Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (5): 2008043.doi: 10.3866/PKU.WHXB202008043
Special Issue: CO2 Reduction
• REVIEW • Previous Articles Next Articles
Jin Wu, Jing Liu, Wu Xia, Ying-Yi Ren, Feng Wang()
Received:
2020-08-16
Accepted:
2020-09-07
Published:
2020-09-10
Contact:
Feng Wang
E-mail:wangfengchem@hust.edu.cn
About author:
Feng Wang. Email: wangfengchem@hust.edu.cnSupported by:
Jin Wu, Jing Liu, Wu Xia, Ying-Yi Ren, Feng Wang. Advances on Photocatalytic CO2 Reduction Based on CdS and CdSe Nano-Semiconductors[J]. Acta Phys. -Chim. Sin. 2021, 37(5), 2008043. doi: 10.3866/PKU.WHXB202008043
Table 1
Photocatalytic CO2 reduction systems based on CdS or CdSe nano-semiconductors."
Entry | Photocatalyst | Cocatalyst | SED | Solvent | Main Product | Selectivity | Efficiencya | Ref. |
1 | CdS | – | TEA | DMF | CO | – | – | |
2 | CdS | – | 2-propanol | CH3CN/CH2Cl2 | HCOOH | 80% | – | |
3 | CdS | – | CH3OH | CH3OH | HCOOCH3 | – | 3951.9 μmol∙g−1∙h−1 | |
4 | CdS | – | – | H2O | CH3OH | – | 144.5 μmol∙g−1∙h−1 | |
5 | CdS | – | TEOA | H2O | CO | – | 1.6 μmol∙g−1∙h−1 | |
6 | CdSe | – | TEA | DMF | CO | 95% | 7.9 × 105 μmol∙g−1∙h−1 | |
7 | CdSe/CdS | – | TEA | DMF | CO | 96% | 4.1 × 105 μmol∙g−1∙h−1 | |
8 | rGO/CdS | – | – | H2O vapor | CH4 | – | 2.5 μmol∙g−1∙h−1 | |
9 | CdS/TiO2 | – | – | H2O | CH3OH | – | 31.9 μmol∙g−1∙h−1 | |
10 | CdS QDs (doping Ni2+) | – | TEOA | H2O | CO | 100% | 35b | |
11 | CdSe/TiO2 | – | – | H2O | CH4 | – | 0.6 μmol∙g−1∙h−1 | |
12 | CdSe/ZIF-8 | – | TEOA | CH3CN | CO | – | 3.5 μmol∙g−1∙h−1 | |
13 | CdS | Co-bipy | TEOA | CH3CN | CO | 87% | 844 μmol∙g−1∙h−1 | |
14 | CdS | C1 | TEOA | CH3CN/H2O | CO | 80% | 46.5 μmol∙g−1∙h−1 | |
15 | CdS | C2 | TEOA | CH3CN/H2O | CO | 3.9% | 0.40 ± 0.02 b | |
16 | CdS | C3 | TEOA | CH3CN/H2O | CO | 10.2% | 1.07 ± 0.17 b | |
17 | CdS | C4 | TEOA | CH3CN/H2O | CO | 92.2% | 5.11 ± 0.10 b | |
18 | CdS | C5 | TEOA | H2O | CO | 95% | 1380b | |
19 | CdS | C6 | TEOA | CH3CN/H2O | CO | 97% | 7.5 μmol∙g−1∙h−1 | |
20 | CdS/Bi2S3 | C6 | TEOA | CH3CN/H2O | CO | – | 1.9 × 103 μmol∙g−1∙h−1 | |
21 | CdS/UiO-bpy/Co | – | TEOA | CH3CN | CO | 85% | 235 μmol∙g−1∙h−1 |
1 |
Cowan A. J. ; Durrant J. R. Chem. Soc. Rev. 2013, 42, 2281.
doi: 10.1039/c2cs35305a |
2 |
Fresno F. ; Portela R. ; Suarezc S. ; Coronado M. J. J. Mater. Chem. A. 2014, 2, 2863.
doi: 10.1039/c3ta13793g |
3 |
Yu J. ; Low J. ; Xiao W. ; Zhou P. ; Jaroniec M. J. Am. Chem. Soc. 2014, 136, 8839.
doi: 10.1021/ja5044787 |
4 |
Li X. ; Wen J. ; Low J. ; Fang Y. ; Yu J. Sci. China Mater. 2014, 57, 70.
