Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (1): 2008091.doi: 10.3866/PKU.WHXB202008091
Special Issue: Lithium Metal Anodes
• REVIEW • Previous Articles Next Articles
Hongyi Pan1,2, Quan Li1, Xiqian Yu1,2,*(), Hong Li1,2
Received:
2020-08-31
Accepted:
2020-09-25
Published:
2020-10-16
Contact:
Xiqian Yu
E-mail:xyu@iphy.ac.cn
About author:
Xi qian Yu. E-mail:xyu@iphy.ac.cn. Tel.: +86-10-82649413Supported by:
Hongyi Pan, Quan Li, Xiqian Yu, Hong Li. Characterization Techniques for Lithium Metal Anodes at Multiple Spatial Scales[J]. Acta Phys. -Chim. Sin. 2021, 37(1), 2008091. doi: 10.3866/PKU.WHXB202008091
Table 1
Fundamental information of advanced characterization technologies for lithium metal anode."
Characterization techniques | Minimum resolution | Field of view | Sample limits | Damage | In situ | Information | Advantages; disadvantages | References |
Cryo-electronic microscopy | 10-10 | 10-10–10-5 | Cryo-environment, thickness | Y | N | Near surface and cross-section morphology | Atomic resolution, air-sensitive protection; cannot do in situ observation | |
Atomic force microscopy | 10-10 | 10-9–10-5 | Surface roughness | N | Y | Surface morphology, mechanical and electronical property | Atomic resolution, abundant information; strict to surface roughness | |
(Scan) Transmission electronic microscopy | 10-10 | 10-10–10-5 | Thickness | Y/N | Y | Near surface morphology | In situ observation; strict to thickness, damage to lithium | |
Electron energy loss spectroscopy | 10-9 | 10-9–10-5 | Thickness | Y/N | Y | Element valence | Precise element distribution detection | |
Selected area electron diffraction | 10-8 | 10-8–10-5 | Thickness | Y/N | Y | Phase | Diffraction pattern in selected area; damage to lithium | |
Nano-X-ray computed tomography | 10-8 | 10-8–10-4 | Size, X-ray attenuation coefficient | Y | Y | Surface and bulk morphology | ~10 nm resolution;small field of view, not sensitive to Li, strict to sample size | |
Focused ion beam-scanning electronic microscopy | 10-7 | 10-7–10-4 | Electronic conductivity | N | N | Surface and cross- section morphology | Large field of view range; surface electronic conductivity | |
Electrochemical-scanning electronic microscopy | 10-7 | 10-7–10-4 | Electronic conductivity | Y | Y | Surface morphology | In situ combination of morphology and electrochemical behavior | |
Optic microscopy | 10-7 | 10-7–10-3 | None | Y | Y | Near surface and side-view morphology | Direct, commonly used, high time resolution; lack of small-scale detail | |
Neutron depth profile | 10-7 | 10-7–10-3 | Neutron scattering cross section | Y | Y | Element distribution in depth | Transmissive z-axis element distribution; low sensitivity in xy plane, high cost | |
Raman spectroscopy | 10-7 | 10-7–10-4 | None | Y | Y | Component distribution | In situ surface component distribution detection; limit z-axis resolution | |
Stimulated Raman Spectroscopy | 10-6 | 10-6–10-3 | None | Y | Y | Element distribution | Fast mapping speed; slightly lower spatial resolution | |
Micron-X-ray computed tomography | 10-6 | 10-6–10-2 | Size, X-ray attenuation coefficient | Y | Y | Surface and bulk morphology | No limit of sample size; low Li sensitivity | |
X-ray photoelectronic spectroscopy | 10-6 | 10-6–10-5 | Size | Y/N | Y | Element valence | Sensitive to trace element; low resolution along z-axis | |
Time of flight-secondary ion mass spectroscopy | 10-6 | 10-6–10-4 | Size | Y | N | Component distribution | Element and component distribution in xy plane and z-axis; damage to sample, low spatial sensitivity | |
Nuclear magnetic resonance | 10-5 | 10-5–10-2 | Size, skin depth | Y | Y | Element distribution | Powerful element sensitivity, non-damage bulk detection; limited by skin depth of materials | |
Ultrasonic transmission spectroscopy | 10-4 | 10-4–10-2 | None | Y | Y | Liquid distribution | Able to detect liquid distribution, no limit of sample size; lack of exploration in solid-state battery | |
Neutron computed tomography | 10-4 | 10-4–10-2 | Size, neutron scattering cross section | Y | Y | Surface and bulk morphology, element distribution | Sensitive to 6Li: low spatial and time resolution, high cost |
Fig 3
(A) Schematics about sample preparation of cryo-TEM, the related result of (B) crystal orientation and (C) grain boundary of Li dendrite 38; (D) cryo-TEM images of Li microspheres deposits with the corresponding HRTEM images and the measured lattice spacing of them, and TEM images of Li dendrite with SAED patterns 39; multiple crystalline grains in the (E) bare and (F) Li2S added Li|PEO interphase and Li crystal orientation characterized by HRTEM 40; (G) TEM images of the electrodeposited Li as a function of the electron radiation dose at 300 and 100 K 42. Adapted from American Association for the Advancement of Science, Springer Nature, Wiley and American Chemical Society publishers."
