ; Qi Y. ; Chen X. ; Zhang Y. ; Liu Z. Adv. Mater. 2019, 31, e1803639.
doi: 10.1002/adma.201803639 |
46 |
Deng B. ; Liu Z. ; Peng H. Adv. Mater. 2019, 31, e1800996.
doi: 10.1002/adma.201800996 |
47 |
Zhang J. ; Lin L. ; Jia K. ; Sun L. ; Peng H. ; Liu Z. Adv. Mater. 2020, 32, e1903266.
doi: 10.1002/adma.201903266 |
48 |
Ullah S. ; Hasan M. ; Ta H. Q. ; Zhao L. ; Shi Q. ; Fu L. ; Choi J. ; Yang R. ; Liu Z. ; Rümmeli M. H. Adv. Funct. Mater. 2019, 29, 1904457.
doi: 10.1002/adfm.201904457 |
49 |
Chen K. ; Shi L. ; Zhang Y. ; Liu Z. Chem. Soc. Rev. 2018, 47, 3018.
doi: 10.1039/c7cs00852j |
50 |
Lin L. ; Deng B. ; Sun J. ; Peng H. ; Liu Z. Chem. Rev. 2018, 118, 9281.
doi: 10.1021/acs.chemrev.8b00325 |
51 |
Jiang B. ; Zhao Q. ; Zhang Z. ; Liu B. ; Shan J. ; Zhao L. ; Rümmeli M. H. ; Gao X. ; Zhang Y. ; Yu T. ; et al Nano Res. 2020,
doi: 10.1007/s12274-020-2771-3 |
52 |
Lin L. ; Zhang J. ; Su H. ; Li J. ; Sun L. ; Wang Z. ; Xu F. ; Liu C. ; Lopatin S. ; Zhu Y. ; et al Nat. Commun 2019, 10, 1912.
doi: 10.1038/s41467-019-09565-4 |
53 |
Lin L. ; Peng H. ; Liu Z. Nat. Mater. 2019, 18, 520.
doi: 10.1038/s41563-019-0341-4 |
54 |
Chen K. ; Zhou X. ; Cheng X. ; Qiao R. ; Cheng Y. ; Liu C. ; Xie Y. ; Yu W. ; Yao F. ; Sun Z. ; et al Nat. Photonics 2019, 13, 754.
doi: 10.1038/s41566-019-0492-5 |
55 |
Deng B. ; Xin Z. ; Xue R. ; Zhang S. ; Xu X. ; Gao J. ; Tang J. ; Qi Y. ; Wang Y. ; Zhao Y. ; et al Sci. Bull. 2019, 64, 659.
doi: 10.1016/j.scib.2019.04.030 |
56 |
Chen T. ; Dai L. Angew. Chem. Int. Ed. Engl. 2015, 54, 14947.
doi: 10.1002/anie.201507246 |
57 |
Wang X. ; Qiu Y. ; Cao W. ; Hu P. Chem. Mater. 2015, 27, 6969.
doi: 10.1021/acs.chemmater.5b02098 |
58 |
Xiang C. ; Young C. C. ; Wang X. ; Yan Z. ; Hwang C. C. ; Cerioti G. ; Lin J. ; Kono J. ; Pasquali M. ; Tour J. M. Adv. Mater. 2013, 25, 4592.
doi: 10.1002/adma.201301065 |
59 |
Chen L. ; He Y. ; Chai S. ; Qiang H. ; Chen F. ; Fu Q. Nanoscale 2013, 5, 5809.
doi: 10.1039/c3nr01083j |
60 |
Xu Z. ; Sun H. ; Zhao X. ; Gao C. Adv. Mater. 2013, 25, 188.
doi: 10.1002/adma.201203448 |
61 |
Xin G. ; Yao T. ; Sun H. ; Scott S. M. ; Shao D. ; Wang G. ; Lian J. Science 2015, 349, 1083.
doi: 10.1126/science.aaa6502 |
62 |
Chen S. ; Ma W. ; Cheng Y. ; Weng Z. ; Sun B. ; Wang L. ; Chen W. ; Li F. ; Zhu M. ; Cheng H. M. Nano Energy 2015, 15, 642.
doi: 10.1016/j.nanoen.2015.05.004 |
63 |
Jalili R. ; Aboutalebi S. H. ; Esrafilzadeh D. ; Shepherd R. L. ; Chen J. ; Aminorroaya-Yamini S. ; Konstantinov K. ; Minett A. I. ; Razal J. M. ; Wallace G. G. Adv. Funct. Mater. 2013, 23, 5345.
