Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (1): 2008094.doi: 10.3866/PKU.WHXB202008094
Special Issue: Lithium Metal Anodes
• REVIEW • Previous Articles Next Articles
Guorui Zheng, Yuxuan Xiang, Yong Yang()
Received:
2020-08-31
Accepted:
2020-09-22
Published:
2020-10-19
Contact:
Yong Yang
E-mail:yyang@xmu.edu.cn
About author:
Yang Yong. E-mail:yyang@xmu.edu.cn; Tel.: +86-592-2185753Supported by:
Guorui Zheng, Yuxuan Xiang, Yong Yang. Neutron Depth Profiling Technique for Studying Rechargeable Lithium Metal Anodes[J]. Acta Phys. -Chim. Sin. 2021, 37(1), 2008094. doi: 10.3866/PKU.WHXB202008094
Table 1
List of neutron capture reactions relevant for NDP in detecting different elements 19."
Element | Abundance/% | Energies of particles formed/keV | Cross section/b |
3He | 0.00014 | p (572) + 3H (191) | 5333 |
6Li | 7.5 | 3H (2727) + 4He (2055) | 940 |
7Be | Radioactive | p (1438) + 7Li (207) | 48000 |
10B | 19.9 | 4He (1472) + 7Li (840) + y [93.7%] 4He (1777) + 7Li (1013) [6.3%] | 3837 |
14N | 99.6 | 14C (42) + p (584) | 1.83 |
17O | 0.038 | 14C (404) + 4He (1413) | 0.24 |
22Na | Radioactive | 22Ne (103) + p (2247) | 31000 |
33S | 0.75 | 30Si (411) + 4He (3081) | 0.19 |
35Cl | 75.8 | 35S (17) + p (598) | 0.49 |
40K | 0.012 | 40Ar (56) + p (2231) | 4.4 |
59Ni | Radioactive | 56Fe (340) + 4He (4757) | 12.3 |
Fig 3
(a) Operando NDP measurements of four plating and stripping cycles at 1.0 mA?cm?2 current density, showing the fractional Li density as a function of depth perpendicular to the Cu current collector. The fractional Li density is obtained by normalizing the measured Li density by the normal Li-metal density. (b) The Li-plating and stripping activity, which is derived from the change in Li density upon each time step. Operando NDP measurements of ten plating and stripping cycles by setting different current density (c), integrated amount of Li from the operando NDP experiments (d), and Coulombic efficiency and Li efficiency during the cycling (e). Adapted from Ref. 12."
Fig 4
(a) Principle of operando NDP of Li-metal plating and stripping; (b) schematic representations of the plating and stripping process for the different electrolytes; (c) operando NDP measurements for understanding the impact of the GPE and LiNO3 combination on the Li density distribution. Adapted from Ref. 38."
Fig 5
Operando NDP measurements of Cu/Li pouch cells during the initial five cycles at 0.5 mA?cm?2 for understanding the impact of different additives on the Li plating and stripping. (a–d) Base electrolyte; (e–h) LiDFP-added electrolyte; (i–l) VC-added electrolyte; (m–p) LiDFP-VC-added electrolyte.Adapted from Ref. 39."
Fig 8
Schematic of the experimental set-up (a) and structures of LiCoO2/LiPON/Cu, Li/LLZO/Cu and Li/Li3PS4/Pt cells (b) for operando NDP, Li is plated on Cu or Pt; (c–e) time-resolved lithium concentration profiles for different solid state electrolytes; (f–i) evolution of the Li content of dendrites in the bulk region of different solid state electrolytes. Adapted from Ref. 48."
Fig 9
(a) Schematic of in situ NDP for quantitative Li monitoring; (b–c) in situ NDP measurements of a symmetric cell Li/garnet/Li cycling at different current densities; (d–e) impedance spectra of the Li/garnet/Li cell before and after NDP cycling and the recovery process of EIS measurements of Li/garnet/Li cell after NDP cycling; (f) schematic of the reversible short-circuit behaviors in garnet-based symmetric cells. Adapted from Ref. 49."
