Acta Phys. -Chim. Sin. ›› 2021, Vol. 37 ›› Issue (2): 2008082.doi: 10.3866/PKU.WHXB202008082
Special Issue: Lithium Metal Anodes
• COMMUNICATION • Previous Articles Next Articles
Zhida Wang1, Yuancheng Feng1, Songtao Lu1,*(), Rui Wang1, Wei Qin2, Xiaohong Wu1,*(
)
Received:
2020-08-27
Accepted:
2020-10-16
Published:
2020-10-22
Contact:
Songtao Lu,Xiaohong Wu
E-mail:lusongtao@hit.edu.cn;wuxiaohong@hit.edu.cn
About author:
Xiaohong Wu, Email:wuxiaohong@hit.edu.cn (X.W.)Supported by:
Zhida Wang, Yuancheng Feng, Songtao Lu, Rui Wang, Wei Qin, Xiaohong Wu. Improvement in Performance of Three-Dimensional SnLi/Carbon Paper Anode in Lean Electrolyte with In Situ Fluorinated Protection Layer[J]. Acta Phys. -Chim. Sin. 2021, 37(2), 2008082. doi: 10.3866/PKU.WHXB202008082
Fig 2
(a) Comparison of Tafel plots of symmetric coin cells assembled with different symmetric electrode as noted; (b) photographs of as-prepared composite LiSn/Cp anode; (c) SEM image, (d) F 1s regional XPS spectrum and (e) STEM and (f, g) corresponding EDS elemental mapping analysis of SnLi/Cp electrode after 30 cycles."
Fig 3
Electrochemical behavior of symmetric coin cells assembled with different electrodes and electrolyte: (a) comparison of voltage profiles acquired at 8 mA·cm-2 for a capacity of 2 mAh·cm-2 in each step; (b) the Nyquist plots and its equivalent circuit for corresponding cells after 30 cycles; (c) comparison of voltage profiles acquired at 5 mA·cm-2 for a capacity of 2 mAh·cm-2; (d) the Nyquist plots and its equivalent circuit for corresponding cells after 30 cycles."
Fig 4
(a) Comparison of capacity and Coulombic efficiency of SnLi/Cp‖NMC811 and Li‖NMC811 full cells with 30 μL (10 μL•(mAh)-1) electrolyte at 1C; the typical voltage profiles during cycling are compared in (b, c); (d, e) SEM images of SnLi/Cp and Li electrode after 50 cycles; (f) comparison of the rate performance of full cells assembled with different anodes and electrolytes."
1 |
Adair K. R. ; Zhao C. ; Banis M. N. ; Zhao Y. ; Li R. ; Cai M. ; Sun X. Angew. Chem. Int. Ed. 2019, 58, 15797.
doi: 10.1002/anie.201907759 |
2 | Yue X. Y. ; Ma C. ; Bao J. ; Yang S. Y. ; Chen D. ; Wu X. J. ; Zhou Y. N. Acta Phys. -Chim. Sin. 2021, 37, 2005012. |
岳昕阳; 马萃; 包戬; 杨思宇; 陈东; 吴晓京; 周永宁. 物理化学学报, 2021, 37, 2005012.
doi: 10.3866/PKU.WHXB202005012 |
|
3 |
Su Y. ; Ye L. ; Fitzhugh W. ; Wang Y. ; Gil-González E. ; Kim I. ; Li X. Energy Environ. Sci. 2020, 13, 908.
doi: 10.1039/C9EE04007B |
4 |
Qiao Y. ; Li Q. ; Cheng X. B. ; Liu F. ; Yang Y. ; Lu Z. ; Zhao J. ; Wu J. ; Liu H. ; Yang S. ; Liu Y. ACS Appl. Mater. Interfaces 2020, 12, 5767.
doi: 10.1021/acsami.9b18315 |
5 |
Li S. ; Fang S. ; Dou H. ; Zhang X. ACS Appl. Mater. Interfaces 2019, 11, 20804.
doi: 10.1021/acsami.9b03940 |
6 |
Indu M. S. ; Alexander G. V. ; Deviannapoorani C. ; Murugan R. Ceram. Int. 2019, 45, 22610.
doi: 10.1016/j.ceramint.2019.07.293 |
7 |
Yan C. ; Xu R. ; Qin J. ; Yuan H. ; Xiao Y. ; Xu L. ; Huang J. Angew. Chem. Int. Ed. 2019, 58, 15235.
doi: 10.1002/anie.201908874 |
8 |
Liu J. ; Bao Z. ; Cui Y. ; Dufek E. J. ; Goodenough J. B. ; Khalifah P. ; Li Q. ; Liaw B. Y. ; Liu P. ; Manthiram A. ; et al Nat. Energy 2019, 4, 180.
doi: 10.1038/s41560-019-0338-x |
9 |
Li X. ; Yang G. ; Zhang S. ; Wang Z. ; Chen L. Nano Energy 2019, 66, 104144.