doi: 10.1002/adfm.201300765 |
64 |
Xin G. ; Zhu W. ; Deng Y. ; Cheng J. ; Zhang L. T. ; Chung A. J. ; De S. ; Lian J. Nat. Nanotechnol. 2019, 14, 168.
doi: 10.1038/s41565-018-0330-9 |
65 |
Li M. ; Zhang X. ; Wang X. ; Ru Y. ; Qiao J. Nano Lett. 2016, 16, 6511.
doi: 10.1021/acs.nanolett.6b03108 |
66 |
Wang X. ; Peng J. ; Zhang Y. ; Li M. ; Saiz E. ; Tomsia A. P. ; Cheng Q. ACS Nano 2018, 12, 12638.
doi: 10.1021/acsnano.8b07392 |
67 |
Kim I. H. ; Yun T. ; Kim J. E. ; Yu H. ; Sasikala S. P. ; Lee K. E. ; Koo S. H. ; Hwang H. ; Jung H. J. ; Park J. Y. ; et al Adv. Mater. 2018, 30, e1803267.
doi: 10.1002/adma.201803267 |
68 |
Ma T. ; Gao H. L. ; Cong H. P. ; Yao H. B. ; Wu L. ; Yu Z. Y. ; Chen S. M. ; Yu S. H. Adv. Mater. 2018, 30, e1706435.
doi: 10.1002/adma.201706435 |
69 |
Zhang Y. ; Peng J. ; Li M. ; Saiz E. ; Wolf S. E. ; Cheng Q. ACS Nano 2018, 12, 8901.
doi: 10.1021/acsnano.8b04322 |
70 |
Zhang Y. ; Li Y. ; Ming P. ; Zhang Q. ; Liu T. ; Jiang L. ; Cheng Q. Adv. Mater. 2016, 28, 2834.
doi: 10.1002/adma.201506074 |
71 |
Shin M. K. ; Lee B. ; Kim S. H. ; Lee J. A. ; Spinks G. M. ; Gambhir S. ; Wallace G. G. ; Kozlov M. E. ; Baughman R. H. ; Kim S. J. Nat. Commun. 2012, 3, 650.
doi: 10.1038/ncomms1661 |
72 |
Noh S. H. ; Eom W. ; Lee W. J. ; Park H. ; Ambade S. B. ; Kim S. O. ; Han T. H. Carbon 2019, 142, 230.
doi: 10.1016/j.carbon.2018.10.041 |
73 |
Xu Z. ; Liu Z. ; Sun H. ; Gao C. Adv. Mater. 2013, 25, 3249.
doi: 10.1002/adma.201300774 |
74 |
Fang B. ; Xi J. ; Liu Y. ; Guo F. ; Xu Z. ; Gao W. ; Guo D. ; Li P. ; Gao C. Nanoscale 2017, 9, 12178.
doi: 10.1039/c7nr04175f |
75 |
Cong H. P. ; Ren X. C. ; Wang P. ; Yu S. H. Sci. Rep. 2012, 2, 613.
doi: 10.1038/srep00613 |
76 |
Cao J. ; Zhang Y. ; Men C. ; Sun Y. ; Wang Z. ; Zhang X. ; Li Q. ACS Nano 2014, 8, 4325.
doi: 10.1021/nn4059488 |
77 |
Liu Y. ; Xu Z. ; Zhan J. ; Li P. ; Gao C. Adv. Mater. 2016, 28, 7941.
doi: 10.1002/adma.201602444 |
78 |
Liu Y. ; Liang H. ; Xu Z. ; Xi J. ; Chen G. ; Gao W. ; Xue M. ; Gao C. ACS Nano 2017, 11, 4301.
doi: 10.1021/acsnano.7b01491 |
79 |
Feng L. ; Chang Y. ; Zhong J. ; Jia D. C. Sci. Rep. 2018, 8, 10803.
doi: 10.1038/s41598-018-29157-4 |
80 |
Yu D. ; Goh K. ; Wang H. ; Wei L. ; Jiang W. ; Zhang Q. ; Dai L. ; Chen Y. Nat. Nanotechnol. 2014, 9, 555.
doi: 10.1038/nnano.2014.93 |
81 |
Zheng B. ; Gao W. ; Liu Y. ; Wang R. ; Li Z. ; Xu Z. ; Gao C. Carbon 2020, 158, 157.
doi: 10.1016/j.carbon.2019.11.072 |
82 |
Xu Z. ; Zhang Y. ; Li P. ; Gao C. ACS Nano 2012, 6, 7103.