doi: 10.1007/s40843-014-0003-1 |
5 | Liu Z. Acta Phys. -Chim. Sin. 2020, 36, 1912045. |
刘志敏. 物理化学学报, 2020, 36, 1912045.
doi: 10.3866/PKU.WHXB201912045 |
|
6 |
Praus P. ; Kozak O. ; Koci K. ; Panacek A. ; Dvorsky R. J. J. Colloid. Interf. Sci. 2011, 360, 574.
doi: 10.1016/j.jcis.2011.05.004 |
7 |
Beigi A. A. ; Fatemi S. ; Salehi S. J J. CO2 Util. 2014, 7, 23.
doi: 10.1016/j.jcou.2014.06.003 |
8 |
Nie R. ; Ma W. ; Dong Y. ; Xu Y. ; Wang J. ; Wang J. ; Jing H. ChemCatChem 2018, 10, 3342.
doi: 10.1002/cctc.201800190 |
9 | Gao Y. ; Liu S. ; Zhao Z. ; Tao H. ; Sun Z. Acta Phys. -Chim. Sin. 2018, 34, 858. |
高云楠; 刘世桢; 赵振清; 陶亨聪; 孙振宇. 物理化学学报, 2018, 34, 858.
doi: 10.3866/PKU.WHXB201802061 |
|
10 |
Liu X. ; Inagaki S. ; Gong J. Angew. Chem. Int. Ed. 2016, 55, 14924.
doi: 10.1002/anie.201600395 |
11 |
Windle C. D. ; Perutz R. N. Coordin. Chem. Rev. 2012, 256, 2562.
doi: 10.1016/j.ccr.2012.03.010 |
12 |
Wu J. ; Huang Y. ; Ye W. ; Li Y. Adv. Sci. 2017, 4, 1700194.
doi: 10.1002/advs.201700194 |
13 |
Yui T. ; Tamaki Y. ; Sekizawa K. ; Ishitani O. Top. Curr. Chem. 2011, 303, 151.
doi: 10.1007/128_2011_139 |
14 |
Maeda K. Adv. Mater. 2019, 31, 1808205.
doi: 10.1002/adma.201808205 |
15 |
Akhundi A. ; Habibi-Yangjeh A. ; Abitorabi M. ; Pouran S. R. Catal. Rev. 2019, 61, 595.
doi: 10.1080/01614940.2019.1654224 |
16 |
Zhu C. -Y. ; Huang Y. -C. ; Hu J. -C. ; Wang F. J. Photochem. Photobiol. A. 2018, 38, 175.
doi: 10.1016/j.jphotochem.2017.09.056 |
17 |
Hu J. -C. ; Gui M. -X. ; Xia W. ; Wu J. J. Mater. Chem. A. 2019, 7, 10475.
doi: 10.1039/c9ta00949c |
18 | Pan Z. M. ; Liu M. H. ; Niu P. P. ; Guo F. S. ; Fu X. Z. ; Wang X. C. Acta Phys. -Chim. Sin. 2020, 36 (1), 1906014. |
潘志明; 刘明辉; 牛萍萍; 郭芳松; 付贤智; 王心晨. 物理化学学报, 2020, 36 (1), 1906014.
doi: 10.3866/PKU.WHXB201906014 |
|
19 | Zhou L. ; Zhang X. H. ; Lin L. ; Li P. ; Shao K. J. ; Li C. Z. ; He T. Acta Phys.-Chim. Sin. 2017, 33 (9), 1884. |
周亮; 张雪华; 林琳; 李盼; 邵坤娟; 李春忠; 贺涛. 物理化学学报, 2017, 33 (9), 1884.
doi: 10.3866/PKU.WHXB201705084 |
|
20 |
Hu J. -C. ; Sun S. ; Li M. -D. ; Xia W. ; Wu J. ; Liu H. ; Wang F. Chem. Commun. 2019, 55, 14490.
doi: 10.1039/c9cc08512b |
21 |
Xu C. ; Anusuyadevi P. R. ; Aymonier C. ; Luque R. ; Marre S. Chem. Soc. Rev. 2019, 48, 3868.
doi: 10.1039/c9cs00102f |
22 |
Li Q. ; Li X. ; Wageh S. ; Al-Ghamdi A. A. ; Yu J. Adv. Energy Mater. 2015, 5, 1500010.