Fig 4
(A) AFM image of the variation of Li particle size in the same area 43; (B) surface roughness and electronic conductivity of bare and Cu3N-modified Cu foil at pristine state and after first lithium plating and stripping processes 47; (C) topographic height and adhesion mapping images of the surface of the Li electrode during electrochemical deposition 44. Adapted from American Chemical Society publisher."
Fig 5
(A) Schematics of in situ TEM and the electrochemical liquid cell, and (B) the growth process of Li dendrite on Li-Au alloy anode 48; (C) HAADF images of Li deposition and dissolution 49; (D) in situ TEM liquid cell with 10 electrodes, (E) operando STEM images of Li deposition and nucleation 53. Adapted from American Chemical Society publisher."
Fig 6
(A) Cross-sectional SEM images of the Li anodes obtained from the cells after 100 cycles under different rate 10; (B) voltage profile shape and morphological evolution of dead Li layer under SEM 32; (C) the influence of ALD modified surface on Li deposition 56; (D) cracks of Ti electrode caused by Li deposition 55. Adapted from Wiley, Royal Society of Chemistry, Elsevier, and American Chemical Society publishers."
Fig 7
(A) 3D reconstruction images of voids and bulk Li metal after the first electrochemically deposition in different electrolytes 30; (B) a time lapse series of SEM images of lithium plating and stripping 57; (C) a schematic illustration of a Li|Li symmetric cell under SRS imaging, 3D images showing depletion of ions near the anode surface, and correlation between local Li growth and local Li+ concentration displayed by 2D overlapping images 68. Adapted from American Chemical Society, Wiley, Springer Nature publishers."
Fig 8
(A) In situ glass capillary cell and flocculent lithium dendrite growth 9; (B) in situ morphological observation of surface patterned Li electrode during cycling 60; (C) setup and cell configurations for the NDP measurement, and in situ measured spectra of a Li/garnet/CNT asymmetric cell while cycling 65; (D) schematics and spectra contour map of in situ NDP revealing Li deposition behavior of an ASSLMB with 3D Ti electrode 55. Adapted from Royal Society of Chemistry, Elsevier and American Chemical Society publishers."
Fig 9
(A) Experiment setup of Nano-CT; (B) 2D slices and 3D reconstruction images of Li morphologies at 5, 33 ℃ and low/high current density 54; (C) schematic and photograph of the Li|Li cell used in XCT and the characterization of bulk and mossy Li 58; (D) images and schematic of formation and evolution of pits during Li stripping and plating 75; (E) schematics of setup and cell of XCT with the observed uneven Li deposition and separator deformation 69. Adapted from American Chemical Society and Royal Society of Chemistry publishers."
Fig 10
(A) 2D XCT slices of the Li metal polymer batteries before and after cycling 89; (B) XCT results comparing defect-driven and fabrication-related modes of cell failure 90; (C) design of the in situ solid-state Li symmetric cell allowing control and monitoring pressure during cycling; (D) Li detected in Li6PS5Cl by XCT after shorting 91. Adapted from Institute of Physics, American Chemical Society and Wiley publishers."
Fig 11
(A) Schematics of synchronized electrochemical/video microscopy setup, (B) Li dendrite growth in different kinds of electrolyte, (C) Li deposits morphology and corresponding voltage trace profile 62; (D) through-plane cycling in LLZO with operando cross-sectional visualization; (E) operando optical images at different time during Li plating 64; (F) effective volume calculation method and volume tracking profile of four individual dendrites throughout the first cycle 63; (G) in situ lithiation of solid electrolytes during XPS surface analysis and the related XPS results 76. Adapted from American Chemical Society and Cell publishers."
Fig 12
(A) Schematic of the cell used for in situ magnetic resonance imaging, and time series showing the evolution of the 7Li electrolyte concentration profile and chemical shift image of Li metal 77; (B) three-dimensional segmented images of the in situ NMR cell at different charging time 78; (C) 3D evolution of Li distribution at different stages of cycling, and 2D evolution of the Li distribution as a function of charging time based on the normalized neutron radiographs 80. Adapted from American Chemical Society and National Academy of Sciences publishers."