doi: 10.1016/j.nanoen.2019.104144 |
10 |
Assegie A. A. ; Chung C. C. ; Tsai M. C. ; Su W. N. ; Chen C. W. ; Hwang B. J. Nanoscale 2019, 11, 2710.
doi: 10.1039/C8NR06980H |
11 |
Thirumalraj B. ; Hagos T. T. ; Huang C. J. ; Teshager M. A. ; Cheng J. H. ; Su W. N. ; Hwang B. J. J. Am. Chem. Soc. 2019, 141, 18612.
doi: 10.1021/jacs.9b10195 |
12 |
Peng Z. ; Ren F. ; Yang S. ; Wang M. ; Sun J. ; Wang D. ; Xu W. ; Zhang J. G. Nano Energy 2019, 59, 110.
doi: 10.1021/jacs.9b10195 |
13 | Guo F. ; Chen P. ; Kang T. ; Wang Y. L. ; Liu C. H. ; Shen Y. B. ; Lu W. ; Chen L. W. Acta Phys. -Chim. Sin. 2019, 35, 1365. |
郭峰; 陈鹏; 康拓; 王亚龙; 刘承浩; 沈炎宾; 卢威; 陈立桅. 物理化学学报, 2019, 35, 1365.
doi: 10.3866/PKU.WHXB201903008 |
|
14 |
Chen K. H. ; Sanchez A. J. ; Kazyak E. ; Davis A. L. ; Dasgupta N. P. Adv. Energy Mater. 2019, 9, 1802534.
doi: 10.1002/aenm.201802534 |
15 |
Shangguan X. ; Xu G. ; Cui Z. ; Wang Q. ; Du X. ; Chen K. ; Huang S. ; Jia G. ; Li F. ; Wang X. ; et al Small 2019, 15, 1900269.
doi: 10.1002/smll.201900269 |
16 |
Bae J. ; Qian Y. ; Li Y. ; Zhou X. ; Goodenough J. B. ; Yu G. Energy Environ. Sci. 2019, 12, 3319.
doi: 10.1039/C9EE02558H |
17 |
Cao C. ; Li Y. ; Feng Y. ; Peng C. ; Li Z. ; Feng W. Energy Storage Mater. 2019, 19, 401.
doi: 10.1016/j.ensm.2019.03.004 |
18 |
Chen K. ; Pathak R. ; Gurung A. ; Adhamash E. A. ; Bahrami B. ; He Q. ; Qiao H. ; Smirnova A. L. ; Wu J. J. ; Qiao Q. ; Zhou Y. Energy Storage Mater. 2019, 18, 389.
doi: 10.1016/j.ensm.2019.02.006 |
19 |
Guo F. ; Wu C. ; Chen H. ; Zhong F. ; Ai X. ; Yang H. ; Qian J. Energy Storage Mater. 2020, 24, 635.
doi: 10.1016/j.ensm.2019.06.010 |
20 |
Li N. ; Yin Y. ; Yang C. ; Guo Y. Adv. Mater. 2016, 28, 1853.
doi: 10.1002/adma.201504526 |
21 |
Li N. ; Shi Y. ; Yin Y. ; Zeng X. ; Li J. ; Li C. ; Wan L. ; Wen R. ; Guo Y. J. Angew. Chem. Int. Ed. 2018, 57, 1505.
doi: 10.1002/anie.201710806 |
22 | Chen L. ; Li X. L. ; Zhao Q. ; Cai W. B. ; Jiang Z. Y. Acta Phys. -Chim. Sin. 2006, 22, 1155. |
陈玲; 李雪莉; 赵强; 蔡文斌; 江志裕. 物理化学学报, 2006, 22, 1155.
doi: 10.3866/PKU.WHXB20060924 |
|
23 |
Zheng L. ; Guo F. ; Kang T ; Yang J. ; Liu Y. ; Gu W. ; Zhao Y. ; Lin H. ; Shen Y. ; Lu W. ; Chen L. Nano Res. 2020, 13, 1324.
doi: 10.1007/s12274-019-2565-7 |
24 |
Lang J. ; Long Y. ; Qu J. ; Luo X. ; Wei H. ; Huang K. ; Zhang H. ; Qi L. ; Zhang Q. ; Li Z. ; Wu H. Energy Storage Mater. 2019, 16, 85.
doi: 10.1016/j.ensm.2018.04.024 |
25 |
DeSilva J. ; Udinwe V. ; Sideris P J. ; Smart M. C. ; Krause F. C. ; Hwang C. ; Smith K. A. ; Greenbaum S. G. J. Electrochem. Soc. 2012, 41, 207.
doi: 10.1149/1.4717978 |
26 |
Liu W. ; Lin D. ; Pei A. ; Cui Y. J. Am. Chem. Soc. 2016, 138, 15443.
doi: 10.1021/jacs.6b08730 |
27 |
Li S. ; Wang C. ; Yu J. ; Han Y. ; Lu Z. Energy Storage Mater. 2019, 20, 7.