doi: 10.1002/aenm.201500010 |
23 |
Li X. -B. ; Tung C. -H. ; Wu L.-Z. Angew. Chem. Int. Ed. 2019, 58, 10804.
doi: 10.1002/anie.201901267 |
24 |
Yuan Y.-J. ; Chen A. ; Yu Z. -T. ; Zou Z. -G. J. Mater. Chem. A 2018, 6, 11606.
doi: 10.1039/c8ta00671g |
25 |
Fujiwara H. ; Hosokawa H. ; Murakoshi K. ; Wada Y. ; Yanagida S. J. Phys. Chem. B. 1997, 101, 8270.
doi: 10.1021/jp971621q |
26 |
Liu B. -J. ; Torimoto T. ; Yoneyama H. J. Photochem. Photobiol. A. 1998, 113, 93.
doi: 10.1016/S1010-6030(97)00318-3 |
27 |
Yang X. ; Xin W. ; Yin X. ; Shao X. J. Wuhan Univ. Technol. 2018, 1, 78.
doi: 10.1007/s11595-018-1789-9 |
28 |
Kandy M. M. ; Gaikar V. G. Mater. Res. Bull. 2018, 102, 440.
doi: 10.1016/j.materresbull.2018.02.054 |
29 |
Chai Y. ; Lu J. ; Li L. ; Li D. ; Li M. ; Liang J. Catal. Sci. Technol. 2018, 10, 2697.
doi: 10.1039/C8CY00274F |
30 |
Brus L. J.Phys. Chem. 1986, 90, 2555.
doi: 10.1021/j100403a003 |
31 |
Wang L. G. ; Pennycook S. J. ; Pantelides S. T. Phys. Rev. Lett. 2002, 89, 075506.
doi: 10.1103/PhysRevLett.89.075506 |
32 |
Sheng H. ; Oh M. H. ; Osowiecki W. T. ; Kim W. ; Alivisatos A. P. ; Frei H. J. Am. Chem. Soc. 2018, 140, 4363.
doi: 10.1021/jacs.8b00271 |
33 |
Xia W. ; Wu J. ; Hu J. -C. ; Sun S. ; Li M. ; Liu H. ; Lan M. ; Tung C. -H. ; Wu L. -Z. ; Wang F. ChemSusChem 2019, 12, 4617.
doi: 10.1002/cssc.201901633 |
34 |
Guo Q. ; Liang F. ; Li X. -B. ; Gao Y. -J. ; Huang M. -Y. ; Wang Y. ; Xia S. -G. ; Gao X. -Y. ; Gan Q. -C. ; Lin Z. -S. ; et al Chem 2019, 5, 2605.
doi: 10.1016/j.chempr.2019.06.019 |
35 |
Koci K. ; Praus P. ; Edelmannová M. ; Ambrožová N. ; Troppová I. ; Fridrichová D. ; Słowik G. ; Ryczkowski J. J.Nanosci. Nanotechnol. 2017, 17, 4041.
doi: 10.1166/jnn.2017.13093 |
36 |
Ijaz S. ; Ehsan M. F. ; Ashiq M. N. ; Karamat N. ; He T. Appl. Surf. Sci. 2016, 390, 550.
doi: 10.1016/j.apsusc.2016.08.098 |
37 |
Benedetti J. E. ; Bernardo D. R. ; Morais A. ; Bettini J. ; Nogueira A. F. RSC Adv. 2015, 5, 33914.
doi: 10.1039/c4ra15605f |
38 |
Ijaz S. ; Ehsan M. F. ; Ashiq M. N. ; Karamt N. ; Najam-ul-Haq M. ; He T. Mater. Des. 2016, 107, 178.
doi: 10.1016/j.matdes.2016.06.031 |
39 |
Park H. ; Ou H. -H. ; Kang U. ; Choi J. ; Hoffmann M. R. Catal. Today 2016, 266, 153.
doi: 10.1016/j.cattod.2015.09.017 |
40 |
Wei Y. ; Jiao J. ; Zhao Z. ; Liu J. ; Li J. ; Jiang G. ; Wang Y. ; Duan A. Appl. Catal. B- Environ. 2015, 179, 422.
doi: 10.1016/j.apcatb.2015.05.041 |
41 |
Yu J. ; Jin J. ; Cheng B. ; Jaroniec M. J. Mater. Chem. A. 2014, 2, 3407.