1 |
Whittingham M. S. Proc. IEEE 2012, 100, 1518.
doi: 10.1109/JPROC.2012.2190170 |
2 |
Spotnitz R. ; Franklin J. J. Power Sources 2003, 113 (1), 81.
doi: 10.1016/S0378-7753(02)00488-3 |
3 |
Seitzman N. ; Guthrey H. ; Sulas D. B. ; Platt H. A. S. ; Al-Jassim M. ; Pylypenko S. J. Electrochem. Soc. 2018, 165 (16), A3732.
doi: 10.1149/2.0301816jes |
4 |
Lewis J. A. ; Cortes F. J. Q. ; Boebinger M. G. ; Tippens J. ; Marchese T. S. ; Kondekar N. ; Liu X. ; Chi M. ; McDowell M. T. ACS Energy Lett. 2019, 4 (2), 591.
doi: 10.1021/acsenergylett.9b00093 |
5 | Stiles, J. A. R.; Brandt, K.; Wainwright, D. S.; Lee, K. C. Constant Volume Lithium Battery Cell and Process. US Patent 4587182, 1986. |
6 |
Yue X. Y. ; Li X. L. ; Wang W. W. ; Chen D. ; Qiu Q. Q. ; Wang Q. C. ; Wu X. J. ; Fu Z. W. ; Shadike Z. ; Yang X. Q. ; Zhou Y. N. Nano Energy 2019, 60, 257.
doi: 10.1016/j.nanoen.2019.03.057 |
7 |
Liu H. ; Cheng X. ; Zhang R. ; Shi P. ; Shen X. ; Chen X. ; Li T. ; Huang J. ; Zhang Q. Trans. Tianjin Univ. 2020, 26 (2), 127.
doi: 10.1007/s12209-020-00241-z |
8 |
Zhao H. ; Lei D. ; He Y. B. ; Yuan Y. ; Yun Q. ; Ni B. ; Lv W. ; Li B. ; Yang Q. H. ; Kang F. ; Lu J. Adv. Energy Mater. 2018, 8 (19), 1800266.
doi: 10.1002/aenm.201800266 |
9 |
Bai P. ; Li J. ; Brushett F. R. ; Bazant M. Z. Energy Environ. Sci. 2016, 9 (10), 3221.
doi: 10.1039/C6EE01674J |
10 |
Lu D. ; Shao Y. ; Lozano T. ; Bennett W. D. ; Graff G. L. ; Polzin B. ; Zhang J. ; Engelhard M. H. ; Saenz N. T. ; Henderson W. A. ;et al Adv. Energy Mater. 2015, 5 (3), 1400993.
doi: 10.1002/aenm.201400993 |
11 |
Fang C. ; Li J. ; Zhang M. ; Zhang Y. ; Yang F. ; Lee J. Z. ; Lee M. H. ; Alvarado J. ; Schroeder M. A. ; Yang Y. ;et al Nature 2019, 572, 511.
doi: 10.1038/s41586-019-1481-z |
12 |
Ding F. ; Xu W. ; Graff G. L. ; Zhang J. ; Sushko M. L. ; Chen X. ; Shao Y. ; Engelhard M. H. ; Nie Z. ; Xiao J. ;et al J. Am. Chem. Soc. 2013, 135 (11), 4450.
doi: 10.1021/ja312241y |
13 |
Yan C. ; Yao Y. X. ; Chen X. ; Cheng X. B. ; Zhang X. Q. ; Huang J. Q. ; Zhang Q. Angew. Chem. 2018, 130 (43), 14251.
doi: 10.1002/ange.201807034 |
14 |
Yue X. Y. ; Wang W. W. ; Wang Q. C. ; Meng J. K. ; Wang X. X. ; Song Y. ; Fu Z. W. ; Wu X. J. ; Zhou Y. N. Energy Storage Mater. 2019, 21, 180.
doi: 10.1016/j.ensm.2018.12.007 |
15 |
Yan Z. ; Pan H. Y. ; Wang J. Y. ; Chen R. S. ; Li Q. ; Luo F. ; Yu X. Q. ; Li H. Rare Met. 2020,
doi: 10.1007/s12598-020-01494-2 |
16 |
Chen X. ; Zhang X. ; Li H. ; Zhang Q. Batter. Supercaps 2019, 2 (2), 128.
doi: 10.1002/batt.201800118 |
17 | Sand Ⅲ, H. J. S. Philos. Mag. 1901, 1 (1), 45. doi: 10.1080/14786440109462590 |
18 |
Yan K. ; Lu Z. ; Lee H. W. ; Xiong F. ; Hsu P. C. ; Li Y. ; Zhao J. ; Chu S. ; Cui Y. Nat. Energy 2016, 1 (3), 1.
doi: 10.1038/nenergy.2016.10 |
19 |
Zhang H. ; Liao X. ; Guan Y. ; Xiang Y. ; Li M. ; Zhang W. ; Zhu X. ; Ming H. ; Lu L. ; Qiu J. ; et al Nat. Commun. 2018, 9 (1), 3729.
doi: 10.1038/s41467-018-06126-z |
20 |
Pei A. ; Zheng G. ; Shi F. ; Li Y. ; Cui Y. Nano Lett. 2017, 17 (2), 1132.