doi: 10.1021/nn3021772 |
83 |
Aboutalebi S. H. ; Jalili R. ; Esrafilzadeh D. ; Salari M. ; Gholamvand Z. ; Yamini S. A. ; Konstantinov K. ; Shepherd R. L. ; Chen J. ; Moulton S. E. ACS Nano 2014, 8, 2456.
doi: 10.1021/nn406026z |
84 |
Fang B. ; Peng L. ; Xu Z. ; Gao C. ACS Nano 2015, 9, 5214.
doi: 10.1021/acsnano.5b00616 |
85 |
Seyedin S. ; Romano M. S. ; Minett A. I. ; Razal J. M. Sci. Rep. 2015, 5, 14946.
doi: 10.1038/srep14946 |
86 |
Li Z. ; Xu Z. ; Liu Y. ; Wang R. ; Gao C. Nat. Commun. 2016, 7, 13684.
doi: 10.1038/ncomms13684 |
87 |
Choi S. J. ; Yu H. ; Jang J. S. ; Kim M. H. ; Kim S. J. ; Jeong H. S. ; Kim I. D. Small 2018, 14, e1703934.
doi: 10.1002/smll.201703934 |
88 |
Fang B. ; Xiao Y. ; Xu Z. ; Chang D. ; Wang B. ; Gao W. ; Gao C. Mater. Horiz. 2019, 6, 1207.
doi: 10.1039/c8mh01647j |
89 |
Peng Y. ; Lin D. ; Justin Gooding J. ; Xue Y. ; Dai L. Carbon 2018, 136, 329.
doi: 10.1016/j.carbon.2018.05.004 |
90 |
Jang J. S. ; Yu H. ; Choi S. J. ; Koo W. T. ; Lee J. ; Kim D. H. ; Kang J. Y. ; Jeong Y. J. ; Jeong H. ; Kim I. D. ACS Appl. Mater. Interfaces 2019, 11, 10208.
doi: 10.1021/acsami.8b22015 |
91 |
Cheng H. ; Liu J. ; Zhao Y. ; Hu C. ; Zhang Z. ; Chen N. ; Jiang L. ; Qu L. Angew. Chem. Int. Ed. Engl. 2013, 52, 10482.
doi: 10.1002/anie.201304358 |
92 |
Zhang M. ; Wang Y. ; Jian M. ; Wang C. ; Liang X. ; Niu J. ; Zhang Y. Adv. Sci. 2020, 7, 1903048.
doi: 10.1002/advs.201903048 |
93 |
Zhang M. ; Guo R. ; Chen K. ; Wang Y. ; Niu J. ; Guo Y. ; Zhang Y. ; Yin Z. ; Xia K. ; Zhou B. ; et al Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 14667.
doi: 10.1073/pnas.2003079117 |
94 |
Lu Z. ; Foroughi J. ; Wang C. ; Long H. ; Wallace G. G. Adv. Energy Mater. 2018, 8, 1702047.
doi: 10.1002/aenm.201702047 |
95 |
He N. ; Shan W. ; Wang J. ; Pan Q. ; Qu J. ; Wang G. ; Gao W. J. Mater. Chem. A 2019, 7, 6869.
doi: 10.1039/c8ta12337c |
96 |
Padmajan Sasikala S. ; Lee K. E. ; Lim J. ; Lee H. J. ; Koo S. H. ; Kim I. H. ; Jung H. J. ; Kim S. O. ACS Nano 2017, 11, 9424.
doi: 10.1021/acsnano.7b05029 |
97 |
Li P. ; Jin Z. ; Peng L. ; Zhao F. ; Xiao D. ; Jin Y. ; Yu G. Adv. Mater. 2018, 30, e1800124.
doi: 10.1002/adma.201800124 |
98 |
Zhai S. ; Wang C. ; Karahan H. E. ; Wang Y. ; Chen X. ; Sui X. ; Huang Q. ; Liao X. ; Wang X. ; Chen Y. Small 2018, 14, e1800582.
doi: 10.1002/smll.201800582 |
99 |
Sun H. ; You X. ; Deng J. ; Chen X. ; Yang Z. ; Ren J. ; Peng H. Adv. Mater. 2014, 26, 2868.
doi: 10.1002/adma.201305188 |
100 |
Rao J. ; Liu N. ; Zhang Z. ; Su J. ; Li L. ; Xiong L. ; Gao Y. Nano Energy 2018, 51, 425.
doi: 10.1016/j.nanoen.2018.06.067 |
101 |
Chong W. G. ; Huang J.Q. ; Xu Z.L. ; Qin X. ; Wang X. ; Kim J. K. Adv. Funct. Mater. 2017, 27, 1604815.