doi: 10.1039/c3ta14493c |
42 |
Li X. ; Liu H. ; Luo D. ; Li J. ; Huang Y. ; Li H. ; Fang Y. ; Xu Y. ; Zhu L. Chem. Eng.J. 2012, 180, 151.
doi: 10.1016/j.cej.2011.11.029 |
43 |
Wang J. ; Xia T. ; Wang L. ; Zheng X. ; Qi Z. ; Gao C. ; Zhu J. ; Li Z. ; Xu H. ; Xiong Y. Angew. Chem. Int. Ed. 2018, 57, 16447.
doi: 10.1002/anie.201810550 |
44 |
Wang C. ; Thompson R. L. ; Baltrus J. ; Matranga J. J. Phys. Chem. Lett. 2010, 1, 48.
doi: 10.1021/jz9000032 |
45 |
Peng H.-J. ; Zheng P. -Q. ; Chao H. -Y. ; Jiang L. ; Qiao Z.-P. RSC Adv. 2020, 10, 551.
doi: 10.1039/c9ra08801f |
46 |
Wang F. ChemSusChem 2017, 10, 4393.
doi: 10.1002/cssc.201701385 |
47 |
Chai Z. G. ; Li Q. ; Xu D. X. RSC Adv. 2014, 4, 44991.
doi: 10.1039/c4ra08848d |
48 |
Lin J. L. ; Qin B. ; Fang Z. X. Catal. Lett. 2019, 149, 25.
doi: 10.1007/s10562-018-2586-y |
49 |
Kuehnel M. F. ; Orchard K. L. ; Dalle K. E. ; Reisner E. J. Am. Chem. Soc. 2017, 139, 7217.
doi: 10.1021/jacs.7b00369 |
50 |
Kuehnel M. F. ; Sahm C. D. ; Neri G. ; Lee J. R. ; Orchard K. L. ; Cowan A. J. ; Reisner E. Chem. Sci. 2018, 9, 2501.
doi: 10.1039/c7sc04429a |
51 |
Huang J. ; Gatty M. G. ; Xu B. ; Pati P. B. ; Etman A. S. ; Tian L. ; Sun J. L. ; Tian H. N. Dalton Trans. 2018, 47, 10775.
doi: 10.1039/c8dt01631c |
52 |
Suzuki T. M. ; Yoshino S. N. ; Takayama T. ; Iwase A. ; Kudo A. ; Morikawa T. Chem. Commun. 2018, 54, 10199.
doi: 10.1039/c8cc05505j |
53 |
Bao Y. P. ; Wang J. ; Wang Q. ; Cui X. F. ; Long R. ; Li Z. Q. Nanoscale 2020, 12, 2507.
doi: 10.1039/c9nr09321d |
54 |
Lian S. C. ; Kodaimati M. S. ; Dolzhnikov D. S. ; Calzada R. ; Weiss E. A. J. Am. Chem. Soc. 2017, 139, 8931.
doi: 10.1021/jacs.7b03134 |
55 |
Lian S. C. ; Kodaimati M. S. ; Weiss E. A. ACS Nano 2018, 12, 568.
doi: 10.1021/acsnano.7b07377 |
56 |
Bi Q. -Q. ; Wang J. -W. ; Lv J. -X. ; Wang J. ; Zhang W. ; Lu T.-B. ACS Catal. 2018, 8, 11815.
doi: 10.1021/acscatal.8b03457 |
57 |
Li P. ; Hou C. C. ; Zhang X. H. ; Chen Y. ; He T. Appl. Surf. Sci. 2018, 459, 292.
doi: 10.1016/j.apsusc.2018.08.002 |
58 |
Li P. ; Zhang X. ; Hou C. ; Chen Y. ; He T. Appl. Catal. B-Environ. 2018, 238, 656.
doi: 10.1016/j.apcatb.2018.07.066 |
59 |
Chen C. J. ; Wu T. B. ; Wu H. H. ; Liu H. Z. ; Qian Q. L. ; Liu Z. M. ; Yang G. Y. ; Han B. X. Chem. Sci. 2018, 9, 8890.
doi: 10.1039/c8sc02809e |
60 |
Gui M. -X. ; Wu J. ; Hu J. -C. ; Xia W. ; Liu H. ; Feng N. ; Li W. ; Wang F. J.Photochem. Photobiol. A. 2020, 401, 112742.
doi: 10.1016/j.jphotochem.2020.112742 |
61 |
Fu J. ; Yu J. ; Jiang C. ; Cheng B. Adv. Energy Mater. 2018, 8, 1701503.