doi: 10.1021/acs.nanolett.6b04755 |
21 | Barton J. L. ; Bockris J. O. M. The Electrolytic Growth of Dendrites from Ionic Solutions; Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1962, 268 (1335), 485. |
22 |
Monroe C. ; Newman J. J. Electrochem. Soc. 2003, 150 (10), A1377.
doi: 10.1149/1.1606686 |
23 |
Akolkar R. J. Power Sources 2014, 246, 84.
doi: 10.1016/j.jpowsour.2013.07.056 |
24 |
Wang A. ; Kadam S. ; Li H. ; Shi S. ; Qi Y. NPJ Comput. Mater. 2018, 4 (1), 1.
doi: 10.1038/s41524-018-0064-0 |
25 |
Hou C. ; Han J. ; Liu P. ; Yang C. ; Huang G. ; Fujita T. ; Hirata A. ; Chen M. Adv. Energy Mater. 2019, 9 (45), 1902675.
doi: 10.1002/aenm.201902675 |
26 |
Steiger J. ; Kramer D. ; Mönig R. Electrochim. Acta 2014, 136, 529.
doi: 10.1016/j.electacta.2014.05.120 |
27 |
Qian J. ; Henderson W. A. ; Xu W. ; Bhattacharya P. ; Engelhard M. ; Borodin O. ; Zhang J. G. Nat. Commun. 2015, 6 (1), 6362.
doi: 10.1038/ncomms7362 |
28 |
Yoshimatsu I. ; Hirai T. ; Yamaki J. J. Electrochem. Soc. 1988, 135 (10), 2422.
doi: 10.1149/1.2095351 |
29 |
Zhang Y. ; Qian J. ; Xu W. ; Russell S. M. ; Chen X. ; Nasybulin E. ; Bhattacharya P. ; Engelhard M.H. ; Mei D. ; Cao R. ;et al Nano Lett. 2014, 14 (12), 6889.
doi: 10.1021/nl5039117 |
30 |
Lee J. Z. ; Wynn T. A. ; Schroeder M. A. ; Alvarado J. ; Wang X. ; Xu K. ; Meng Y. S. ACS Energy Lett. 2019, 4 (2), 489.
doi: 10.1021/acsenergylett.8b02381 |
31 |
Foroozan T. ; Sharifi-Asl S. ; Shahbazian-Yassar R. J. Power Sources 2020, 461, 228135.
doi: 10.1016/j.jpowsour.2020.228135 |
32 |
Chen K. H. ; Wood K. N. ; Kazyak E. ; LePage W. S. ; Davis A. L. ; Sanchez A. J. ; Dasgupta N. P. J. Mater. Chem. A 2017, 5 (23), 11671.
doi: 10.1039/C7TA00371D |
33 |
Fan L. ; Zhuang H. L. L. ; Gao L. N. ; Lu Y. Y ; Archer L. A. J. Mater. Chem. A 2017, 5 (7), 3483.
doi: 10.1039/C6TA10204B |
34 |
Dornbusch D. A. ; Hilton R. ; Lohman S. D. ; Suppes G. J. J. Electrochem. Soc. 2014, 162 (3), A262.
doi: 10.1149/2.0021503jes |
35 |
Cheng E. J. ; Sharafi A. ; Sakamoto J. Electrochim. Acta 2017, 223, 85.
doi: 10.1016/j.electacta.2016.12.018 |
36 |
Porz L. ; Swamy T. ; Sheldon B. W. ; Rettenwander D. ; Frömling T. ; Thaman H. L. ; Berendts S. ; Uecker R. ; Carter W. C. ; Chiang Y. M. Adv. Energy Mater. 2017, 7 (20), 1701003.
doi: 10.1002/aenm.201701003 |
37 |
Hong Y. S. ; Zhao C. Z. ; Xiao Y. ; Xu R. ; Xu J. J. ; Huang J. Q. ; Zhang Q. ; Yu X. ; Li H. Batter. Supercaps 2019, 2 (7), 638.
doi: 10.1002/batt.201900031 |
38 |
Li Y. ; Li Y. ; Pei A. ; Yan K. ; Sun Y. ; Wu C. L. ; Joubert L. M. ; Chin R. ; Koh A. L. ; Yu Y. ;et al Science 2017, 358 (6362), 506.
doi: 10.1126/science.aam6014 |
39 |
Ju Z. ; Nai J. ; Wang Y. ; Liu T. ; Zheng J. ; Yuan H. ; Sheng O. ; Jin C. ; Zhang W. ; Jin Z. ; et al Nat. Commun. 2020, 11 (1), 488.
doi: 10.1038/s41467-020-14358-1 |
40 |
Sheng O. ; Zheng J. ; Ju Z. ; Jin C. ; Wang Y. ; Chen M. ; Nai J. ; Liu T. ; Zhang W. ; Liu Y. ; Tao X. Adv. Mater. 2020, 32 (34), 2000223.
doi: 10.1002/adma.202000223 |
41 |
Zachman M. J. ; Tu Z. ; Choudhury S. ; Archer L. A. ; Kourkoutis L. F. Nature 2018, 560 (7718), 345.