1 |
Xu W. ; Wang J. ; Ding F. ; Chen X. ; Nasybulin E. ; Zhang Y. ; Zhang J. G. Energy Environ. Sci. 2014, 7, 513.
doi: 10.1039/c3ee40795k |
2 |
Qian J. ; Henderson W. A. ; Xu W. ; Bhattacharya P. ; Engelhard M. ; Borodin O. ; Zhang J. G. Nat. Commun. 2015, 6, 6362.
doi: 10.1038/ncomms7362 |
3 |
Markevich E. ; Salitra G. ; Chesneau F. ; Schmidt M. ; Aurbach D. ACS Energy Lett. 2017, 2, 1321.
doi: 10.1021/acsenergylett.7b00300 |
4 |
Zheng J. ; Engelhard M. H. ; Mei D. ; Jiao S. ; Polzin B. J. ; Zhang J. G. ; Xu W. Nat. Energy 2017, 2, 17012.
doi: 10.1038/nenergy.2017.12 |
5 |
Luo W. ; Gong Y. ; Zhu Y. ; Li Y. ; Yao Y. ; Zhang Y. ; Fu K. K. ; Pastel G. ; Lin C. F. ; Mo Y. ; Wachsman E. D. ; Hu L. Adv. Mater. 2017, 29, 1606042.
doi: 10.1002/adma.201606042 |
6 |
Wang C. ; Gong Y. ; Liu B. ; Fu K. ; Yao Y. ; Hitz E. ; Li Y. ; Dai J. ; Xu S. ; Luo W. ; Wachsman E. D. ; Hu L. Nano Lett. 2017, 17, 565.
doi: 10.1021/acs.nanolett.6b04695 |
7 |
Liu W. ; Lin D. ; Pei A. ; Cui Y. J. Am. Chem. Soc. 2016, 138, 15443.
doi: 10.1021/jacs.6b08730 |
8 |
Zachman M. J. ; Tu Z. ; Choudhury S. ; Archer L. A. ; Kourkoutis L. F. Nature 2018, 560, 345.
doi: 10.1038/s41586-018-0397-3 |
9 |
Chang H. J. ; Trease N. M. ; Ilott A. J. ; Zeng D. ; Du L. S. ; Jerschow A. ; Grey C. P. J. Phys. Chem. C 2015, 119, 16443.
doi: 10.1021/acs.jpcc.5b03396 |
10 |
Chang H. J. ; Ilott A. J. ; Trease N. M. ; Mohammadi M. ; Jerschow A. ; Grey C. P. J. Am. Chem. Soc. 2015, 137, 15209.
doi: 10.1021/jacs.5b09385 |
11 |
Ilott A. J. ; Mohammadi M. ; Chang H. J. ; Grey C. P. ; Jerschow A. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 10779.
doi: 10.1073/pnas.1607903113 |
12 |
Lv S. ; Verhallen T. ; Vasileiadis A. ; Ooms F. ; Xu Y. ; Li Z. ; Li Z. ; Wagemaker M. Nat. Commun. 2018, 9, 2152.
doi: 10.1038/s41467-018-04394-3 |
13 |
Nagpure S. C. ; Downing R. G. ; Bhushan B. ; Babu S. S. ; Cao L. Electrochim. Acta 2011, 56, 4735.
doi: 10.1016/j.electacta.2011.02.037 |
14 |
Wetjen M. ; Trunk M. ; Werner L. ; Gernhäuser R. ; Märkisch B. ; Révay Z. ; Gilles R. ; Gasteiger H. A. J. Electrochem. Soc. 2018, 165, A2340.
doi: 10.1149/2.1341810jes |
15 |
Liu D. X. ; Co A. C. J. Am. Chem. Soc. 2016, 138, 231.
doi: 10.1021/jacs.5b10295 |
16 |
Liu D. X. ; Cao L. R. ; Co A. C. Chem. Mater. 2016, 28, 556.