doi: 10.1002/adfm.201604815 |
102 |
Zhao S. ; Li G. ; Tong C. ; Chen W. ; Wang P. ; Dai J. ; Fu X. ; Xu Z. ; Liu X. ; Lu L. ; et al Nat. Commun. 2020, 11, 1788.
doi: 10.1038/s41467-020-15570-9 |
103 |
Wang K. ; Frewin C. L. ; Esrafilzadeh D. ; Yu C. ; Wang C. ; Pancrazio J. J. ; Romero-Ortega M. ; Jalili R. ; Wallace G. Adv. Mater. 2019, 31, e1805867.
doi: 10.1002/adma.201805867 |
104 |
Zhou F. ; Tien H. N. ; Xu W. L. ; Chen J. T. ; Liu Q. ; Hicks E. ; Fathizadeh M. ; Li S. ; Yu M. Nat. Commun. 2017, 8, 2107.
doi: 10.1038/s41467-017-02318-1 |
[1] | Heran Wang, Kai Chen, Shuo Fu, Haoxuan Wang, Jiaxuan Yuan, Xingyi Hu, Wenjuan Xu, Baoxiu Mi. Isomeric Bisbenzophenothiazines: Synthesis, Theoretical Calculations, and Photophysical Properties [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303047-. |
[2] | Yanpeng Fu, Changbao Zhu. Design Strategies for Sodium Electrode Materials: Solid-State Ionics Perspective [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2209002-0. |
[3] | Zhen Liu, Xiangfu Meng, Wanmiao Gu, Jun Zha, Nan Yan, Qing You, Nan Xia, Hui Wang, Zhikun Wu. Introducing Novel, Multiple Cd Coordination Modes into Gold Nanoclusters by Combined Doping for Enhancing Electrocatalytic Performance [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2212064-. |
[4] | Bihao Zhuang, Zicong Jin, Dehua Tian, Suiyi Zhu, Linqian Zeng, Jiandong Fan, Zaizhu Lou, Wenzhe Li. Halogen Regulation for Enhanced Luminescence in Emerging (4-HBA)SbX5∙H2O Perovskite-Like Single Crystals [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2209007-0. |
[5] | Yong Zhang, Haojie Lu, Xiaoping Liang, Mingchao Zhang, Huarun Liang, Yingying Zhang. Silk Materials for Intelligent Fibers and Textiles: Potential, Progress and Future Perspective [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103034-. |
[6] | Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2103046-. |
[7] | Kunjie Wu, Yongyi Zhang, Zhenzhong Yong, Qingwen Li. Continuous Preparation and Performance Enhancement Techniques of Carbon Nanotube Fibers [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2106034-. |
[8] | Yeye Wen, Ming Ren, Jiangtao Di, Jin Zhang. Application of Carbonene Materials for Artificial Muscles [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2107006-. |
[9] | Hang Zhou, Kun Jiao. Carbonene Materials Modified High-Performance Polymer Fibers: Preparation, Properties, and Applications [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2111041-. |
[10] | Hanqing Liu, Feng Zhou, Xiaoyu Shi, Quan Shi, Zhong-Shuai Wu. Recent Advances and Prospects of Graphene-Based Fibers for Application in Energy Storage Devices [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204017-. |
[11] | Xiaohui Cao, Chengyi Hou, Yaogang Li, Kerui Li, Qinghong Zhang, Hongzhi Wang. MXenes-Based Functional Fibers and Their Applications in the Intelligent Wearable Field [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204058-. |
[12] | Wenqian He, Ya Di, Nan Jiang, Zunfeng Liu, Yongsheng Chen. Graphene-Oxide Seeds Nucleate Strong and Tough Hydrogel-Based Artificial Spider Silk [J]. Acta Phys. -Chim. Sin., 2022, 38(9): 2204059-. |
[13] | Yishun Yang, Min Zhou, Yanxia Xing. Symmetry-Dependent Transport Properties of γ-Graphyne-based Molecular Magnetic Tunnel Junctions [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003004-. |
[14] | Lei Wang, Tantan Sun, Nana Yan, Xiaona Liu, Chao Ma, Shutao Xu, Peng Guo, Peng Tian, Zhongmin Liu. Acid Properties of SAPO-34 Molecular Sieves with Different Si Contents Templated by Various Organic Structure-Directing Agents [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2003046-. |
[15] | Feiyu Lin, Ying Yang, Congtan Zhu, Tian Chen, Shupeng Ma, Yuan Luo, Liu Zhu, Xueyi Guo. Fabrication of Stable CsPbI2Br Perovskite Solar Cells in the Humid Air [J]. Acta Phys. -Chim. Sin., 2022, 38(4): 2005007-. |
|