doi: 10.1002/aenm.201701503 |
62 |
Yin S. ; Han J. ; Zhou T. ; Xu R. Catal. Sci. Technol. 2015, 5, 5048.
doi: 10.1039/c5cy00938c |
63 |
He F. ; Wang Z. ; Li Y. ; Peng S. ; Liu B. Appl. Catal. B-Environ. 2020, 269, 118828.
doi: 10.1016/j.apcatb.2020.118828 |
[1] | Hanyu Xu, Xuedan Song, Qing Zhang, Chang Yu, Jieshan Qiu. Mechanistic Insights into Water-Mediated CO2 Electrochemical Reduction Reactions on Cu@C2N Catalysts: A Theoretical Study [J]. Acta Phys. -Chim. Sin., 2024, 40(1): 2303040-. |
[2] | Yao Chen, Cun Chen, Xuesong Cao, Zhenyu Wang, Nan Zhang, Tianxi Liu. Recent Advances in Defect and Interface Engineering for Electroreduction of CO2 and N2 [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212053-0. |
[3] | Ji-Chao Wang, Xiu Qiao, Weina Shi, Jing He, Jun Chen, Wanqing Zhang. S-Scheme Heterojunction of Cu2O Polytope-Modified BiOI Sheet for Efficient Visible-Light-Driven CO2 Conversion under Water Vapor [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2210003-. |
[4] | Yining Zhang, Ming Gao, Songtao Chen, Huiqin Wang, Pengwei Huo. Fabricating Ag/CN/ZnIn2S4 S-Scheme Heterojunctions with Plasmonic Effect for Enhanced Light-Driven Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2211051-. |
[5] | Cheng Luo, Qing Long, Bei Cheng, Bicheng Zhu, Linxi Wang. A DFT Study on S-Scheme Heterojunction Consisting of Pt Single Atom Loaded G-C3N4 and BiOCl for Photocatalytic CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(6): 2212026-. |
[6] | Luwei Peng, Yang Zhang, Ruinan He, Nengneng Xu, Jinli Qiao. Research Advances in Electrocatalysts, Electrolytes, Reactors and Membranes for the Electrocatalytic Carbon Dioxide Reduction Reaction [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2302037-. |
[7] | Jintao Dong, Sainan Ji, Yi Zhang, Mengxia Ji, Bin Wang, Yingjie Li, Zhigang Chen, Jiexiang Xia, Huaming Li. Construction of Z-Scheme MnO2/BiOBr Heterojunction for Photocatalytic Ciprofloxacin Removal and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212011-. |
[8] | Yutong Wan, Fan Fang, Ruixue Sun, Jie Zhang, Kun Chang. Metal Oxide Semiconductors for Photothermal Catalytic CO2 Hydrogenation Reactions: Recent Progress and Perspectives [J]. Acta Phys. -Chim. Sin., 2023, 39(11): 2212042-. |
[9] | Bichen Zhu, Xiaoyang Hong, Liyong Tang, Qinqin Liu, Hua Tang. Enhanced Photocatalytic CO2 Reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-Scheme Heterostructure [J]. Acta Phys. -Chim. Sin., 2022, 38(7): 2111008-. |
[10] | Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(2): 2011050-. |
[11] | Kelin He, Rongchen Shen, Lei Hao, Youji Li, Peng Zhang, Jizhou Jiang, Xin Li. Advances in Nanostructured Silicon Carbide Photocatalysts [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2201021-. |
[12] | Yongxia Shi, Man Hou, Junjun Li, Li Li, Zhicheng Zhang. Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2206020-. |
[13] | Yuxin Chen, Lijun Wang, Zhibo Yao, Leiduan Hao, Xinyi Tan, Justus Masa, Alex W. Robertson, Zhenyu Sun. Tuning the Coordination Structure of Single Atoms and Their Interaction with the Support for Carbon Dioxide Electroreduction [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2207024-0. |
[14] | Leiduan Hao, Zhenyu Sun. Metal Oxide-Based Materials for Electrochemical CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(7): 2009033-. |
[15] | Yunfeng Li, Min Zhang, Liang Zhou, Sijia Yang, Zhansheng Wu, Ma Yuhua. Recent Advances in Surface-Modified g-C3N4-Based Photocatalysts for H2 Production and CO2 Reduction [J]. Acta Phys. -Chim. Sin., 2021, 37(6): 2009030-. |
|