doi: 10.1038/s41586-018-0397-3 |
42 |
Wang X. ; Zhang M. ; Alvarado J. ; Wang S. ; Sina M. ; Lu B. ; Bouwer J. ; Xu W. ; Xiao J. ; Zhang J. G. ;et al Nano Lett. 2017, 17 (12), 7606.
doi: 10.1021/acs.nanolett.7b03606 |
43 |
Cohen Y. S. ; Cohen Y. ; Aurbach D. J. Phys. Chem. B 2000, 104 (51), 12282.
doi: 10.1021/jp002526b |
44 |
Kitta M. ; Sano H. Langmuir 2017, 33 (8), 1861.
doi: 10.1021/acs.langmuir.6b04651 |
45 |
Zhang L. ; Yang T. ; Du C. ; Liu Q. ; Tang Y. ; Zhao J. ; Wang B. ; Chen T. ; Sun Y. ; Jia P. ; et al Nat. Nanotechnol. 2020, 15 (2), 94.
doi: 10.1038/s41565-019-0604-x |
46 |
Arruda T. M. ; Lawton J. S. ; Kumar A. ; Unocic R. R. ; Kravchenko I. I. ; Zawodzinski T. A. ; Jesse S. ; Kalinin S. V. ; Balke N. ECS Electrochem. Lett. 2013, 3 (1), A4.
doi: 10.1149/2.003401eel |
47 |
Li Q. ; Pan H. ; Li W. ; Wang Y. ; Wang J. ; Zheng J. ; Yu X. ; Li H. ; Chen L. ACS Energy Lett. 2018, 3 (9), 2259.
doi: 10.1021/acsenergylett.8b01244 |
48 |
Zeng Z. ; Liang W. I. ; Liao H. G. ; Xin H. L. ; Chu Y. H. ; Zheng H. Nano Lett. 2014, 14 (4), 1745.
doi: 10.1021/nl403922u |
49 |
Mehdi B. L. ; Qian J. ; Nasybulin E. ; Park C. ; Welch D. A. ; Faller R. ; Mehta H. ; Henderson W. A. ; Xu W. ; Wang C. M. ; et al Nano Lett. 2015, 15 (3), 2168.
doi: 10.1021/acs.nanolett.5b00175 |
50 |
Ghassemi H. ; Au M. ; Chen N. ; Heiden P. A. ; Yassar R. S. Appl. Phys. Lett. 2011, 99 (12), 123113.
doi: 10.1063/1.3643035 |
51 |
Sacci R. L. ; Black J. M. ; Balke N. ; Dudney N. J. ; More K. L. ; Unocic R. R. Nano Lett. 2015, 15 (3), 2011.
doi: 10.1021/nl5048626 |
52 |
Kushima A. ; So K. P. ; Su C. ; Bai P. ; Kuriyama N. ; Maebashi T. ; Fujiwara Y. ; Bazant M. Z. ; Li J. Nano Energy 2017, 32, 271.
doi: 10.1016/j.nanoen.2016.12.001 |
53 |
Leenheer A. J. ; Jungjohann K. L. ; Zavadil K. R. ; Sullivan J. P. ; Harris C. T. ACS Nano 2015, 9 (4), 4379.
doi: 10.1021/acsnano.5b00876 |
54 |
Frisco S. ; Liu D. ; Kumar A. ; Whitacre J. F. ; Love C. T. ; Swider-Lyons K. ; Litster S. ACS Appl. Mater. Interfaces 2017, 9 (22), 18748.
doi: 10.1021/acsami.7b03003 |
55 |
Li Q. ; Yi T. ; Wang X. ; Pan H. ; Quan B. ; Liang T. ; Guo X. ; Yu X. ; Wang H. ; Huang X. ; et al Nano Energy 2019, 103895
doi: 10.1016/j.nanoen.2019.103895 |
56 |
Kazyak E. ; Wood K. N. ; Dasgupta N. P. Chem. Mater. 2015, 27 (18), 6457.
doi: 10.1021/acs.chemmater.5b02789 |
57 |
Rong G. ; Zhang X. ; Zhao W. ; Qiu Y. ; Liu M. ; Ye F. ; Xu Y. ; Chen J. ; Hou Y. ; Li W. ; et al Adv. Mater. 2017, 29 (13), 1606187.
doi: 10.1002/adma.201606187 |
58 |
Eastwood D. S. ; Bayley P. M. ; Chang H. J. ; Taiwo O. O. ; Vila-Comamala J. ; Brett D. J. L. ; Rau C. ; Withers P. J. ; Shearing P. R. ; Grey C. P. ; Lee P. D. Chem. Commun. 2015, 51 (2), 266.
doi: 10.1039/C4CC03187C |
59 |
Steiger J. ; Richter G. ; Wenk M. ; Kramer D. ; Mönig R. Electrochem. Commun. 2015, 50, 11.