doi: 10.1021/acs.chemmater.5b04039 |
17 |
Yang Y. ; Liu X. ; Dai Z. ; Yuan F. ; Bando Y. ; Golberg D. ; Wang X. Adv. Mater. 2017, 29
doi: 10.1002/adma.201606922 |
18 |
Tripathi A. M. ; Su W. N. ; Hwang B. J. Chem. Soc. Rev. 2018, 47, 736.
doi: 10.1039/c7cs00180k |
19 |
Downing R. G. ; Lamaze G. P. ; Langland J. K. ; Hwang S. T. J. Res. Natl. Inst. Stand. Technol. 1993, 98, 109.
doi: 10.6028/jres.098.008 |
20 |
Verhallen T. W. ; Lv S. ; Wagemaker M. Front. Energy Res. 2018, 6
doi: 10.3389/fenrg.2018.00062 |
21 |
Oudenhoven J. F. ; Labohm F. ; Mulder M. ; Niessen R. A. ; Mulder F. M. ; Notten P. H. Adv. Mater. 2011, 23, 4103.
doi: 10.1002/adma.201101819 |
22 |
Wilson W. D. ; Haggmark L. G. ; Biersack J. P. Phys. Rev. B 1977, 15, 2458.
doi: 10.1103/PhysRevB.15.2458 |
23 |
Ziegler J. F. ; Ziegler M. D. ; Biersack J. P. Nucl. Instrum. Methods Phys. Res. B 2010, 268, 1818.
doi: 10.1016/j.nimb.2010.02.091 |
24 |
Danilov D. L. ; Chen C. ; Jiang M. ; Eichel R. A. ; Notten P. H. L. Radiat. Eff. Defects Solids 2020, 175, 367.
doi: 10.1080/10420150.2019.1701468 |
25 |
Maki J. T. ; Fleming R. F. ; Vincent D. H. Nucl. Instrum. Methods Phys. Res. B 1986, 17, 147.
doi: 10.1016/0168-583x(86)90077-7 |
26 |
Downing R. G. ; Maki J. T. ; Fleming R. F. J. Radioanal. Nucl. Chem. 1987, 112, 33.
doi: 10.1007/BF02037274 |
27 |
Linsenmann F. ; Trunk M. ; Rapp P. ; Werner L. ; Gernhäuser R. ; Gilles R. ; Märkisch B. ; Révay Z. ; Gasteiger H. A. J. Electrochem. Soc. 2020, 167, 100554.
doi: 10.1149/1945-7111/ab9b20 |
28 |
Zhang X. ; Verhallen T. W. ; Labohm F. ; Wagemaker M. Adv. Energy Mater. 2015, 5, 1500498.
doi: 10.1002/aenm.201500498 |
29 |
Pei A. ; Zheng G. ; Shi F. ; Li Y. ; Cui Y. Nano Lett. 2017, 17, 1132.
doi: 10.1021/acs.nanolett.6b04755 |
30 |
Jana A. ; García R. E. Nano Energy 2017, 41, 552.
doi: 10.1016/j.nanoen.2017.08.056 |
31 |
Brissot C. ; Rosso M. ; Chazalviel J. N. ; Baudry P. ; Lascaud S. Electrochim. Acta 1998, 43, 1569.
doi: 10.1016/S0013-4686(97)10055-X |
32 |
Brissot C. ; Rosso M. ; Chazalviel J. N. ; Lascaud S. J. Electrochem. Soc. 1999, 146, 4393.
doi: 10.1149/1.1392649 |
33 |
Brissot C. ; Rosso M. ; Chazalviel J. N. ; Lascaud S. J. Power Sources 1999, 81-82, 925.
doi: 10.1016/S0378-7753(98)00242-0 |
34 |
Teyssot A. ; Belhomme C. ; Bouchet R. ; Rosso M. ; Lascaud S. ; Armand M. J. Electroanal. Chem. 2005, 584, 70.