doi: 10.1016/j.ensm.2018.11.030 |
28 |
Kong L. L. ; Wang L. ; Ni Z. C. ; Liu S. ; Li G. R. ; Gao X. P. Adv. Funct. Mater. 2019, 29, 1808756.
doi: 10.1002/adfm.201808756 |
29 |
Hu Z. ; Li Z. ; Xia Z. ; Jiang T. ; Wang G. ; Sun J. ; Sun P. ; Yan C. ; Zhang L. Energy Storage Mater. 2019, 22, 29.
doi: 10.1016/j.ensm.2018.12.020 |
[1] | Qu Zhuoyan, Zhang Xiaoyin, Xiao Ru, Sun Zhenhua, Li Feng. Application of Organosulfur Compounds in Lithium-Sulfur Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(8): 2301019-0. |
[2] | Huan Liu, Yu Ma, Bin Cao, Qizhen Zhu, Bin Xu. Recent Progress of MXenes in Aqueous Zinc-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(5): 2210027-0. |
[3] | Mingli Xu, Mengchuang Liu, Zezhou Yang, Chen Wu, Jiangfeng Qian. Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2023, 39(3): 2210043-0. |
[4] | Tao Zhang, Simin Gong, Ping Chen, Qi Chen, Liwei Chen. Incorporation of a Polyfluorinated Acrylate Additive for High-Performance Quasi-2D Perovskite Light-Emitting Diodes [J]. Acta Phys. -Chim. Sin., 2023, 39(12): 2301024-. |
[5] | Yuanhao Shen, Qingyu Wang, Jie Liu, Cheng Zhong, Wenbin Hu. Spontaneous Reduction and Adsorption of K3[Fe(CN)6] on Zn Anodes in Alkaline Electrolytes: Enabling a Long-Life Zn-Ni Battery [J]. Acta Phys. -Chim. Sin., 2022, 38(11): 2204048-0. |
[6] | Peiliang Lü, Caiyun Gao, Xiuhong Sun, Mingliang Sun, Zhipeng Shao, Shuping Pang. Synthesis of Cs-Rich CH(NH2)2)xCs1−xPbI3 Perovskite Films Using Additives with Low Sublimation Temperature [J]. Acta Phys. -Chim. Sin., 2021, 37(4): 2009036-. |
[7] | Guangbin Hua, Yanchen Fan, Qianfan Zhang. Application of Computational Simulation on the Study of Lithium Metal Anodes [J]. Acta Phys. -Chim. Sin., 2021, 37(2): 2008089-. |
[8] | Fanfan Liu, Zhiwen Zhang, Shufen Ye, Yu Yao, Yan Yu. Challenges and Improvement Strategies Progress of Lithium Metal Anode [J]. Acta Phys. -Chim. Sin., 2021, 37(1): 2006021-. |
[9] | Qin Ran, Tianyang Sun, Chongyu Han, Haonan Zhang, Jian Yan, Jinglun Wang. Natural Polyphenol Tannic Acid as an Efficient Electrolyte Additive for High Performance Lithium Metal Anode [J]. Acta Physico-Chimica Sinica, 2020, 36(11): 1912068-. |
[10] | Zhenjie CHENG, Yayun MAO, Qingyu DONG, Feng JIN, Yanbin SHEN, Liwei CHEN. Fluoroethylene Carbonate as an Additive for Sodium-Ion Batteries: Effect on the Sodium Cathode [J]. Acta Physico-Chimica Sinica, 2019, 35(8): 868-875. |
[11] | Ping-Ping ZHOU,Xi XI,Bing-Lei SONG,Xiao-Mei PEI,Zheng-Gang CUI. Rheological Behavior of Trimeric Anionic Surfactant/Cationic Additive Mixed Systems [J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2309-2317. |
[12] | Jing-Lun WANG,Xiao-Dan YAN,Tian-Qiao YONG,Ling-Zhi ZHANG. Nitrile-Modified 2, 5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries [J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2293-2300. |
[13] | Xiao-Di ZHENG,Yan-Li ZHU,Rui DONG,Qing-Jie JIAO. Effect of Alkyl Imidazole Ionic Liquids CnmimCl (n=4, 6, 8) on CL-20 Recrystallization [J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1950-1959. |
[14] | Zhao- min WAN,Xing WEI,Wei PENG,Zheng-Lei YIN,Li XIAO,Lin ZHUANG. On-Line Electrochemical Transmission Infrared Spectroscopic Study of Pb2+ Enhanced C―C Bond Breaking in the Ethanol Oxidation Reaction [J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1467-1472. |
[15] | LI Jing-Zhe, KONG Fan-Tai, WU Guo-Hua, HUANG Yang, CHEN Wang-Chao, DAI Song-Yuan. TiO2/Dye/Electrolyte Interface Modification for Dye-Sensitized Solar Cells [J]. Acta Phys. -Chim. Sin., 2013, 29(09): 1851-1864. |
|