doi: 10.1016/j.elecom.2014.11.002 |
60 |
Li Q. ; Quan B. ; Li W. ; Lu J. ; Zheng J. ; Yu X. ; Li J. ; Li H. Nano Energy 2018, 45, 463.
doi: 10.1016/j.nanoen.2018.01.019 |
61 |
Wan G. ; Guo F. ; Li H. ; Cao Y. ; Ai X. ; Qian J. ; Li Y. ; Yang H. ACS Appl. Mater. Interfaces 2018, 10 (1), 593.
doi: 10.1021/acsami.7b14662 |
62 |
Wood K. N. ; Kazyak E. ; Chadwick A. F. ; Chen K. H. ; Zhang J. G. ; Thornton K. ; Dasgupta N. P. ACS Central Sci. 2016, 2 (11), 790.
doi: 10.1021/acscentsci.6b00260 |
63 |
Sanchez A. J. ; Kazyak E. ; Chen Y. ; Chen K. H. ; Pattison E. R. ; Dasgupta N. P. ACS Energy Lett. 2020, 5 (3), 994.
doi: 10.1021/acsenergylett.0c00215 |
64 |
Kazyak E. ; Garcia-Mendez R. ; LePage W. S. ; Sharafi A. ; Davis A. L. ; Sanchez A. J. ; Chen K. H. ; Haslam C. ; Sakamoto J. ; Dasgupta N. P. Matter 2020, 2 (4), 1025.
doi: 10.1016/j.matt.2020.02.008 |
65 |
Wang C. ; Gong Y. ; Dai J. ; Zhang L. ; Xie H. ; Pastel G. ; Liu B. ; Wachsman E. ; Wang H. ; Hu L. J. Am. Chem. Soc. 2017, 139 (40), 14257.
doi: 10.1021/jacs.7b07904 |
66 |
Han F. ; Westover A. S. ; Yue J. ; Fan X. ; Wang F. ; Chi M. ; Leonard D. N. ; Dudney N. J. ; Wang H. ; Wang C. Nat. Energy 2019, 4 (3), 187.
doi: 10.1038/s41560-018-0312-z |
67 |
Schmitz R. ; Ansgar Müller R. ; Wilhelm Schmitz R. ; Schreiner C. ; Kunze M. ; Lex-Balducci A. ; Passerini S. ; Winter M. J. Power Sources 2013, 233, 110.
doi: 10.1016/j.jpowsour.2013.01.105 |
68 |
Cheng Q. ; Wei L. ; Liu Z. ; Ni N. ; Sang Z. ; Zhu B. ; Xu W. ; Chen M. ; Miao Y. ; Chen L. Q. ;et al Nat. Commun. 2018, 9 (1), 2942.
doi: 10.1038/s41467-018-05289-z |
69 |
Sun F. ; Zielke L. ; Markötter H. ; Hilger A. ; Zhou D. ; Moroni R. ; Zengerle R. ; Thiele S. ; Banhart J. ; Manke I. ACS Nano 2016, 10 (8), 7990.
doi: 10.1021/acsnano.6b03939 |
70 |
Sun F. ; Moroni R. ; Dong K. ; Markötter H. ; Zhou D. ; Hilger A. ; Zielke L. ; Zengerle R. ; Thiele S. ; Banhart J. ; Manke I. ACS Energy Lett. 2017, 2 (1), 94.
doi: 10.1021/acsenergylett.6b00589 |
71 |
Sun F. ; Osenberg M. ; Dong K. ; Zhou D. ; Hilger A. ; Jafta C. J. ; Risse S. ; Lu Y. ; Markötter H. ; Manke I. ACS Energy Lett. 2018, 3 (2), 356.
doi: 10.1021/acsenergylett.7b01254 |
72 |
Dong K. ; Osenberg M. ; Sun F. ; Markötter H. ; Jafta C. J. ; Hilger A. ; Arlt T. ; Banhart J. ; Manke I. Nano Energy 2019, 62, 11.
doi: 10.1016/j.nanoen.2019.05.022 |
73 |
Sun F. ; Zhou D. ; He X. ; Osenberg M. ; Dong K. ; Chen L. ; Mei S. ; Hilger A. ; Markötter H. ; Lu Y. ACS Energy Lett. 2020, 5 (1), 152.
doi: 10.1021/acsenergylett.9b02424 |
74 |
Louli A. J. ; Eldesoky A. ; Weber R. ; Genovese M. ; Coon M. ; deGooyer J. ; Deng Z. ; White R. T. ; Lee J. ; Rodgers T. ; et al Nat. Energy 2020,
doi: 10.1038/s41560-020-0668-8 |
75 |
Yu S. H. ; Huang X. ; Brock J. D. ; Abruña H. D. J. Am. Chem. Soc. 2019, 141 (21), 8441.