doi: 10.1016/j.jelechem.2005.01.037 |
35 |
Yin X. ; Tang W. ; Jung I. D. ; Phua K. C. ; Adams S. ; Lee S. W. ; Zheng G. W. Nano Energy 2018, 50, 659.
doi: 10.1016/j.nanoen.2018.06.003 |
36 |
Thirumalraj B. ; Hagos T. T. ; Huang C. J. ; Teshager M. A. ; Cheng J. H. ; Su W. N. ; Hwang B. J. J. Am. Chem. Soc. 2019, 141, 18612.
doi: 10.1021/jacs.9b10195 |
37 |
Hou L. P. ; Zhang X. Q. ; Li B. Q. ; Zhang Q. Angew. Chem. Int. Ed. 2020, 59, 15109.
doi: 10.1002/anie.202002711 |
38 |
Liu M. ; Cheng Z. ; Qian K. ; Verhallen T. ; Wang C. ; Wagemaker M. Chem. Mater. 2019, 31, 4564.
doi: 10.1021/acs.chemmater.9b01325 |
39 |
Zheng G. ; Xiang Y. ; Chen S. ; Ganapathy S. ; Verhallen T. W. ; Liu M. ; Zhong G. ; Zhu J. ; Han X. ; Wang W. ; et al Energy Storage Mater. 2020, 29, 377.
doi: 10.1016/j.ensm.2019.12.027 |
40 |
Liu Y. ; Lin D. ; Liang Z. ; Zhao J. ; Yan K. ; Cui Y. Nat. Commun. 2016, 7, 10992.
doi: 10.1038/ncomms10992 |
41 |
Varzi A. ; Raccichini R. ; Passerini S. ; Scrosati B. J. Mater. Chem. A 2016, 4, 17251.
doi: 10.1039/C6TA07384K |
42 |
Mauger A. ; Armand M. ; Julien C. M. ; Zaghib K. J. Power Sources 2017, 353, 333.
doi: 10.1016/j.jpowsour.2017.04.018 |
43 |
Tomandl I. ; Vacik J. ; Kobayashi T. ; Mora Sierra Y. ; Hnatowicz V. ; Lavreniev V. ; Horak P. ; Ceccio G. ; Cannavo A. ; Baba M. ; et al Radiat. Eff. Defects Solids 2020, 175, 394.
doi: 10.1080/10420150.2019.1701471 |
44 |
Wang C. ; Gong Y. ; Dai J. ; Zhang L. ; Xie H. ; Pastel G. ; Liu B. ; Wachsman E. ; Wang H. ; Hu L. J. Am. Chem. Soc. 2017, 139, 14257.
doi: 10.1021/jacs.7b07904 |
45 |
Li Q. ; Yi T. ; Wang X. ; Pan H. ; Quan B. ; Liang T. ; Guo X. ; Yu X. ; Wang H. ; Huang X. ; et al Nano Energy 2019, 63, 103895.
doi: 10.1016/j.nanoen.2019.103895 |
46 |
Porz L. ; Swamy T. ; Sheldon B. W. ; Rettenwander D. ; Frömling T. ; Thaman H. L. ; Berendts S. ; Uecker R. ; Carter W. C. ; Chiang Y. M. Adv. Energy Mater. 2017, 7, 1701003.
doi: 10.1002/aenm.201701003 |
47 |
Ke X. ; Wang Y. ; Dai L. ; Yuan C. Energy Storage Mater. 2020,
doi: 10.1016/j.ensm.2020.07.024 |
48 |
Han F. ; Westover A. S. ; Yue J. ; Fan X. ; Wang F. ; Chi M. ; Leonard D. N. ; Dudney N. J. ; Wang H. ; Wang C. Nat. Energy 2019, 4, 187.
doi: 10.1038/s41560-018-0312-z |
49 |
Ping W. ; Wang C. ; Lin Z. ; Hitz E. ; Yang C. ; Wang H. ; Hu L. Adv. Energy Mater. 2020, 10, 2000702.
doi: 10.1002/aenm.202000702 |
50 |
Ketzer B. Nucl. Instrum. Methods Phys. Res. A 2013, 732, 237.
doi: 10.1016/j.nima.2013.08.027 |
[1] | Guoyong Xue, Jing Li, Junchao Chen, Daiqian Chen, Chenji Hu, Lingfei Tang, Bowen Chen, Ruowei Yi, Yanbin Shen, Liwei Chen. A Single-Ion Polymer Superionic Conductor [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2205012-0. |
[2] | Shuai Chen, Chuang Yu, Qiyue Luo, Chaochao Wei, Liping Li, Guangshe Li, Shijie Cheng, Jia Xie. Research Progress of Lithium Metal Halide Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2210032-0. |
[3] | Liu Yuankai, Yu Tao, Guo Shaohua, Zhou Haoshen. Designing High-Performance Sulfide-Based All-Solid-State Lithium Batteries: From Laboratory to Practical Application [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301027-0. |
[4] | Linfeng Peng, Chuang Yu, Chaochao Wei, Cong Liao, Shuai Chen, Long Zhang, Shijie Cheng, Jia Xie. Recent Progress on Lithium Argyrodite Solid-State Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(7): 2211034-0. |
[5] | Kuangyu Wang, Kai Liu, Hui Wu. Molten Alkali Metal Batteries Based on Solid Electrolytes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301009-. |
[6] | Yingying Zhu, Yong Wang, Miao Xu, Yongmin Wu, Weiping Tang, Di Zhu, Yu-Shi He, Zi-Feng Ma, Linsen Li. Tracking Pressure Changes and Morphology Evolution of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2023, 39(1): 2110040-0. |
[7] | Wei Zhang, Haichen Liang, Kerun Zhu, Yong Tian, Yao Liu, Jiayin Chen, Wei Li. Three-Dimensional Macro-/Mesoporous C-TiC Nanocomposites for Dendrite-Free Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2022, 38(6): 2105024-. |
[8] | Zixu He, Yawei Chen, Fanyang Huang, Yulin Jie, Xinpeng Li, Ruiguo Cao, Shuhong Jiao. Fluorinated Solvents for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2205005-. |
[9] | Zibo Zhang, Wei Deng, Xufeng Zhou, Zhaoping Liu. LiC6 Heterogeneous Interface for Stable Lithium Plating and Stripping [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008092-. |
[10] | Zhida Wang, Yuancheng Feng, Songtao Lu, Rui Wang, Wei Qin, Xiaohong Wu. Improvement in Performance of Three-Dimensional SnLi/Carbon Paper Anode in Lean Electrolyte with In Situ Fluorinated Protection Layer [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008082-. |
[11] | Guangbin Hua, Yanchen Fan, Qianfan Zhang. Application of Computational Simulation on the Study of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008089-. |
[12] | Xinyang Yue, Cui Ma, Jian Bao, Siyu Yang, Dong Chen, Xiaojing Wu, Yongning Zhou. Failure Mechanisms of Lithium Metal Anode and Their Advanced Characterization Technologies [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005012-. |
[13] | Gaolong Zhu, Chenzi Zhao, Hong Yuan, Haoxiong Nan, Bochen Zhao, Lipeng Hou, Chuangxin He, Quanbing Liu, Jiaqi Huang. Liquid Phase Therapy with Localized High-Concentration Electrolytes for Solid-State Li Metal Pouch Cells [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2005003-. |
[14] | Yumeng Zhao, Lingxiao Ren, Aoxuan Wang, Jiayan Luo. Composite Anodes for Lithium Metal Batteries [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008090-. |
[15] | Yunbo Zhang, Qiaowei Lin, Junwei Han, Zhiyuan Han, Tong Li, Feiyu Kang, Quan-Hong Yang, Wei Lü. Bacterial Cellulose-Derived Three-Dimensional Carbon Current Collectors for Dendrite-Free Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008088-. |
|