doi: 10.1021/jacs.8b13297 |
76 |
Hartmann P. ; Leichtweiss T. ; Busche M. R. ; Schneider M. ; Reich M. ; Sann J. ; Adelhelm P. ; Janek J. J. Phys. Chem. C 2013, 117 (41), 21064.
doi: 10.1021/jp4051275 |
77 |
Fiedler C. ; Luerssen B. ; Rohnke M. ; Sann J. ; Janek J. J. Electrochem. Soc. 2017, 164 (14), A3742.
doi: 10.1149/2.0851714jes |
78 |
Periyapperuma K. ; Arca E. ; Harvey S. ; Ban C. ; Burrell A. ; MacFarlane D. R. ; Pozo-Gonzalo C. ; Forsyth M. ; Howlett P. C. J. Mater. Chem. A 2020, 8 (7), 3574.
doi: 10.1039/C9TA12004A |
79 |
Chang H. J. ; Ilott A. J. ; Trease N. M. ; Mohammadi M. ; Jerschow A. ; Grey C. P. J. Am. Chem. Soc. 2015, 137 (48), 15209.
doi: 10.1021/jacs.5b09385 |
80 |
Ilott A. J. ; Mohammadi M. ; Chang H. J. ; Grey C. P. ; Jerschow A. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (39), 10779.
doi: 10.1073/pnas.1607903113 |
81 |
Chandrashekar S. ; Trease N. M. ; Chang H. J. ; Du L. S. ; Grey C. P. ; Jerschow A. Nat. Mater. 2012, 11 (4), 311.
doi: 10.1038/nmat3246 |
82 |
Song B. ; Dhiman I. ; Carothers J. C. ; Veith G. M. ; Liu J. ; Bilheux H. Z. ; Huq A. ACS Energy Lett. 2019, 4 (10), 2402.
doi: 10.1021/acsenergylett.9b01652 |
83 |
Zhang Y. ; Chandran K. S. R. ; Jagannathan M. ; Bilheux H. Z. ; Bilheux J. C. J. Electrochem. Soc. 2017, 164 (2), A28.
doi: 10.1149/2.0051702jes |
84 |
Yue J. L. ; Zhou Y. N. ; Shi S. Q. ; Shadike Z. ; Huang X. Q. ; Luo J. ; Yang Z. Z. ; Li H. ; Gu L. ; Yang X. Q. ; Fu Z. W. Sci. Rep. 2015, 5 (1), 8810.
doi: 10.1038/srep08810 |
85 |
Gong Y. ; Zhang J. ; Jiang L. ; Shi J. A. ; Zhang Q. ; Yang Z. ; Zou D. ; Wang J. ; Yu X. ; Xiao R. ;et al J. Am. Chem. Soc. 2017, 139 (12), 4274.
doi: 10.1021/jacs.6b13344 |
86 |
Ren J. ; Wang Y. ; Zhao J. ; Tan S. ; Petek H. J. Am. Chem. Soc. 2019, 141 (10), 4438.
doi: 10.1021/jacs.8b13843 |
87 |
Seidl L. ; Bucher N. ; Chu E. ; Hartung S. ; Martens S. ; Schneider O. ; Stimming U. Energy Environ. Sci. 2017, 10 (7), 1631.
doi: 10.1039/C7EE00546F |
88 |
Liu Q. ; Yu Q. ; Li S. ; Wang S. ; Zhang L. ; Cai B. ; Zhou D. ; Li B. Energy Storage Mater. 2020, 25, 613.
doi: 10.1016/j.ensm.2019.09.023 |
89 |
Wenzel S. ; Leichtweiss T. ; Krüger D. ; Sann J. ; Janek J. Solid State Ionics 2015, 278, 98.
doi: 10.1016/j.ssi.2015.06.001 |
90 |
Harry K. J. ; Hallinan D. T. ; Parkinson D. Y. ; MacDowell A. A. ; Balsara N. P. Nat. Mater. 2014, 13 (1), 69.
doi: 10.1038/nmat3793 |
91 |
Devaux D. ; Harry K. J. ; Parkinson D. Y. ; Yuan R. ; Hallinan D. T. ; MacDowell A. A. ; Balsara N. P. J. Electrochem. Soc. 2015, 162 (7), A1301.
doi: 10.1149/2.0721507jes |
92 |
Maslyn J. A. ; Loo W. S. ; McEntush K. D. ; Oh H. J. ; Harry K. J. ; Parkinson D. Y. ; Balsara N. P. J. Phys. Chem. C 2018, 122 (47), 26797.
doi: 10.1021/acs.jpcc.8b06355 |
93 |
Doux J. ; Nguyen H. ; Tan D. H. S. ; Banerjee A. ; Wang X. ; Wu E. A. ; Jo C. ; Yang H. ; Meng Y. S. Adv. Energy Mater. 2020, 10 (1), 1903253.
doi: 10.1002/aenm.201903253 |
94 |
Bhattacharyya R. ; Key B. ; Chen H. ; Best A. S. ; Hollenkamp A. F. ; Grey C. P. Nat. Mater. 2010, 9 (6), 504.
doi: 10.1038/nmat2764 |
95 | Liu F. F. ; Zhang Z. W. ; Ye S. F. ; Yao Y. ; Yu Y. Acta Phys. -Chim. Sin. 2021, 37, 2006021. |
刘凡凡; 张志文; 叶淑芬; 姚雨; 余彦. 物理化学学报, 2021, 37, 2006021.
doi: 10.3866/PKU.WHXB202006021 |
[1] | Yongzhi Zhao, Chenyang Chen, Wenyi Liu, Weifei Hu, Jinping Liu. Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2211017-0. |
[2] | Qiuying Xia, Yu Cai, Wei Liu, Jinshi Wang, Chuanzhi Wu, Feng Zan, Jing Xu, Hui Xia. Direct Recycling of All-Solid-State Thin Film Lithium Batteries with Lithium Anode Failure [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2212051-0. |
[3] | Yingying Zhu, Yong Wang, Miao Xu, Yongmin Wu, Weiping Tang, Di Zhu, Yu-Shi He, Zi-Feng Ma, Linsen Li. Tracking Pressure Changes and Morphology Evolution of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2110040-0. |
[4] | Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2105024-. |
[5] | Junda Huang, Yuhui Zhu, Yu Feng, Yehu Han, Zhenyi Gu, Rixin Liu, Dongyue Yang, Kai Chen, Xiangyu Zhang, Wei Sun, Sen Xin, Yan Yu, Haijun Yu, Xu Zhang, Le Yu, Hua Wang, Xinhua Liu, Yongzhu Fu, Guojie Li, Xinglong Wu, Canliang Ma, Fei Wang, Long Chen, Guangmin Zhou, Sisi Wu, Zhouguang Lu, Xiuting Li, Jilei Liu, Peng Gao, Xiao Liang, Zhi Chang, Hualin Ye, Yanguang Li, Liang Zhou, Ya You, Peng-Fei Wang, Chao Yang, Jinping Liu, Meiling Sun, Minglei Mao, Hao Chen, Shanqing Zhang, Gang Huang, Dingshan Yu, Jiantie Xu, Shenglin Xiong, Jintao Zhang, Ying Wang, Yurong Ren, Chunpeng Yang, Yunhan Xu, Yanan Chen, Yunhua Xu, Zifeng Chen, Xiangwen Gao, Shengda D. Pu, Shaohua Guo, Qiang Li, Xiaoyu Cao, Jun Ming, Xinpeng Pi, Chaofan Liang, Long Qie, Junxiong Wang, Shuhong Jiao, Yu Yao, Chenglin Yan, Dong Zhou, Baohua Li, Xinwen Peng, Chong Chen, Yongbing Tang, Qiaobao Zhang, Qi Liu, Jincan Ren, Yanbing He, Xiaoge Hao, Kai Xi, Libao Chen, Jianmin Ma. Research Progress on Key Materials and Technologies for Secondary Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(12): 2208008-. |
[6] | Zibo Zhang, Wei Deng, Xufeng Zhou, Zhaoping Liu. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008092-. |
[7] | Guangbin Hua, Yanchen Fan, Qianfan Zhang. Application of Computational Simulation on the Study of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008089-. |
[8] | Xinyang Yue, Cui Ma, Jian Bao, Siyu Yang, Dong Chen, Xiaojing Wu, Yongning Zhou. Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005012-. |
[9] | Gaolong Zhu, Chenzi Zhao, Hong Yuan, Haoxiong Nan, Bochen Zhao, Lipeng Hou, Chuangxin He, Quanbing Liu, Jiaqi Huang. Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005003-. |
[10] | Yunbo Zhang, Qiaowei Lin, Junwei Han, Zhiyuan Han, Tong Li, Feiyu Kang, Quan-Hong Yang, Wei Lü. Bacterial Cellulose-Derived Three-Dimensional Carbon Current Collectors for Dendrite-Free Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008088-. |
[11] | Haodong Shi, Yaguang Li, Pengfei Lu, Zhong-Shuai Wu. Single-Atom Cobalt Coordinated to Oxygen Sites on Graphene for Stable Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2008033-. |
[12] | Yi Yang, Chong Yan, Jiaqi Huang. Research Progress of Solid Electrolyte Interphase in Lithium Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(11): 2010076-. |
[13] | Shichao Zhang, Zeyu Shen, Yingying Lu. Research Progress of Thermal Runaway and Safety for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008065-. |
[14] | Guorui Zheng, Yuxuan Xiang, Yong Yang. Neutron Depth Profiling Technique for Studying Rechargeable Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2008094-. |
[15] | Jinli Qin, Longtao Ren, Xin Cao, Yajun Zhao, Haijun Xu, Wen Liu, Xiaoming Sun. Porous Copper Foam Co-operation with Thiourea for Dendrite-free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2009020-. |
|